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BOUNDED AND LARGE RADIALLY SYMMETRIC SOLUTIONS
FOR SOME (p, q)-LAPLACIAN STATIONARY SYSTEMS

ADEL BEN DKHIL, NOUREDDINE ZEDDINI

Abstract. This article concerns radially symmetric positive solutions of sec-
ond-order quasilinear elliptic systems. In terms of the growth of the variable
potential functions, we establish conditions such that the solutions are either
bounded or blow up at infinity.

1. Introduction

Existence and nonexistence of solutions of second-order quasilinear elliptic sys-
tems of the form

div(|∇u|p−2∇u) = ϕ(|x|)g1(v)g2(u), in Rn,

div(|∇v|q−2∇v) = ψ(|x|)f1(u)f2(v), in Rn,
(1.1)

have been intensively studied in the previous few years. See, for example, [1, 2,
9, 13, 14, 16, 17, 19, 20] and the reference therein. Problem (1.1) arises in the
theory of quasiregular and quasiconformal mappings as well as in the study of non-
Newtonian fluids. In the latter case, the pair (p, q) is a characteristic of the medium.
Media with (p, q) > (2, 2) are called dilatant fluids and those with (p, q) < (2, 2) are
called pseudoplastics. If (p, q) = (2, 2), they are Newtonian fluids. When p = q = 2
system (1.1) becomes

∆u = ϕ(|x|)g1(v)g2(u), in Rn,

∆v = ψ(|x|)f1(u)f2(v), in Rn,
(1.2)

for which the existence and non-existence of positive radial entire large or bounded
solutions has been extensively studied. When f2 = g2 = 1, g1(v) = vα, f1(u) =
uβ , 0 < α ≤ β, Lair and Wood [11] considered the existence and nonexistence
of entire positive radial solutions to (1.2) under the conditions of integrability or
nonintegrability of the functions r → rϕ(r) and r → rψ(r) on (0,∞). Their
results were extended by Ĉırstea and Rădulescu [5], Wang and Wood [18], Ghergu
and Râdulescu [7], Peng and Song [15], Ghanmi, Mâagli, Râdulescu and Zeddini
[6], Li, Zhang, Zhang [12] and Zhang [21]. Many generalizations of these results
have been extended to system (1.1). See, for example, [17, 20]. Our purpose
is to generalize the results of [6, 21] to systems (1.1) under the hypotheses that
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the radial potentials ϕ, ψ are nonnegative continuous functions on (0,∞) and the
nonlinearities fi, gi (i = 1, 2) are nonnegative, continuous and nondecreasing on
[0,∞). In all the results, we establish in this paper we study only positive radial
solutions in the sense of distributions, especially because of the physical meaning
of the corresponding unknowns.

To discuss the existence of positive radial solutions to this class of nonlinear sys-
tems, we are first concerned with the following two systems of differential equations

1
A

(Aφp(y′))′ = ϕ(t)g1(z)g2(y), in (0,∞),

1
B

(Bφq(z′))′ = ψ(t)f1(y)f2(z), in (0,∞),

y(0) = a > 0, z(0) = b > 0,

lim
t→0

A(t)φp(y′(t)) = lim
t→0

B(t)φq(z′(t)) = 0,

(1.3)

and
1
A

(Aφp(y′))′ = ϕ(t)g1(z)g2(y) , in (0,∞),

1
B

(Bφq(z′))′ = ψ(t)f1(y)f2(z), , in (0,∞),

y(∞) = lim
t→∞

y(t) = c > 0, z(∞) = lim
t→∞

z(t) = d > 0,

lim
t→0

A(t)φp(y′(t)) = lim
t→0

B(t)φq(z′(t)) = 0 ,

(1.4)

where p, q > 1, φk(x) = |x|k−2x for k = p, q and A,B are continuous functions
in [0,∞), differentiable and positive in (0,∞) and satisfy the following growth
hypotheses:∫ 1

0

[ 1
A(t)

∫ t

0

A(s) ds
]1/(p−1)

dt <∞,

∫ 1

0

[ 1
B(t)

∫ t

0

B(s) ds
]1/(q−1)

dt <∞ .

