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INFINITELY MANY SOLUTIONS FOR NONLOCAL ELLIPTIC
SYSTEMS OF (p1, . . . , pn)-KIRCHHOFF TYPE

SHAPOUR HEIDARKHANI, JOHNNY HENDERSON

Abstract. We establish the existence of infinitely many solutions for a class
of nonlocal elliptic systems of (p1, . . . , pn)-Kirchhoff type. Our approach is
based on variational methods.

1. Introduction

Let Ω ⊂ RN (N ≥ 1) be a non-empty bounded open set with a smooth boundary
∂Ω, Ki : [0,+∞[→ R, for 1 ≤ i ≤ n, be continuous functions such that there exist
positive numbers mi and Mi, with mi ≤ Ki(t) ≤ Mi, for all t ≥ 0 and for 1 ≤ i ≤ n,
ai ∈ L∞(Ω) with ess infΩ ai(x) ≥ 0, and pi > N , for 1 ≤ i ≤ n.

Consider the nonlocal elliptic Kirchhoff type system

−
[
Ki(

∫
Ω

(|∇ui(x)|pi + ai(x)|ui(x)|pi)dx)
]pi−1

×
(

div(|∇ui|pi−2∇ui) + ai(x)|ui|pi−2u
)

= λFui(x, u1, . . . , un) in Ω,

ui = 0 on ∂Ω,

(1.1)

for 1 ≤ i ≤ n, where λ is a positive parameter and F : Ω × Rn → R is a function
such that the mapping (t1, t2, . . . , tn) → F (x, t1, t2, . . . , tn) is in C1 in Rn for all
x ∈ Ω, Fti is continuous in Ω × Rn, for i = 1, . . . , n, and F (x, 0, . . . , 0) = 0 for all
x ∈ Ω. Here, Fti denotes the partial derivative of F with respect to ti.

We use Ricceri’s Variational Principle [26], to ensure the existence of infinitely
many weak solutions for (1.1) in

∏n
i=1 W 1,pi

0 (Ω). System (1.1) is related to a model
given by the equation of elastic strings

ρ
∂2u

∂t2
−

(P0

h
+

E

2L

∫ L

0

|∂u

∂x
|2dx

)∂2u

∂2x
= 0 (1.2)

where ρ is the mass density, P0 is the initial tension, h is the area of the cross-
section, E is the Young modulus of the material, and L is the length of the string,
was proposed by Kirchhoff [21] as a extension of the classical D’Alembert’s wave
equation for free vibrations of elastic strings. Kirchhoffs model takes into account
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the changes in length of the string produced by transverse vibrations. Similar non-
local problems also model several physical and biological systems where u describes
a process that depends on the average of itself, for example, the population density.
Later, the equation (1.2) was extended to the equation

∂2u

∂t2
−K

( ∫
Ω

|∇u(x)|2dx
)
∆u = f(x, u) in Ω

where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a given ∂Ω and
K : [0,+∞[→ R is a continuous function. Some early classical investigations of
Kirchhoff equations can be seen in the papers [1, 12, 17, 18, 19, 20, 22, 24, 25, 27,
31] and the references therein. In particular, these papers discuss the historical
development of the problem as well as describe situations that can be realistically
modelled by (1.1) with a nonconstant K.

For a discussion about the existence of infinitely many solutions for boundary
value problems, using Ricceri’s Variational Principle [26], we refer the reader to
[14, 15, 16, 21, 27]. Applying a smooth version of [4, Theorem 2.1], which is a
more precise version of Ricceri’s Variational Principle [26], we refer the reader to
[2, 3, 5, 6, 7, 8, 9, 11], and employing a non-smooth version of Ricceri’s Variational
Principle [26] due to Marano and Motreanu [23], we refer the reader to [10]. Here,
our motivation comes from the recent article by Bonanno, et al. [6].

2. Preliminaries

First we recall the celebrated Ricceri’s Variational Principle [26, Theorem 2.5]
which is our primary tool in proving our main result.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive, and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r]) Ψ(v)−Ψ(u)
r − Φ(u)

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional

Iλ = Φ−λΨ to Φ−1(]−∞, r[) admits a global minimum, which is a critical
point (local minimum) of Iλ in X.

