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BOUNDED AND LARGE RADIALLY SYMMETRIC SOLUTIONS
FOR SOME (p,q)-LAPLACIAN STATIONARY SYSTEMS

ADEL BEN DKHIL, NOUREDDINE ZEDDINI

ABSTRACT. This article concerns radially symmetric positive solutions of sec-
ond-order quasilinear elliptic systems. In terms of the growth of the variable
potential functions, we establish conditions such that the solutions are either
bounded or blow up at infinity.

1. INTRODUCTION

Existence and nonexistence of solutions of second-order quasilinear elliptic sys-
tems of the form

div(|VuP72Vu) = ¢(|z])g1(v)g2(u), in R",

div(|Vo["2V0) = Y(Ja]) i (w) folv), in R,
have been intensively studied in the previous few years. See, for example, [Il 2]
9, 13, 14, 16l 17, 19, 20] and the reference therein. Problem (1.1)) arises in the
theory of quasiregular and quasiconformal mappings as well as in the study of non-
Newtonian fluids. In the latter case, the pair (p, ¢) is a characteristic of the medium.
Media with (p, q) > (2,2) are called dilatant fluids and those with (p, ¢) < (2,2) are
called pseudoplastics. If (p, q) = (2,2), they are Newtonian fluids. When p = ¢ =2

system ({1.1)) becomes

(1.1)

Au = p(|z])g1(v)g2(u), n R,

Av = ¢(|z]) fi(u) f2(v), in R,
for which the existence and non-existence of positive radial entire large or bounded
solutions has been extensively studied. When fy = g2 = 1, g1(v) = v%, fi(u) =
u?, 0 < a < B, Lair and Wood [I1] considered the existence and nonexistence
of entire positive radial solutions to under the conditions of integrability or
nonintegrability of the functions r — r¢(r) and r — r¢(r) on (0,00). Their
results were extended by Cirstea and Radulescu [5], Wang and Wood [18], Ghergu
and Radulescu [7], Peng and Song [15], Ghanmi, Maagli, Radulescu and Zeddini
[6], Li, Zhang, Zhang [12] and Zhang [2I]. Many generalizations of these results
have been extended to system . See, for example, [I7, 20]. Our purpose
is to generalize the results of [0, 21] to systems under the hypotheses that

(1.2)
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the radial potentials ¢, ¥ are nonnegative continuous functions on (0,00) and the
nonlinearities f;,g; (i = 1,2) are nonnegative, continuous and nondecreasing on
[0,00). In all the results, we establish in this paper we study only positive radial
solutions in the sense of distributions, especially because of the physical meaning
of the corresponding unknowns.

To discuss the existence of positive radial solutions to this class of nonlinear sys-
tems, we are first concerned with the following two systems of differential equations

L(A0,0)) = 0091 (aa(y), in (0,0),

S(Bo, () = bOA L), in (0,00), (1.3
y(0)=a>0, 2(0)=b>0,
ls A(£)2, (5 (1) = i B(2)a (2 (1)) = .

and
L(A6,0)) = ¢ (2eaw), in (0,00),
S(B6,()) = YO AWL)., 0 (0,5), w
y(oo) = tlgrolo y(t) =c>0, z(c0)= tllr(r)lo z(t) =d >0,

lim A()6,(y/ (1)) = lim B(t)6,(2/(1)) = 0.
where p,q > 1, ¢p(z) = |z|*2x for k = p,q and A, B are continuous functions
in [0,00), differentiable and positive in (0,00) and satisfy the following growth

hypotheses:

1 t 1/(p—1 1 t 1/(g—1)
/0 [ﬁ/o A(s)ds} it < 50, /0 [%/O B(s)ds} dt < oo.

In particular, these assumptions are fulfilled if A and B are nondecreasing.