In particular, these assumptions are fulfilled if A and B are nondecreasing.
In the sequel, we denote by p′ = p

p−1 , q′ = q
q−1 and we remark that φk is a

multiplicative function for k = p, q. Namely φk(xy) = φk(x)φk(y) for x > 0 and
y > 0. Moreover φp′ and φq′ are respectively the inverse functions of φp and φq.

For any nonnegative measurable functions ϕ in (0,∞), we define

Kpϕ(t) =
∫ t

0

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)ds
)
dr ,

Sqϕ(t) =
∫ t

0

φq′

(
1

B(r)

∫ r

0

B(s)ϕ(s)ds
)
dr ,

Gpϕ(t) =
∫ ∞

t

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)ds
)
dr ,

Hqϕ(t) =
∫ ∞

t

φq′

( 1
B(r)

∫ r

0

B(s)ϕ(s)ds
)
dr .

Finally, we define for β > 0 the function Fβ on [β,∞) by

Fβ(t) =
∫ t

β

ds

φp′(g1(s)g2(s)) + φq′(f1(s)f2(s))

and we note that Fβ has an inverse function F−1
β on [β,∞).
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2. Main results

We are first concerned with the existence of a positive solution of the system
(1.3). For this purpose, we assume that ϕ,ψ, fi, gi (i = 1, 2) satisfy the following
hypotheses.

(H1) ϕ,ψ : (0,∞) → [0,∞) are continuous functions satisfying∫ 1

0

[ 1
A(t)

∫ t

0

A(s)ϕ(s) ds
]1/(p−1)

dt <∞,∫ 1

0

[ 1
B(t)

∫ t

0

B(s)ψ(s) ds
]1/(q−1)

dt <∞.

(H2) The functions fi, gi: [0,∞) → [0,∞) are nondecreasing continuous, positive
on (0,∞).

Our existence result for (1.3) is the following

Theorem 2.1. Under the hypotheses (H1)–(H2) and
(H3) Kpϕ(t) + Sqψ(t) < Fa+b(∞) for all t > 0,

System (1.3) has a positive solution (y, z) ∈
(
C([0,∞)) ∩ C1((0,∞))

)2 satisfying
for each t ∈ [0,∞)

a+ φp′(g1(b)g2(a))Kpϕ(t) ≤ y(t) ≤ F−1
a+b[Kpϕ(t) + Sqψ(t)],

b+ φq′(f1(a)f2(b))Sqψ(t) ≤ z(t) ≤ F−1
a+b[Kpϕ(t) + Sqψ(t)].

As a consequence of this result we obtain the following

Corollary 2.2. Under the hypotheses (H1)–(H3) and
(H4) Kpϕ(∞) <∞ and Sqψ(∞) <∞,

System (1.3) has a positive bounded solution (y, z) ∈
(
C([0,∞)) ∩ C1((0,∞))

)2.

Corollary 2.3. Under the hypotheses (H1)–(H3) and
(H5) Kpϕ(∞) = Sqψ(∞) = ∞,

System (1.3) has a positive solution (y, z) ∈
(
C([0,∞)) ∩ C1((0,∞))

)2 satisfying
limt→∞ y(t) = limt→∞ z(t) = ∞.

Next, we investigate the existence of positive solution to (1.4).

Theorem 2.4. Under hypotheses (H1), (H2), (H4) and
(H6) There exist c > 0 and d > 0 such that

c− φp′(g1(d)g2(c))Kpϕ(∞) > 0, d− φq′(f1(c)f2(d))Sqψ(∞) > 0 ,

Problem (1.4) has a positive bounded solution

(y, z) ∈
(
C([0,∞)) ∩ C1((0,∞))

)
×

(
C([0,∞)) ∩ C1((0,∞))

)
satisfying, for each t ∈ [0,∞),

c− φp′(g1(d)g2(c))Gpϕ(t) ≤ y(t) ≤ c,

d− φq′(f1(c)f2(d))Hqψ(t) ≤ z(t) ≤ d.

Remark 2.5. Let g1(t) = tα1 , g2(t) = tα2 , f1(t) = tβ1 and f2(t) = tβ2 with
αi, βi ≥ 0. Then, the condition (H6) is satisfied for infinitely many positive real
numbers c, d if α1β1 6= (p− 1− α2)(q − 1− β2).
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Now, we give our existence results for (1.1).