(b) If γ < +∞, then, for each λ ∈]0, 1
γ [, the following alternative holds: eithre

(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such

that limn→+∞ Φ(un) = +∞.
(c) If δ < +∞, then, for each λ ∈]0, 1/δ[, the following alternative holds: either

[(c1) there is a global minimum of Φ which is a local minimum of Iλ, or
(c2) there is a sequence of pairwise distinct critical points (local minima)

of Iλ which weakly converges to a global minimum of Φ.
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Denote by W 1,pi

0 (Ω) the closure of C∞
0 (Ω) with respect to the norm

‖ui‖pi =
( ∫

Ω

|∇ui(x)|pidx
)1/pi

for 1 ≤ i ≤ n.

Put

ci := max
{

sup
ui∈W

1,pi
0 (Ω)\{0}

maxx∈Ω |ui(x)|
‖ui‖pi

, 1 ≤ i ≤ n
}

.

Since pi > N for 1 ≤ i ≤ n, one has ci < +∞. Moreover, from [30, formula (6b)]
one has

sup
u∈W

1,pi
0 (Ω)\{0}

maxx∈Ω |ui(x)|
‖ui‖pi

≤ N−1/pi

√
π

[Γ(1 +
N

2
)]1/N (

pi − 1
pi −N

)1−1/pi |Ω|1/N−1/pi

for 1 ≤ i ≤ n, where |Ω| is the Lebesgue measure of the set Ω, and equality occurs
when Ω is a ball.

Let X be the Cartesian product of the n Sobolev spaces W 1,p1
0 (Ω),. . . , W 1,pn

0 (Ω);
i.e., X =

∏n
i=1 W 1,pi

0 (Ω) equipped with the norm

‖(u1, u2, . . . , un)‖ =
n∑

i=1

‖ui‖∗

where

‖ui‖∗ =
( ∫

Ω

(|∇ui(x)|pi + ai(x)|ui(x)|pi)dx
)1/pi

is a norm in W 1,pi

0 (Ω) that is equivalent to the usual norm. Put

C := max
{

sup
ui∈W

1,pi
0 (Ω)\{0}

maxx∈Ω |ui(x)|pi

‖ui‖pi
pi

, 1 ≤ i ≤ n
}
. (2.1)

Let p := min{pi; 1 ≤ i ≤ n}, p := max{pi; 1 ≤ i ≤ n} and m := min{mi; 1 ≤ i ≤
n}. Following the construction given in [6], define

σ(pi, N) := inf
µ∈]0,1[

1− µN

µN (1− µ)pi
,

and consider µi ∈]0, 1[ such that σ(pi, N) := 1−µN
i

µN
i (1−µi)

pi
. Put

µ := maxµi, µ := min µi, τ := sup dist(x, ∂Ω).

Simple calculations show that there is an x0 ∈ Ω such that B(x0, τ) ⊆ Ω, where
B(x0, s) denotes the ball with center at x0 and radius of s. Further, put

gµi
(pi, N) := µi

N +
1

(1− µi)pi
NB(µi,1)(N, pi + 1)

where B(µi,1)(N, pi + 1) denotes the generalized incomplete beta function defined
as follows:

B(µi,1)(N, pi + 1) :=
∫ 1

µi

tN−1(1− t)(pi+1)−1dt.

We also denote by ωτ := τN πN/2

Γ(1+ N
2 )

the measure of the N -dimensional ball of radius
τ . Set

υ := max
1≤i≤n

{σ(pi, N)
τpi

+ ‖ai‖∞
gµi(pi, N)

µi
N

}
.
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Corresponding to Ki we introduce the functions K̃i : [0,+∞[→ R as follows

K̃i(t) =
∫ t

0

Ki(s)ds for all t ≥ 0

for 1 ≤ i ≤ n. For γ > 0 we denote the set

Q(γ) =
{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti| ≤ γ
}
. (2.2)

By a (weak) solution of system (1.1), we mean u = (u1, . . . , un) ∈ X such that
n∑

i=1

([
Ki

( ∫
Ω

(|∇ui(x)|pi + ai(x)|ui(x)|pi)dx
)]pi−1

×
∫

Ω

(
|∇ui(x)|pi−2∇ui(x)∇vi(x) + |ui(x)|pi−2ui(x)vi(x)

)
dx)

− λ

∫
Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx = 0

for every v = (v1, . . . , vn) ∈ X.