In the sequel, we denote by p’ = ﬁ, q = q%’l and we remark that ¢y is a

multiplicative function for k = p,q. Namely ¢x(zy) = ¢r(x)dr(y) for x > 0 and
y > 0. Moreover ¢, and ¢, are respectively the inverse functions of ¢, and ¢,.
For any nonnegative measurable functions ¢ in (0, 00), we define

Kpo(t) = /Ot ¢p1(ﬁ /OT A(s)<p(s)ds)dr,

Se(t) = | s (50 | Beweteias) ar,
Goett) = [0 (55 | Ato)ets)ds)ar.
Hio0)= [ o (55 | " B(s)p(s)ds)dr.

Finally, we define for 8 > 0 the function Fg on [3,00) by

t ds
B0 = || 5 ) + o T

and we note that Fjz has an inverse function Fjy L on [, 00).
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2. MAIN RESULTS

We are first concerned with the existence of a positive solution of the system
(1.3). For this purpose, we assume that ¢, v, f;,g; (i = 1,2) satisfy the following
hypotheses.

(H1) ¢,% :(0,00) — [0,00) are continuous functions satisfying

/01 [ﬁ /Ot A(s)ep(s) ds] V=D dt < oo,
/01 [% /Ot B(s)iﬁ(S)dsT/(qA) dt < .

(H2) The functions f;, g;: [0,00) — [0, 00) are nondecreasing continuous, positive
on (0, 00).

Our existence result for ([L.3]) is the following
Theorem 2.1. Under the hypotheses (H1)—(H2) and

(H3) Kpp(t) + Sq(t) < Fagp(oo) for allt > 0,
System (L.3) has a positive solution (y,z) € (C([0,00)) N C((0, oo)))2 satisfying
for each t € [0, 00)

a+ @y (91 (b)92(a))Kp‘P(t) <y(t) < F;Jrlb[KpSO(t) + Sq¢(t)]a
b+ ¢q’(f1 (a)f2(b))sqz/}(t) <z2(t) < Fajrlb[Kp‘P(t) + Sq¢(t)]~

As a consequence of this result we obtain the following
Corollary 2.2. Under the hypotheses (H1)-(H3) and

(H4) Kpp(oo) < oo and Sqp(o0) < oo,
System (L.3) has a positive bounded solution (y, z) € (C([0,00)) N C’l((O,oo)))2.
Corollary 2.3. Under the hypotheses (H1)-(H3) and

(H5) Kpp(oo) = Sq1(00) = o0,
System (L.3) has a positive solution (y,z) € (C([0,00)) N C((0, oo)))2 satisfying
limy o0 y(t) = limy o 2(t) = c0.

Next, we investigate the existence of positive solution to ([1.4)).
Theorem 2.4. Under hypotheses (H1), (H2), (H4) and

(H6) There exist ¢ > 0 and d > 0 such that

¢ — ¢p (91(d)g2(c)) Kpp(o0) > 0, d = g (f1(c) f2(d))Sqtp(00) >0,
Problem (L.4) has a positive bounded solution
(y,2) € (C([0,00)) N C((0,00))) x (C([0,00)) N C*((0,00)))
satisfying, for each t € [0, 00),
¢ = ¢p (91(d)g2(c)) Gpp(t) < y(t) < ¢,
d — g (fi(e) fa(d)) Hytp(t) < 2(t) < d.

Remark 2.5. Let gi(t) = t*, go(t) = t*2, fi(t) = t7* and fo(t) = t72 with
oy, B; > 0. Then, the condition (H6) is satisfied for infinitely many positive real
numbers ¢, d if a1 # (p—1—a2)(qg— 1 — B2).
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Now, we give our existence results for (1.1)).

Theorem 2.6. Assume that (H2) is satisfied and that (H1) and (H3) are satisfied
with A(t) = B(t) =t"~1. Then has infinitely many positive continuous radial
solutions (u,v). Moreover,

o If

/OOO Opr (r"% /OT s"ilgo(s)ds>dr = /000 bg (rn%l /OT s"ilw(s)ds)dr = 00,

then these solutions are large; i.e., limg,_ o u(x) = limg,_, o v(z) = co.

o If . .
/0 ¢pl(r”%1/0 sn_lap(s)ds)dr<oo

T ([
/0 om <r”—1/0 s w(s)ds> dr < oo,

then u and v are bounded.

and

Next, we replace hypothesis (H3) by hypothesis (H6) to obtain the existence of
positive continuous bounded radial solutions to (|1.1)).