Theorem 2.6. Assume that (H2) is satisfied and that (H1) and (H3) are satisfied
with A(t) = B(t) = tn−1. Then (1.1) has infinitely many positive continuous radial
solutions (u, v). Moreover,

• If∫ ∞

0

φp′

( 1
rn−1

∫ r

0

sn−1ϕ(s)ds
)
dr =

∫ ∞

0

φq′

( 1
rn−1

∫ r

0

sn−1ψ(s)ds
)
dr = ∞,

then these solutions are large; i.e., limx→∞ u(x) = limx→∞ v(x) = ∞.
• If ∫ ∞

0

φp′

( 1
rn−1

∫ r

0

sn−1ϕ(s)ds
)
dr <∞

and ∫ ∞

0

φq′

(
1

rn−1

∫ r

0

sn−1ψ(s)ds
)
dr <∞,

then u and v are bounded.

Next, we replace hypothesis (H3) by hypothesis (H6) to obtain the existence of
positive continuous bounded radial solutions to (1.1).

Theorem 2.7. Let fi, gi, satisfying (H2) and assume that (H1), (H4), (H6) are
satisfied with A(t) = B(t) = tn−1. Then (1.1) has a positive radial bounded solution
(u, v) with

lim
|x|→∞

u(x) = const > 0, lim
|x|→∞

v(x) = const > 0.

3. Proof of main results

Proof of Theorem 2.1. Let (yk)k≥0 and (zk)k≥0 be sequences of positive contin-
uous functions defined on [0,∞) by

y0(t) = a, z0(t) = b,

yk+1(t) = a+
∫ t

0

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)g1(zk(s))g2(yk(s))ds
)
dr

zk+1(t) = b+
∫ t

0

φq′

( 1
B(r)

∫ r

0

B(s)ψ(s)f1(yk(s))f2(zk(s))ds
)
dr.

Clearly yk, zk ∈ C([0,∞))∩C1((0,∞)) and positive, so we deduce from the mono-
tonicity of fi, gi, φp′ and φq′ that (yk)k≥0 and (zk)k≥0 are nondecreasing sequences
and for each k ∈ N, the functions t → yk(t) and t → zk(t) are nondecreasing.
Hence, for each t ∈ (0,∞),

y′k+1(t)

= φp′

( 1
A(t)

∫ t

0

A(s)ϕ(s)g1(zk(s))g2(yk(s))ds
)

≤ φp′(g1(zk(t))g2(yk(t)))φp′

( 1
A(t)

∫ t

0

A(s)ϕ(s)ds
)

≤ φp′(g1(zk+1(t) + yk+1(t))g2(yk+1(t) + zk+1(t)))φp′

( 1
A(t)

∫ t

0

A(s)ϕ(s)ds
)

≤ [φp′((g1(zk+1(t) + yk+1(t))g2(yk+1(t) + zk+1(t)))
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+ φq′((f1(zk+1(t) + yk+1(t))f2(yk+1(t) + zk+1(t)))]φp′

( 1
A(t)

∫ t

0

A(s)ϕ(s)ds
)

Which implies, by putting wk = yk + zk, that

y′k+1(t)
φp′((g1(wk+1(t))g2(wk+1(t))) + φq′((f1(wk+1(t))f2(wk+1(s)))

≤ φp′

( 1
A(t)

∫ t

0

A(s)ϕ(s)ds
)
,

Similarly, we have

z′k+1(t)
φp′((g1(wk+1(t))g2(wk+1(t))) + φq′((f1(wk+1(t))f2(wk+1(t)))

≤ φq′

( 1
B(t)

∫ t

0

B(s)ψ(s)ds
)

Consequently,∫ t

0

w′k(s)ds
φp′(g1(wk(t))g2(wk(s))) + φq′((f1(wk(s))f2(wk(s)))

≤ Kpϕ(t) + Sqψ(t),

which gives∫ wk(t)

a+b

ds

φq′(f1(s)f2(s)) + φp′(g1(s)g2(s))
≤ Kpϕ(t) + Sqψ(t).

Namely
Fa+b(yk(t) + zk(t)) ≤ Kpϕ(t) + Sqψ(t).