3. Main results

We begin by formulating our main result under the assumptions:

(A1) F (x, t1, . . . , tn) ≥ 0, for each (x, t1, . . . , tn) ∈ Ω× Rn
+, where

Rn
+ = {(t1, . . . , tn) ∈ Rn : ti ≥ 0, for i = 1, . . . , n};

(A2)

lim inf
ξ→+∞

∫
Ω

sup(t1,...,tn)∈Q(ξ) F (x, t1, . . . , tn)dx

ξp

<
1( ∑n

i=1(pi
C
m )

1
pi

)p lim sup
(t1,...,tn)→(+∞,...,+∞)(t1,...,tn)∈Rn

+

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

.

Theorem 3.1. Assume (A1)–(A2), and let Λ the interval] 1

lim sup(t1,...,tn)→(+∞,...,+∞)

R
B(x0,µτ) F (x,t1,...,tn)dxPn

i=1
K̃i(µN ωτ υ|ti|

pi )
pi

,

1( Pn
i=1(pi

C
m )

1
pi

)p

lim infξ→+∞

R
Ω sup(t1,...,tn)∈Q(ξ) F (x,t1,...,tn)dx

ξp

[
.

If λ ∈ Λ, then (1.1) has an unbounded sequence of weak solutions in X.

Proof. To apply Theorem 2.1 to our problem, we introduce the functionals Φ,Ψ :
X → R, for each u = (u1, . . . , un) ∈ X, defined as follows

Φ(u) =
n∑

i=1

K̃i(‖ui‖pi
∗ )

pi
, Ψ(u) =

∫
Ω

F (x, u1(x), . . . , un(x))dx.
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Let us prove that the functionals Φ and Ψ satisfy the required conditions. It is well
known that Ψ is a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =
∫

Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx,

for every v = (v1, . . . , vn) ∈ X, as well as is sequentially weakly upper semicon-
tinuous. Furthermore, Ψ′ : X → X∗ is a compact operator. Indeed, it is enough
to show that Ψ′ is strongly continuous on X. For this, for fixed (u1, . . . , un) ∈
X, let (u1k, . . . , unk) → (u1, . . . , un) weakly in X as k → +∞. Then we have
(u1k, . . . , unk) converges uniformly to (u1, . . . , un) on Ω as k → +∞(see [32]). Since
F (x, ·, . . . , ·) is C1 in Rn for every x ∈ Ω, the derivatives of F are continuous in Rn

for every x ∈ Ω, so for 1 ≤ i ≤ n, Fui
(x, u1k, . . . , unk) → Fui

(x, u1, . . . , un) strongly
as k → +∞, from which follows Ψ′(u1k, . . . , unk) → Ψ′(u1, . . . , un) strongly as
k → +∞. Thus we have that Ψ′ is strongly continuous on X, which implies that
Ψ′ is a compact operator by Proposition 26.2 of [32]. Moreover, bearing in mind
the conditions 0 < mi ≤ Ki(t) ≤ Mi for all t ≥ 0 for 1 ≤ i ≤ n, we see that Φ is
continuously differentiable and whose differential at the point u ∈ X is

Φ′(u)(v) =
n∑

i=1

([
Ki

( ∫
Ω

(|∇ui(x)|pi + ai(x)|ui(x)|pi)dx
)]pi−1

×
∫

Ω

(
|∇ui(x)|pi−2∇ui(x)∇vi(x) + |ui(x)|pi−2ui(x)vi(x)

)
dx

)
for every v ∈ X, and Φ′ admits a continuous inverse on X∗. Furthermore, Φ
is sequentially weakly lower semicontinuous. Indeed, for any (u1k, . . . , unk) ∈ X

with (u1k, . . . , unk) → (u1, . . . , un) weakly in X, then uik → ui in W 1,pi

0 (Ω) for
1 ≤ i ≤ n. Therefore, taking the norm of weakly lower semicontinuity, we have

lim inf
k→∞

‖uik‖∗ ≥ ‖ui‖∗ for i = 1, . . . , n.

Hence, since K̃i is continuous and monotone for 1 ≤ i ≤ n, we obtain

K̃i(‖ui‖pi
∗ ) ≤ K̃i(lim inf

k→∞
‖uik‖pi

∗ ) ≤ lim inf
k→∞

K̃i(‖uik‖pi
∗ )

for 1 ≤ i ≤ n, from which it follows that Φ is sequentially weakly lower semicontin-
uous. Put Iλ := Φ−λΨ. Clearly, the weak solutions of the system (1.1) are exactly
the solutions of the equation I ′λ(u1, . . . , un) = 0. Moreover, since for 1 ≤ i ≤ n,
mi ≤ Ki(s) for all s ∈ [0,+∞[, from the definition of Φ, we have

Φ(u) ≥
n∑

i=1

mi‖ui‖pi
∗

pi
≥ m

n∑
i=1

‖ui‖pi
∗

pi
∀u = (u1, . . . , un) ∈ X. (3.1)

Now, let us verify that γ < +∞. Let {ξk} be a real sequence such that ξk → +∞
as k →∞ and

lim
k→∞

∫
Ω

sup(t1,...,tn)∈Q(ξk) F (x, t1, . . . , tn)dx

ξ
p

k

= lim inf
ξ→+∞

∫
Ω

sup(t1,...,tn)∈Q(ξ) F (x, t1, . . . , tn)dx

ξp .