Theorem 2.7. Let f;, g;, satisfying (H2) and assume that (H1), (H4), (H6) are
satisfied with A(t) = B(t) = t"~1. Then has a positive radial bounded solution
(u,v) with

| l‘im u(z) = const > 0, | l‘im v(x) = const > 0.

3. PROOF OF MAIN RESULTS

Proof of Theorem Let (yx)r>0 and (z;)r>0 be sequences of positive contin-
uous functions defined on [0, 00) by

yo(t) =a, zo(t) =0,

sty =a+ [ o (5 [ AN (a1 (6Dton)ds)ar

1

@ =0+ [ 05t [ BV RGO Lleals)ds)ar

Clearly y, zx € C([0,00)) N C((0,00)) and positive, so we deduce from the mono-
tonicity of f;, gi, ¢p and ¢4 that (yi)k>0 and (zx)k>0 are nondecreasing sequences
and for each k € N, the functions ¢ — yi(¢) and t — 2;(¢) are nondecreasing.
Hence, for each t € (0, c0),

Yir1 (1)

_ Mﬁ / A(5)p()91 (24 (5))g2 (1 (5))ds )

< w06, (455 [ A1)

< 0y 01 (0 + s () (0 + 22 ()0 (575 [ A1)

< [ ((91 (zr41 () + Yt 1(1)) g2 (Yt 1 (1) + 2x41(1)))
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t
+ 0 (a1 0+ e (0) ol (0) + 510 Doy (75 [ Als)olodas
Which implies, by putting wy = yr + zx, that

y;s:-&-l(t)
Gp (g1 (we+1(8))g2(wr1())) + dgr (f1(wr1 (1)) f2(wr1(5)))

< o (5 [ AGheto)as).

Similarly, we have

21 (1)

Op (91 (wi41(2)) g2 (wi+1(2))) + bgr (f1(wi41 (1)) f2(wi+1(2)))
<ou (5 | Blws)

Consequently,

wi,(s)ds
/0 Ppr (91 (Wi () g2(wk(s))) + g (f1(wr(s)) f2(wi(s)))

which gives

< Kpp(t) + S (1),

() ds
/a+b bg (f1(5) f2(5)) + D (91(5)g2(5)) < Kpp(t) + Sqv(t).

Namely

Faro(yr(t) + 2(t)) < Kpp(t) + Sqip(t).
Which by hypothesis (H3) implies

yi(t) + 21(t) < Fly (Kpp(t) + S (t)).

Therefore, the sequences (yx)r>0 and (zx)r>0 converge locally uniformly to two
functions y and z that satisfy for each ¢ € [0, 00),

—a+/ ( / A(s g2(y(s))ds ) dr,
(5

=+ [ o0 (5 [ BOROROG >>f2<z<s>>ds)dr

Hence, y, z € C([0,00)) N C*((0;00)) and (y, 2) is a solution of (L.3) satisfying
a + by (91(b)g2(a)) Kpp(t) < y(t) < F [ (Kpp(t) + Sq(1)),
b+ ¢g (f1(a) f2(0))Squb(t) < 2(t) < F iy (Kpp(t) + Sgu(t)).

To state another corollary of Theorem [2.1I] we consider two continuous functions

h,k :[0,00) — [0,00) and study the existence of positive solutions for the system
Z<A¢p( ¥)) +h)lY' = e(t)g1(2)g2(y),  in (0,00),
E(B%( ) + k()21 = 4(t) fi(y) f2(2),  in (0,00), (3.1)

y(0)=a>0, 2z(0)=0b>0,
lim A(1)6,(y/ (1) = lim B()o, (/1)) = 0.
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To this aim, we define

p(t) = /Ot exp (p%l /0C h(s)ds)dg“, pa(t) = /Ot exp (q—% /0C k(s)ds)d@.