Which by hypothesis (H3) implies

yk(t) + zk(t) ≤ F−1
a+b(Kpϕ(t) + Sqψ(t)).

Therefore, the sequences (yk)k≥0 and (zk)k≥0 converge locally uniformly to two
functions y and z that satisfy for each t ∈ [0,∞),

y(t) = a+
∫ t

0

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)g1(z(s))g2(y(s))ds
)
dr,

z(t) = b+
∫ t

0

φq′

( 1
B(r)

∫ r

0

B(s)ψ(s)f1(y(s))f2(z(s))ds
)
dr

Hence, y, z ∈ C([0,∞)) ∩ C1((0;∞)) and (y, z) is a solution of (1.3) satisfying

a+ φp′(g1(b)g2(a))Kpϕ(t) ≤ y(t) ≤ F−1
a+b(Kpϕ(t) + Sqψ(t)),

b+ φq′(f1(a)f2(b))Sqψ(t) ≤ z(t) ≤ F−1
a+b(Kpϕ(t) + Sqψ(t)).

To state another corollary of Theorem 2.1, we consider two continuous functions
h, k : [0,∞) → [0,∞) and study the existence of positive solutions for the system

1
A

(Aφp(y′))′ + h(y)|y′|p = ϕ(t)g1(z)g2(y), in (0,∞),

1
B

(Bφq(z′))′ + k(z)|z′|q = ψ(t)f1(y)f2(z), in (0,∞),

y(0) = a > 0, z(0) = b > 0,

lim
t→0

A(t)φp(y′(t)) = lim
t→0

B(t)φq(z′(t)) = 0.

(3.1)
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To this aim, we define

ρ1(t) =
∫ t

0

exp
( 1
p− 1

∫ ζ

0

h(s)ds
)
dζ, ρ2(t) =

∫ t

0

exp
( 1
q − 1

∫ ζ

0

k(s)ds
)
dζ.

Clearly ρ1, ρ2 are bijections from [0,∞) to itself. Let M1, M2, N1 and N2 be the
functions defined on [0,∞) by M1 ◦ ρ2 = g1, M2 ◦ ρ1 = (ρ1

′)p−1g2, N1 ◦ ρ1 = f1
and N2 ◦ ρ2 = (ρ2

′)q−1f2.

Corollary 3.1. Under the hypotheses (H1), (H2) and
(H3’) for all t > 0,

Kpϕ(t) + Sqψ(t) <
∫ ∞

ρ1(a)+ρ2(b)

dt

φp′(M1(t)M2(t)) + φq′(N1(t)N2(t))
,

System (3.1) has a positive solution (y, z) ∈
(
C([0,∞))∩C1((0,∞))

)
×

(
C([0,∞))∩

C1((0,∞))
)
. Moreover, when Kpϕ(∞) < ∞ and Sqψ(∞) < ∞, y and z are

bounded; when Kpϕ(∞) = Sqψ(∞) = ∞, limt→∞ y(t) = limt→∞ z(t) = ∞.

Proof. Put Y = ρ1(y) and Z = ρ2(z). Then (y, z) is a solution of (3.1) if and only
if (Y, Z) is a solution of

1
A

(Aφp(Y ′))′ = ϕM1(Z)M2(Y ), in (0,∞),

1
B

(Bφq(Z ′))′ = ψN1(Y )N2(Z), in (0,∞),

Y (0) = ρ1(a) > 0, Z(0) = ρ2(b) > 0,

lim
t→0

A(t)φp(Y ′(t)) = lim
t→0

B(t)φq(Z ′(t)) = 0,

So the result follows from Theorem 2.1. �

Next, we aim to prove Theorem 2.4. We note that the proof established in [6]
for the case p = q = 2 and g2 = f2 = 1 can not be adapted. So we will use a fixed
point argument.

Proof of Theorem 2.4. Let C0([0,∞)) = {ω ∈ C([0,∞),R) : limt→∞ |ω(t)| = 0}.
Clearly C0([0,∞)) is a Banach space endowed with the uniform norm ‖ω‖∞ =
supt∈[0,∞) |ω(t)|.