(3.2)
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Put rk = ξ
p

k( Pn
i=1(pi

C
m )

1
pi

)p for all k ∈ N. Since

sup
x∈Ω

|ui(x)|pi ≤ C‖ui‖pi
pi

for all ui ∈ W 1,pi

0 (Ω)

for 1 ≤ i ≤ n, we have

sup
x∈Ω

n∑
i=1

|ui(x)|pi

pi
≤ C

n∑
i=1

‖ui‖pi
∗

pi
(3.3)

for each u = (u1, . . . , un) ∈ X. So, from (3.1) and (3.3) we have

Φ−1(]−∞, rk]) = {u = (u1, u2, . . . , un) ∈ X; Φ(u) ≤ rk}

⊆
{
u ∈ X;m

n∑
i=1

‖ui‖pi
∗

pi
≤ rk

}
⊆

{
u ∈ X;

n∑
i=1

|ui(x)|pi

pi
≤ Crk

m
for each x ∈ Ω

}
⊆

{
u ∈ X;

n∑
i=1

|ui(x)| ≤ ξk for each x ∈ Ω
}
.

Hence, taking into account that Φ(0, . . . , 0) = Ψ(0, . . . , 0) = 0, we have for every k
large enough,

ϕ(rk) = inf
u∈Φ−1(]−∞,rk[)

(supv∈Φ−1(]−∞,rk]) Ψ(v))−Ψ(u)
rk − Φ(u)

≤
supv∈Φ−1(]−∞,rk]) Ψ(v)

rk

≤
( n∑

i=1

(pi
C

m
)

1
pi

)p
∫
Ω

sup(t1,...,tn)∈Q(ξk) F (x, t1, . . . , tn)dx

ξ
p

k

.

Moreover, from Assumption (A2), we also have

lim
k→∞

∫
Ω

sup(t1,...,tn)∈Q(ξk) F (x, t1, . . . , tn)dx

ξ
p

k

< +∞.

Therefore,

γ ≤ lim inf
k→+∞

ϕ(rk)

≤
( n∑

i=1

(pi
C

m
)

1
pi

)p

lim
k→∞

∫
Ω

sup(t1,...,tn)∈Q(ξk) F (x, t1, . . . , tn)dx

ξ
p

k

< +∞.
(3.4)

Assumption (A2) in conjunction with (3.4) implies Λ ⊆]0, 1/γ[. Fix λ ∈ Λ. The
inequality (3.4) yields that the condition (b) of Theorem 2.1 can be applied, and
either Iλ has a global minimum or there exists a sequence {uk = (u1k, . . . , unk)} of
weak solutions of the system (1.1) such that limk→∞ ‖(u1k, . . . , unk)‖ = +∞.

The other step is to show that the functional Iλ has no global minimum. For
the fixed λ, let us verify that the functional Iλ is unbounded from below. Arguing
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as in [6], consider n positive real sequences {di,k}n
i=1 such that

√∑n
i=1 d2

i,k → +∞
as k →∞ and

lim
k→+∞

∫
Ω

F (x, d1,k, . . . , dn,k)dx∑n
i=1

K̃i(µN ωτ υ|di,k|pi )
pi

= lim sup
(t1,...,tn)→(+∞,...,+∞)

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

.