Clearly p1, p2 are bijections from [0, 00) to itself. Let M;, My, N; and N3 be the
functions defined on [0,00) by My o ps = g1, My o p; = (p1")P"Lga, Nyop1 = fi
and Ns o ps = (pg/)q_lfg.
Corollary 3.1. Under the hypotheses (H1), (H2) and

(H3") for allt >0,

Kpp(t) + Sq(t) < /

P

i dt

R GG E R ACKAGE

System has a positive solution (y, z) € (C([0,00))NC((0,00))) x (C([0,00))N
C1((0,00))). Moreover, when Kyp(co) < oo and Sgip(co) < oo, y and z are
bounded; when Kpp(co) = Sep(00) = 00, limy—eo y(t) = limy_, o0 2(t) = 0.

Proof. Put Y = p1(y) and Z = pa(z). Then (y, z) is a solution of (3.1)) if and only
if (Y, Z) is a solution of

SAG () = o M(Z)M(Y), in (0,50),

%(Bqﬁq(Z’))’ =Y N1(Y)N2(Z), in (0,00),
Y (0) = pi(a) >0, Z(0) = pa(b) >0,
lim A(6)6,(Y"(1)) = lim B(t)6,(Z'(1)) =0,
So the result follows from Theorem 211 O

Next, we aim to prove Theorem We note that the proof established in [6]
for the case p = ¢ =2 and g = fo = 1 can not be adapted. So we will use a fixed
point argument.

Proof of Theorem[2.] Let Cy([0,00)) = {w € C([0,0),R) : lim;_,o |w(t)| = 0}.
Clearly Cy([0,00)) is a Banach space endowed with the uniform norm |jwl|| =
SUP;[0,00) [@(t)]-

To apply the Schauder fixed point theorem, we put ¢1 = ¢, (g1(d)g2(c)) Kpp(00),
di = ¢g (f1(c) f2(d))Sqyp(o0) and we consider the nonempty closed convex set

A = {(w, 0) € (Co([0, 20)))*: —c; Cw < 0and —d; <60 <0}.

Consider the operator T' defined on A by T'(w, ) = (&, §), where

3(t) = ~Gylp (6 + dgaleo + (1)
— [T ow (5 | A©R00) + Dl + as)ar
A(t) = —Hy( fow + ) fo(0 + ) (1)
—— [T (50 | BOUOACE +Afal000) + s ) ar
First, we show that TA C A.~Let (w,0) € A, then using hypotheses (H1), (H2)
and (H4) we deduce that (,8) € C([0, 00)). Moreover, since lim;_.oc Gpp() =
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limy oo Gqtb(t) = 0, it follows that limy . [&(t)] = limy_o |0(t)] = 0. Which
implies that @, 0 € Co([0, 00)). Using again the monotonicity of f;,g; we deduce
that (&, 0) € A and consequently TA C A.

Secondly, we will prove that T'A is relatively compact in (Co([0,00)))?. Clearly
TA is uniformly bounded in (Cp([0,00)))?. Let us prove that TA is equicontinuous
on [0,00) and satisfy the property lim; .o sup(, g)ea |0(¢) + 0(t)] = 0 known as
equidecay property to 0 at infinity. Let ¢1,t2 € [0,00] with ¢; < 5. Then for each
(w, 0) € A we have

_ _ to 1 T
Bt -3l = [ on (505 [ A(s)eo(s)gme(s)+d>92<w<s>+c>ds)dr

< 6y (1 (d)gs(c)) /t ’ (35 / A)p(s)ds )dr

and
10(t1) — O(ta)| < ¢q'(f1(0)f2(d))/t bg ( b) /07“ B(s)w(s)ds)dr.
Since, the functions r +— ¢, (ﬁ Jo A(s)p(s)ds) and r — ¢ ( fo (s) ds)

are integrable on (0,00) by hypothesis (H4), we deduce that TA is equlcontlnous
on [0,00) and equidecays to 0 at infinity. Hence it follows by Ascoli’s theorem, [8]
p.185], that T'A is relatively compact in (Co([0, 0)))?.