To apply the Schauder fixed point theorem, we put c1 = φp′(g1(d)g2(c))Kpϕ(∞),
d1 = φq′(f1(c)f2(d))Sqψ(∞) and we consider the nonempty closed convex set

Λ = {(ω, θ) ∈ (C0([0, ∞)))2 : −c1 ≤ ω ≤ 0 and − d1 ≤ θ ≤ 0}.

Consider the operator T defined on Λ by T (ω, θ) = (ω̃, θ̃), where

ω̃(t) = −Gp(ϕg1(θ + d)g2(ω + c))(t)

= −
∫ ∞

t

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)g1(θ(s) + d)g2(ω(s) + c)ds
)
dr

θ̃(t) = −Hq(ψ f1(ω + c)f2(θ + d))(t)

= −
∫ ∞

t

φq′

(
1

B(r)

∫ r

0

B(s)ψ(s)f1(ω(s) + c)f2(θ(s) + d)ds
)
dr.

First, we show that TΛ ⊂ Λ. Let (ω, θ) ∈ Λ, then using hypotheses (H1), (H2)
and (H4) we deduce that (ω̃, θ̃) ∈ C([0, ∞)). Moreover, since limt→∞Gpϕ(t) =
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limt→∞Gqψ(t) = 0, it follows that limt→∞ |ω̃(t)| = limt→∞ |θ̃(t)| = 0. Which
implies that ω̃, θ̃ ∈ C0([0, ∞)). Using again the monotonicity of fi, gi we deduce
that (ω̃, θ̃) ∈ Λ and consequently TΛ ⊂ Λ.

Secondly, we will prove that TΛ is relatively compact in (C0([0,∞)))2. Clearly
TΛ is uniformly bounded in (C0([0,∞)))2. Let us prove that TΛ is equicontinuous
on [0,∞) and satisfy the property limt→∞ sup(ω, θ)∈Λ |ω̃(t)| + |θ̃(t)| = 0 known as
equidecay property to 0 at infinity. Let t1, t2 ∈ [0,∞] with t1 < t2. Then for each
(ω, θ) ∈ Λ we have

|ω̃(t1)− ω̃(t2)| =
∫ t2

t1

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)g1(θ(s) + d)g2(ω(s) + c)ds
)
dr

≤ φp′(g1(d)g2(c))
∫ t2

t1

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)ds
)
dr

and

|θ̃(t1)− θ̃(t2)| ≤ φq′(f1(c)f2(d))
∫ t2

t1

φq′

( 1
B(r)

∫ r

0

B(s)ψ(s)ds
)
dr.

Since, the functions r 7→ φp′
(

1
A(r)

∫ r

0
A(s)ϕ(s)ds

)
and r 7→ φq′

(
1

B(r)

∫ r

0
B(s)ψ(s) ds

)
are integrable on (0,∞) by hypothesis (H4), we deduce that TΛ is equicontinous
on [0,∞) and equidecays to 0 at infinity. Hence it follows by Ascoli’s theorem, [8,
p.185], that TΛ is relatively compact in (C0([0,∞)))2.

Finally, we prove the continuity of T in Λ. Let (ωm, θm)m be a sequence in Λ
which converges uniformly on [0,∞) to (ω, θ) ∈ Λ. Using the continuity of fi, gi

and the dominated convergence theorem, we deduce that (ω̃m) and (θ̃m) converge
pointwise respectively to ω̃ and θ̃. Now, since TΛ is equicontinuous on [0,∞), then
(ω̃m) and (θ̃m) converge uniformly on each compact of [0,∞) respectively to ω̃

and θ̃. This together with the fact that ω̃, θ̃ ∈ C0([0,∞)) and (ω̃m, θ̃m) have the
equidecay property imply that (ω̃m) converges uniformly on [0,∞) to ω̃ and (θ̃m)
converges uniformly on [0,∞) to θ̃. This proves the continuity of T .

Therefore, there exists (ω, θ) ∈ Λ such that T (ω, θ) = (ω, θ) by the Schauder
fixed point theorem. Put y = ω + c and z = θ + d. Then y, z satisfy the integral
equations

y(t) = c−
∫ ∞

t

φp′

( 1
A(r)

∫ r

0

A(s)ϕ(s)g1(z(s))g2(y(s))ds
)
dr

z(t) = d−
∫ ∞

t

φq′

( 1
B(r)

∫ r

0

B(s)ψ(s)f1(y(s))f2(z(s))ds
)
dr.