(3.5)
Let {wk = (w1k, . . . , wnk)} be a sequence in X defined by

wik(x) =


0 if x ∈ Ω \B(x0, τ)

di,k

τ(1−µi)
(τ − |x− x0|) if x ∈ B(x0, τ) \B(x0, µiτ)

di,k if x ∈ B(x0, µiτ)

(3.6)

for 1 ≤ i ≤ n. For any fixed k ∈ N, it is easy to see that wk ∈ X and, in particular,
one has

‖wik‖pi
∗ =

∫
Ω

(|∇wik(x)|pi + ai(x)|wik(x)|pi)dx

≤ |di,k|piωτ

[ 1− µN
i

τpi(1− µi)pi
+ ‖ai‖∞gµi

(pi, N)
]

≤ µNωτυ|di,k|pi

for 1 ≤ i ≤ n. Taking into account inft≥0 K(t) > 0, it follows that

Φ(wk) =
n∑

i=1

K̃i(‖wik‖pi
∗ )

pi
≤

n∑
i=1

K̃i(µNωτυ|di,k|pi)
pi

. (3.7)

On the other hand, bearing in mind Assumption (A1) from the definition of Ψ, we
infer

Ψ(wk) ≥
∫

B(x0,µτ)

F (x, d1,k, . . . , dn,k)dx. (3.8)

So, according to (3.7) and (3.8) we obtain

Iλ(wk) ≤
n∑

i=1

K̃i(µNωτυ|di,k|pi)
pi

− λ

∫
B(x0,µτ)

F (x, d1,k, . . . , dn,k)dx

for every k ∈ N. Now, if

lim sup
(t1,...,tn)→(+∞,...,+∞)

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

< ∞,

we fix ε ∈
]
1
/
lim sup(t1,...,tn)→(+∞,...,+∞)

R
B(x0,µτ) F (x,t1,...,tn)dxPn

i=1
K̃i(µN ωτ υ|ti|

pi )
pi

, 1
[
. From (3.5)

there exists ϑε such that∫
B(x0,µτ)

F (x, d1,k, . . . , dn,k)dx

> ε
(

lim sup
(t1,...,tn)→(+∞,...,+∞)

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

) n∑
i=1

K̃i(µNωτυ|di,k|pi)
pi

for all k > ϑε; therefore,

Iλ(wk)
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≤
(
1− λε lim sup

(t1,...,tn)→(+∞,...,+∞)

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

) n∑
i=1

K̃i(µNωτυ|di,k|pi)
pi

for all k > ϑε, and by the choice of ε, one then has

lim
m→+∞

[Φ(wk)− λΨ(wk)] = −∞.

If

lim sup
(t1,...,tn)→(+∞,...,+∞)

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

= ∞,

let us consider M > 1/λ. From (3.5) there exists ϑM such that∫
B(x0,µτ)

F (x, d1,k, . . . , dn,k)dx > M

n∑
i=1

K̃i(µNωτυ|di,k|pi)
pi

∀ k > ϑM ,

and therefore

Iλ(wk) ≤ (1− λM)
n∑

i=1

K̃i(µNωτυ|di,k|pi)
pi

∀k > ϑM ,

and by the choice of M , one then has

lim
k→+∞

[Φ(wk)− λΨ(wk)] = −∞.

Hence, our claim is proved. Since all assumptions of Theorem 2.1 are satisfied, the
functional Iλ admits a sequence {uk = (u1k, . . . , unk)} ⊂ X of critical points such
that

lim
k→∞

‖(u1k, . . . , unk)‖ = +∞,

and we have the desired conclusion. �

Remark 3.2. We point out that if Ki(t) = 1 for each t ≥ 0 for 1 ≤ i ≤ n, Theorem
3.1 gives [6, Theorem 3.1].

Now we want to point out the following existence result, in which instead of
Assumption (A2) in Theorem 3.1 a more general condition is assumed.

(A3) there exist a sequence {ak} and n positive real sequence {bi,k} with

a
p

k( ∑n
i=1(pi

C
m )

1
pi

)p >

n∑
i=1

K̃i(µNωτυ|bik|pi)
pi

and limk→∞ ak = +∞ such that

lim
k→+∞

∫
Ω

sup(t1,...,tn)∈Q(ak) F (x, t1, . . . , tn)dx−
∫

B(x0,µτ)
F (x, b1k, . . . , bnk)dx

a
p

k( Pn
i=1(pi

C
m )

1
pi

)p −
∑n

i=1
K̃i(µN ωτ υ|bik|pi )

pi

< lim sup
(t1,...,tn)→(+∞,...,+∞)(t1,...,tn)∈Rn

+

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

.
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Theorem 3.3. Assume (A1), (A3) and let Λ′ be the interval] 1

lim sup(t1,...,tn)→(+∞,...,+∞)

R
B(x0,µτ) F (x,t1,...,tn)dxPn

i=1
K̃i(µN ωτ υ|ti|

pi )
pi

,

a
p

k( Pn
i=1(pi

C
m )

1
pi

)p

limk→+∞

R
Ω sup(t1,...,tn)∈Q(ak) F (x,t1,...,tn)dx−

R
B(x0,µτ) F (x,b1k,...,bnk)dx

a
p

k( Pn
i=1(pi

C
m

)
1

pi

)p −
Pn

i=1
K̃i(µN ωτ υ|bik|

pi )
pi

[
.

