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DECAY RESULTS FOR VISCOELASTIC DIFFUSION
EQUATIONS IN ABSENCE OF INSTANTANEOUS ELASTICITY

MOHAMMAD KAFINI

Abstract. We study the diffusion equation in the absence of instantaneous
elasticity

ut −
Z t

0
g(t− τ)∆u(τ) dτ = 0, (x, t) ∈ Ω× (0, +∞),

where Ω ⊂ Rn, subjected to nonlinear boundary conditions. We prove that if
the relaxation function g decays exponentially, then the solutions is exponential
stable.

1. Introduction

A diffusion equation in the absence of instantaneous elasticity has the form

ut −
∫ t

0

g(t− τ)∆u(τ) dτ = 0, (x, t) ∈ Ω× (0,+∞). (1.1)

When the fluid is enclosed in a region Ω ⊂ Rn the above equation is supplemented by
conditions at ∂Ω, the boundary of Ω. For instance, one can consider the nonlinear
boundary condition:

∂νu + f(u) = 0, ∂Ω× (0,+∞). (1.2)

Let us assume that
u(x, 0) = u0(x), x ∈ Ω. (1.3)

Denoting

(g ∗ ϕ)(t) =
∫ t

0

g(t− s)ϕ(s) ds

and differentiating equation (1.1), with respect to t, we arrive at the Volterra equa-
tion

1
g(0)

utt = ∆u +
1

g(0)
(g′ ∗∆u). (1.4)

Considering the Volterra inverse operator we obtain

utt − g(0)∆u + k ∗ utt = 0, (1.5)
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where the resolvent kernel satisfies

k +
1

g(0)
g′ ∗ k = − 1

g(0)
g′.

Thus (1.5) becomes

utt − g(0)∆u + k(0)ut − k(t)ut(0) + k′ ∗ ut = 0. (1.6)

Reciprocally, supposing in a natural way that ut(0) = 0, the identity (1.6) implies
(1.1). Since we are interested in relaxation functions of exponential type and (1.6)
involves the resolvent kernel k, we want to know if k has the same properties. The
following lemma answers this question. Let h be a relaxation function and k its
resolvent kernel; that is,

k(t)− k ∗ h(t) = h(t). (1.7)

Lemma 1.1 ([5, 7, 8]). If h is a positive continuous function, then k is also a
positive continuous function. Moreover, if there exist positive constants c0 < γ,
such that

h(t) ≤ c0e
−γt,

then the function k satisfies

k(t) ≤ c0(γ − ε)
γ − ε− c0

e−εt,

for all 0 < ε < γ − c0.

Proof. Note that k(0) = h(0) > 0. Now, we take

t0 = inf{t ∈ R+ : k(t) = 0},
so k(t) > 0 for all t ∈ [0, t0[. If t0 ∈ R+, from equation (1.7) we obtain that
−k ∗ h(t0) = h(t0) but this is contradictory. Therefore, k(t) > 0 for all t ∈ R+.
Now, let us fix ε, such that 0 < ε < γ − c0 and denote

kε(t) := eεtk(t), hε(t) := eεth(t).

Multiplying equation (1.7) by eεt we obtain

kε(t) = hε(t) + kε ∗ hε(t),

hence

sup
s∈[0,t]

kε(s) ≤ suphε(s) +
{∫ ∞

0

c0e
(ε−γ)sds

}
sup

s∈[0,t]

kε(s)

≤ c0 +
c0

(γ − ε)
sup

s∈[0,t]

kε(s).

Therefore,

kε(t) ≤
c0(γ − ε)
γ − ε− c0

,

which is the desired result. �

Thanks to Lemma 1.1, we can use equation (1.6) instead of (1.1).
Usually when g is such that Re(ĝ) > 0 (ĝ is the Fourier transform of g), we can,

by the Laplace transformation, reduce equation (1.1) to an elliptic problem. By
the variational method, we can resolve such an equation (see Raynal [8]). In what
follows we shall adopt a different procedure in order to establish the well-posedness
of problem (1.1).
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So, from the above comments, we can consider equation (1.6), instead of equation
(1.1), supplemented by the initial data (1.3), the compatibility condition ut(0) = 0,
and the boundary conditions

∂νu + βut + |u|ρu = 0, onΓ1 × (0,∞)

u = 0, Γ0 × (0,+∞),
(1.8)

assuming that k ∈ W 2,1(0,+∞), β > 0 and 0 < ρ < 2/(n− 2) if n ≥ 3 or ρ > 0 if
n = 1, 2.

We shall assume that Ω is a bounded domain of Rn, n ≥ 1, with a smooth
boundary Γ = Γ0 ∪ Γ1. Here, Γ0 6= ∅; Γ0 and Γ1 are closed and disjoint and ν
represents the unit outward normal to Γ.

The variational formulation associated with problem (1.6) is

(utt(t), v)Ω − g(0)(∆u(t), v)Ω

+ k(0)(ut(t), v)Ω +
∫ t

0

k′(t− τ)(u′(τ), v)Ω dτ + g(0)(f(u), v)Γ1 = 0,

for all v ∈ H1
Γ0

(Ω) := {u ∈ H1(Ω);u = 0 on Γ0}.
We can easily obtain the existence and uniqueness of global regular solutions

making use, for instance, of the Faedo-Galerkin method.
Evidently the additional term given by βut plays an essential role by allowing us

to control the nonlinear term on the boundary. This is strongly necessary because of
Lopatinski condition is lost. Thus, it is clear and it has been recognized a long time
ago, that well-posedness theory with semilinear boundary nonlinearity and finite
energy solutions must rely on and take advantage of the boundary dissipation. See,
for instance, Cavalcanti et al [3], Lasiecka and Tataru [4] and references therein.