Clearly (y, z) ∈
(
C([0,∞)) ∩ C1((0,∞))

)2 , satisfying for each t ∈ [0,∞)

c− φp′(g1(d)g2(c))Gpϕ(t) ≤ y(t) ≤ c,

d− φq′(f1(c)f2(d))Hqψ(t) ≤ v(t) ≤ d

and (y, z) is a positive bounded solution of (1.4). �

Proof of Theorems 2.6 and 2.7. We first observe that (u, v) is a positive radial en-
tire solution of (1.1) if and only if the function (y(t), z(t)) = (u(x), v(x)), t = |x|,
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satisfies the system of second order ordinary differential equations

1
tn−1

(tn−1φp(y′))′ = ϕ(t)g1(z)g2(y), t > 0,

1
tn−1

(tn−1φp(z′))′ = ψ(t)f1(y)f2(z), t > 0,

y′(0) = 0, z′(0) = 0.

(3.2)

Hence the result follows from Theorem 2.1 with A(t) = B(t) = tn−1. Since infinitely
many positive real numbers a, b can be chosen in (1.3), then we can construct an
infinitude of positive radial solutions to (1.1). This completes the proof. �

Next, we consider some continuous functions λ, µ : [0,∞) → [0,∞) and ϕ,ψ :
(0,∞) → [0,∞) satisfying:

(H7)∫ 1

0

φp′

(
r1−n exp

(
−

∫ r

0

λ(ζ) dζ
) ∫ r

0

sn−1 exp
( ∫ s

0

λ(ζ)dζ
)
ϕ(s)ds

)
dr <∞,∫ 1

0

φq′

(
r1−n exp

(
−

∫ r

0

µ(ζ)dζ
) ∫ r

0

sn−1 exp
( ∫ s

0

µ(ζ)dζ
)
ψ(s)ds

)
dr <∞.

and we define

Kλ
pϕ(t) =

∫ t

0

φp′

( 1
exp

( ∫ r

0
λ(s)ds

)
rn−1

∫ r

0

exp
( ∫ s

0

λ(ς)dς
)
sn−1ϕ(s)ds

)
dr,

Sµ
q ψ(t) =

∫ t

0

φq′

( 1

exp
( ∫ r

0
µ(s)ds

)
rn−1

∫ r

0

exp
( ∫ s

0

µ(ς)dς
)
sn−1ψ(s)ds

)
dr.

Corollary 3.2. Let fi, gi satisfying (H2) and let λ, µ : [0,∞) → [0,∞) and ϕ,ψ :
(0,∞) → [0,∞) be continuous functions satisfying (H7). Assume further that

(H8) there exist a, b > 0 such that Kλ
pϕ(t) + Sµ

q ψ(t) < Fa+b(∞) for all t > 0,
then the problem

div(|∇u|p−2∇u) + λ(|x|)|∇u|p−1 = ϕ(|x|)g1(v)g2(u), in Rn,

div(|∇v|q−2∇v) + µ(|x|)|∇v|q−1 = ψ(|x|)f1(u)f2(v), in Rn,
(3.3)

has infinitely many positive radial solutions (u, v). Moreover,
(i) If Kλ

pϕ(t) <∞ = Sµ
q ψ(t) = ∞, then these solutions are large.

(ii) If Kλ
pϕ(t) <∞ and Sµ

q ψ(t) < Fa+b(∞), then these solutions are bounded.

Proof. Let A(t) = tn−1 exp
( ∫ t

0
λ(s)ds

)
and B(t) = tn−1 exp

( ∫ t

0
µ(s)ds

)
. Then,

from Theorem 2.1, the system

1
tn−1

(tn−1φp(y′))′ + λ(t)φp(y′) = ϕ(t)g1(z)g2(y), t > 0,

1
tn−1

(tn−1φq(z′))′ + µ(t)φq(z′) = ψ(t)f1(y)f2(z), t > 0,

y′(0) = 0, z′(0) = 0,

(3.4)

has infinitely many positive solutions (y, z) ∈ (C([0,∞))×C1((0,∞)))2. Put u(x) =
y(t), v(x) = z(t), with t = |x|. Then (u, v) are positive solutions of (3.3). �
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