If λ ∈ Λ′, then (1.1) has an unbounded sequence of weak solutions in X.

Proof. Clearly, from (A3) we obtain (A2), by choosing bi,k = 0 for all k ∈ N and
for 1 ≤ i ≤ n. Moreover, if we assume (A3) instead of (A2) and set

rk =
a

p

k( ∑n
i=1(pi

C
m )

1
pi

)p

for all k ∈ N, by the same argument as in Theorem 3.1, we obtain

ϕ(rk) = inf
u∈Φ−1(]−∞,rk[)

(supv∈Φ−1(]−∞,rk]) Ψ(v))−Ψ(u)
rk − Φ(u)

≤
supv∈Φ−1(]−∞,rk]) Ψ(v)−

∫ b

a
F (x,w1k(x), . . . , wnk(x))dx

rk −
∑n

i=1
K̃i(‖wik‖

pi
∗ )

pi

≤

∫
Ω

sup(t1,...,tn)∈Q(ak) F (x, t1, . . . , tn)dx−
∫

B(x0,µτ)
F (x, b1k, . . . , bnk)dx

a
p

k( Pn
i=1(pi

C
m )

1
pi

)p −
∑n

i=1
K̃i(µN ωτ υ|bik|pi )

pi

where wk = (w1k, . . . , wnk), with wik for 1 ≤ i ≤ n, as given in (3.6) with bi,k

instead of di,k. So, we have the desired conclusion. �

Now we point out a consequence of Theorem 3.1, under the assumptions
(B1)

lim inf
ξ→+∞

∫
Ω

sup(t1,...,tn)∈Q(ξ) F (x, t1, . . . , tn)dx

ξp <
1( ∑n

i=1(pi
C
m )

1
pi

)p ;

(B2)

lim sup
(t1,...,tn)→(+∞,...,+∞)(t1,...,tn)∈Rn

+

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

K̃i(µN ωτ υ|ti|pi )
pi

> 1.

Corllary 3.4. Assume (A1), (B1), (B2). Then the system

−
[
Ki(

∫
Ω

(|∇ui(x)|pi + ai(x)|ui(x)|pi)dx)
]pi−1

×
(

div(|∇ui|pi−2∇ui) + ai(x)|ui|pi−2u
)

= Fui(x, u1, . . . , un) in Ω,
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ui = 0 on ∂Ω,

for 1 ≤ i ≤ n, has an unbounded sequence of weak solutions in X.

As an example, we state a special case of our main result.

Theorem 3.5. Let Ω ⊂ R2 be a non-empty bounded open set with a smooth bound-
ary ∂Ω. Let f, g : R2 → R be two positive C0(R2)-functions such that the differential
1-form w := f(ξ, η)dξ + g(ξ, η)dη is integrable and let F be a primitive of w such
that F (0, 0) = 0. Fix p, q > 2, with p ≤ q, and assume that

lim inf
ξ→+∞

F (ξ, ξ)
ξp

= 0, lim sup
ξ→+∞

F (ξ, ξ)
K̃1(µ2τ2πυ|t1|p)

p + K̃2(µ2τ2πυ|t2|q)
q

= +∞

where

υ := max
{σ(p, 2)

τp
+ ‖a1‖∞

gµ1(p, 2)
µ1

2 ,
σ(q, 2)

τ q
+ ‖a2‖∞

gµ2(q, 2)
µ2

2

}
.

Then, the system

−
[
K1(

∫
Ω

(|∇u(x)|p + a1(x)|u(x)|p)dx)
]p−1(

div(|∇u|p−2∇u) + a1(x)|u|p−2u
)

= f(u, v) in Ω,

−
[
K2(

∫
Ω

(|∇v(x)|q + a2(x)|v(x)|q)dx)
]q−1(

div(|∇v|q−2∇v) + a2(x)|v|q−2v
)

= g(u, v) in Ω,

u = v = 0 on ∂Ω

admits a sequence of pairwise distinct positive weak solutions in W 1,p
0 (Ω)×W 1,q

0 (Ω).