Finally, we prove the continuity of 7' in A. Let (wpm,0m)m be a sequence in A
which converges uniformly on [0,00) to (w,0) € A. Using the continuity of f;,g;
and the dominated convergence theorem, we deduce that (w;,,) and (é,vn) converge
pointwise respectively to & and 6. Now, since T'A is equicontinuous on [0, 00), then
(wm) and (Hm) converge uniformly on each compact of [0,00) respectively to w
and 6. This together with the fact that &, € Co([0,)) and (wm,O ) have the
equidecay property imply that (@) converges uniformly on [0,00) to @ and (é‘,;)
converges uniformly on [0, 00) to 9. This proves the continuity of 7.

Therefore, there exists (w,0) € A such that T'(w,0) = (w,8) by the Schauder
fixed point theorem. Put y = w + ¢ and z = 0 + d. Then y, z satisfy the integral
equations

v =c= [ o (55 | A@ORGE)m)s) i

A0 =d= [ ou (g [ BOUOAGE) RS

Clearly (y,z) € (C([0,00)) N C((0, oo)))2 , satisfying for each ¢ € [0, c0)

¢ = by (91(d)g2())Gpiplt) < y(t) < c,
d — 6y (F1(e) fold) Hyo(t) < w(t) < d

and (y, z) is a positive bounded solution of ([1.4)). O

Proof of Theorems[2.¢ and [2.7. We first observe that (u,v) is a positive radial en-
tire solution of (1.1)) if and only if the function (y(t), z(t)) = (u(zx),v(x)), t = ||,
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satisfies the system of second order ordinary differential equations

A6, = e (2)eny), >0,

()Y =B RWRG), >0, (3.2
y'(0) =0, 2/(0)=0.

Hence the result follows from Theorem [2.1]with A(t ) B(t) = t"~1. Since infinitely
many positive real numbers a,b can be chosen in , then we can construct an
infinitude of positive radial solutions to (|1.1)). This Completes the proof. O

Next, we consider some continuous functions A,y : [0,00) — [0,00) and ¢, :
(0,00) — [0, 00) satisfying:
(HT)

/01 Op (Tl_” exp ( — /0’" A(€) dC) /0’" s"Lexp </Os A(ﬁ)dC)cp(s)ds)dr < 00,
/01 o (rk" exp ( - /OT H(C)dC) /OT 5" Lexp (/OS u(()dC)q/z(s)d:;)dr < 0.

and we define

K)o(t) = /0 t ¢p,<exp ( fTA(ls)ds)rnl /0 "exp ( /0 SA(g)dg)snflw(s)ds)dr,
Savlt) = /ot oo (eXP (f Mzs dS)Tn—l /OT P (/osu(g)ak) Sn_lw(s)ds)dr'

Corollary 3.2. Let f;, g; satisfying (H2) and let A\, : [0,00) — [0,00) and ¢, :
(0,00) — [0,00) be continuous functions satisfying (H7). Assume further that
(H8) there exist a,b > 0 such that K, p(t) + Sk (t) < Fayp(co) for all t >0,
then the problem
div(|VuP72Vu) + A(|z])[VulP ™ = (|2])g1(v)g2(u),  in R,
div(Vel72V0) + (2D IVol" = Y(la) fu(w) falv), in RY,

(3.3)

has infinitely many positive radial solutions (u,v). Moreover,

(i) If Kpp(t) < oo = Skap(t) = oo, then these solutions are large.

(ii) If K} o(t) < oo and SEip(t) < Faqp(00), then these solutions are bounded.
Proof. Let A(t) = t" exp (fot A(s)ds) and B(t) = t" 'exp (fo s)ds). Then,
from Theorem the system

1

tfl(tn_l%(y/)) At)op(y') = e(t)g1(2)g2(y), t>0,
S (T 6y + (0)6,() =YD (), t>0, B
y'(0) =0, 2'(0)=0,
has infinitely many positive solutions (y, z) € (C([0,00))xC((0,00)))2. Put u(z) =
y(t), v(z) = z(¢t), with t = |z|. Then (u,v) are positive solutions of ((3.3] . O
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