Proof. Take n = 2 and set F (x, t1, t2) = F (t1, t2) for all x ∈ Ω and t1, t2 ∈ R. From
the conditions

lim inf
ξ→+∞

F (ξ, ξ)
ξp

= 0, lim sup
ξ→+∞

F (ξ, ξ)
K̃1(µ2τ2πυ|t1|p)

p + K̃2(µ2τ2πυ|t2|q)
q

= +∞,

we see that the assumptions (B1) and (B2), respectively, are satisfied. So, taking
into account that Ft1(t1, t2) = f(t1, t2), Ft2(t1, t2) = g(t1, t2) for all (t1, t2) ∈ R2,
and f, g : R2 → R are positive, the conclusion follows from Corollary 3.4. �

Remark 3.6. We observe in Theorem 3.1 we can replace ξ → +∞ with ξ → 0+,
that by the same way as in the proof of Theorem 3.1 but using conclusion (c) of
Theorem 2.1 instead of (b), the system (1.1) has a sequence of weak solutions,
which strongly converges to 0 in X.

Now, we want to point out a remarkable particular situation of Theorem 3.1,
using the assumption

(C1)

lim inf
ξ→+∞

∫
Ω

sup(t1,...,tn)∈Q(ξ) F (x, t1, . . . , tn)dx

ξp

<
1( ∑n

i=1(pi
C
α )

1
pi

)p
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× lim sup
(t1,...,tn)→(+∞,...,+∞)(t1,...,tn)∈Rn

+

∫
B(x0,µτ)

F (x, t1, . . . , tn)dx∑n
i=1

αiµN ωτ υ|ti|pi+
βi
2 (µN ωτ υ|ti|pi )2

pi

.

Corllary 3.7. Fix αi, βi > 0 for 1 ≤ i ≤ n, and denote α = min{αi; 1 ≤ i ≤ n}.
Suppose that Assumptions (A1), (C1) hold, and let λ belong to the interval] 1

lim sup(t1,...,tn)→(+∞,...,+∞)

R
B(x0,µτ) F (x,t1,...,tn)dxPn

i=1
αiµN ωτ υ|ti|

pi+
βi
2 (µN ωτ υ|ti|

pi )2

pi

,

1( Pn
i=1(pi

C
α )

1
pi

)p

lim infξ→+∞

R
Ω sup(t1,...,tn)∈Q(ξ) F (x,t1,...,tn)dx

ξp

[
.

Then the system

−
[
αi + βi

∫
Ω

(|∇ui(x)|pi + ai(x)|ui(x)|pi)dx
]pi−1

×
(

div(|∇ui|pi−2∇ui) + ai(x)|ui|pi−2u
)

= λFui(x, u1, . . . , un) in Ω,

ui = 0 on ∂Ω

has an unbounded sequence of weak solutions in X.

Proof. For fixed αi, βi > 0 and 1 ≤ i ≤ n, set Ki(t) = αi + βit for all t ≥ 0.
Bearing in mind that mi = αi for 1 ≤ i ≤ n, the conclusion follows immediately
from Theorem 3.1. �

We illustrate our results by giving the following example whose construction is
motivated by [6, Example 3.1].

Example 3.8. Let Ω ⊂ R2 be a non-empty open set with a smooth boundary ∂Ω
and consider the increasing sequence of positive real numbers given by

a1 = 2, an+1 = n!(an)7/3 + 2 for n ≥ 1.

Define the function F : Ω× R2 → R by

F (x, y, t1, t2) =


(an+1)7e

x2+y2− 1
1−(t1−an+1)2−(t2−an+1)2

+1

if (x, y, t1, t2) ∈ Ω× ∪n≥1S((an+1, an+1), 1),

0 otherwise,

where S((an+1, an+1), 1) denotes the open unit ball with center at (an+1, an+1). It
is clear that F : Ω × R2 → R is a non-negative function such that the mapping
(t1, t2) → F (x, t1, t2) is in C1 in R2 for all x ∈ Ω, Fti

is continuous in Ω × R2, for
i = 1, 2, and F (x, y, 0, 0) = 0 for all (x, y) ∈ Ω. Now, for every n ∈ N, one has∫

B(x0,µτ)

sup
(t1,t2)∈S((an+1,an+1),1)

F (x, y, t1, t2) dx dy

=
∫

B(x0,µτ)

F (x, y, an+1, an+1) dx dy
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= (an+1)7
∫

B(x0,µτ)

ex2+y2
dx dy.

We will denote by f and g the partial derivative of F respect to t1 and t2, respec-
tively. Since

lim
n→+∞

∫
B(x0,µτ)

F (x, y, an+1, an+1) dx dy∑2
i=1

µ2τ2πυa3
n+1+

1
2 (µ2τ2πυa3

n+1)
2

3

= +∞,

where

υ := max
{σ(3, 2)

τ3
+ ‖a1‖∞

gµ1(3, 2)
µ1

2 ,
σ(3, 2)

τ3
+ ‖a2‖∞

gµ2(3, 2)
µ2

2

}
,

we see that

lim sup
(t1,t2)→(+∞,+∞)(t1,t2)∈R2

+

∫
B(x0,µτ)

F (x, y, t1, t2)dx∑2
i=1

µ2τ2πυ|ti|3+ 1
2 (µ2τ2πυ|ti|3)2
3

= +∞.

Moreover, by choosing ξn = an+1 − 1, for every n ∈ N, one has∫
B(x0,µτ)

sup
(t1,t2)∈K(ξ)

F (x, y, t1, t2) dx dy = (an)7
∫

B(x0,µτ)

ex2+y2
dx dy,

Then

lim
n→+∞

∫
B(x0,µτ)

sup(t1,t2)∈K(ξ) F (x, y, t1, t2) dx dy

(an+1 − 1)3
= 0,

and so

lim inf
ξ→+∞

∫
B(x0,µτ)

sup(t1,t2)∈K(ξ) F (x, y, t1, t2) dx dy

ξ3
= 0.

Therefore,

0 = lim inf
ξ→+∞

∫
B(x0,µτ)

sup(t1,t2)∈K(ξ) F (x, y, t1, t2) dx dy

ξ3

<
1

24C
lim sup

(t1,t2)→(+∞,+∞)(t1,t2)∈R2
+

∫
B(x0,µτ)

F (x, y, t1, t2)dx∑2
i=1

µ2τ2πυ|ti|3+ 1
2 (µ2τ2πυ|ti|3)2
3

= +∞.

Hence, all the assumptions of Corollary 3.7 are satisfied, and it is applicable to the
system

−
[
1 +

∫
Ω

(|∇u(x)|3 + a1(x)|u(x)|3)dx
]2(

div(|∇u|∇u) + a1(x)|u|u
)

= λf(x, y, u, v) in Ω,

−
[
1 +

∫
Ω

(|∇v(x)|3 + a2(x)|v(x)|3)dx
]2(

div(|∇v|∇v) + a2(x)|v|v
)

= λg(x, y, u, v) in Ω,

u = v = 0 on ∂Ω

for every λ ∈]0,+∞[.
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As an application of our results, we consider the problem

−
[
α + β

∫
Ω

(|∇u(x)|p + a(x)|u(x)|p)dx
]p−1(

div(|∇u|p−2∇u) + a(x)|u|p−2u
)

= λf(x, u) in Ω,

u = 0 on ∂Ω
(3.9)

where p > N , λ > 0, α, β > 0, f : Ω × R → R is an L1-Caratéodory function and
a ∈ L∞(Ω) with ess infΩ a(x) ≥ 0. Put

F (x, t) =
∫ t

0

f(x, ξ)dξ for all (x, t) ∈ Ω× R.

The following existence result is an immediate consequence of Theorem 3.1.

Theorem 3.9. Assume that
(D1) F (x, t) ≥ 0 for each (x, t) ∈ Ω× R+;
(D2)

lim inf
ξ→+∞

∫
Ω

sup|t|≤ξ F (x, t)dx

ξp
<

α

Cp
lim sup

t→+∞t∈R+

∫
B(x0,µτ)

F (x, t)dx

αµNωτυ|t|p + β
2 (µNωτυ|t|p)2

,

where

C := sup
u∈W 1,p

0 (Ω)\{0}

maxx∈Ω |u(x)|( ∫
Ω
|∇u(x)|pdx

)1/p
.

Then, for each λ in the interval] 1
p

lim supt→+∞ t∈R+

R
B(x0,µτ) F (x,t)dx

αµN ωτ υ|t|p+ β
2 (µN ωτ υ|t|p)2

,

α
pCp

lim infξ→+∞

R
Ω sup|t|≤ξ F (x,t)dx

ξp

[
the problem (3.9) has an unbounded sequence of weak solutions in W 1,p

0 (Ω).
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[29] J. Simon; Regularitè de la solution d’une equation non lineaire dans RN , in: Journées
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