However, from the physical point of view to have two dissipations, namely, k(0)ut

(internal) and βut (on the boundary) is too much to establish the exponential
decay. So, by considering the techniques employed in Lasiecka and Tataru [4] or
in Cavalcanti, Cavalcanti, and Soriano [3], it is possible to obtain the existence of
weak solutions to (1.6) subject to the boundary conditions

∂νu + |u|ρu = 0, on Γ1 × (0,∞). (1.9)

Unfortunately, because of the nonlinear boundary condition (1.9), the uniqueness
is lost.

Indeed, let A be the operator whose domain is defined by

D(A) =
{
(u, v) ∈ H1

Γ0
(Ω)×H1

Γ0
(Ω);u−N [g1(γ0v) + f1(γ0u)] ∈ D(−∆)

}
and the operator by

A

(
u
v

)
=

(
−v

∆(u−N [g1(γ0v) + f1(γ0u)])

)
.

We are assuming that

g1(s) = βs, f1 is a Lipschitz continuous function on R, (1.10)

and

D(−∆) = {v ∈ H1
Γ0

(Ω);∆v ∈ L2(Ω)}

=
{
v ∈ H1

Γ0
(Ω) ∩H2(Ω);

∂v

∂ν
= 0 on Γ1

}
,
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and N : Hs(Γ1) → H
s+3/2
Γ0

(Ω), s ∈ R, is the Neumann map defined by

Np = q ⇔


−∆q = 0 in Ω
q = 0 on Γ0

∂q

∂ν
= p on Γ1

We observe that

(u, v) ∈ D(A) ⇔


(u, v) ∈ [H1

Γ0
(Ω)]2,

u−N [g1(γ0v) + f1(γ0u)] ∈ H1
Γ0

(Ω),

∆(u−N [g1(γ0v) + f1(γ0u)]) ∈ L2(Ω).

(1.11)

By the nonlinear semigroup theory [4, Theorem 2.1], the operator A is ω-accretive
on the space E := H1

Γ0
(Ω)×L2(Ω), for some ω suitably large. Moreover, A + ωI is

maximal monotone and

D(A) is dense in H1
Γ0

(Ω)× L2(Ω). (1.12)

Let us assume that {u0, u1} ∈ H1
Γ0

(Ω) × L2(Ω) and consider, in view of (1.12),
{u0

µ, u1
µ} ⊂ D(A) such that

u0
µ → u0 in H1

Γ0
(Ω) and u1

µ → u1 in L2(Ω) as µ → +∞. (1.13)

Thus, {u0
µ, u1

µ} satisfies, for all µ ∈ N the compatibility conditions

∂u0
µ

∂ν
+

1
µ

u1
µ + f1,µ(u0

µ) = 0,

where β is chosen equal to 1/µ and f1,µ(s) is the sequance of Lipschitz continuous
(truncated) functions defined by

f1,µ(s) :=


|s|ρs, |s| < µ

|µ|ρµ, s ≥ µ

| − µ|ρ(−µ), s ≤ −µ.

(1.14)

Initially, we consider regular solutions to the auxiliary problem

un
tt − α∆un + k(0)un

t +
∫ t

0

k′(t− s)un
t (x, s)ds = 0 in Ω× (0,+∞)

un(x, t) = 0, x ∈ Γ0

∂un

∂ν
+

1
n

un
t + f1,n(un) = 0 on Γ1 × (0,+∞)

un(x, 0) = un
0 (x), un

t (x, 0) = un
1 (x), x ∈ Ω.

(1.15)

We obtain a sequence of regular solutions to problem (1.15) which will converge,
as n approaches infinity, to a desired weak solution ({u0, u1} ∈ H1

Γ0
(Ω) × L2(Ω)).

The procedure described above can be followed verbatim as considered in [2] and
therefore will be omitted. It is important to be mentioned that while problem (1.15)
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possesses a unique solution, the uniqueness of the limit problem, namely

utt − α∆u + k(0)ut +
∫ t

0

k′(t− s)ut(x, s)ds = 0 in Ω× (0,+∞)

u(x, t) = 0, x ∈ Γ0

∂u

∂ν
+ |u|ρu = 0 on Γ1 × (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.16)

is lost because of the nonlinear boundary term |u|ρu. Of course for Dirichlet or
Neumann homogeneous boundary conditions the uniqueness is recovered.

The main task of this work, is to prove the exponential stability of problem
(1.15). Namely, we would like to have

En(t) ≤ CEn(0)e−ω t, (1.17)

where En(t) is the energy associated with (1.15) and the constants C and ω do
not depend on n. So, using denseness arguments as considered in [2, 4], we can
pass to the limit in (1.17) to obtain the desired exponential decay rate for those
weak solutions that are limit of regular solutions of problem (1.15). Evidently the
procedure is valid for any weak solution if u = 0 or ∂νu = 0 on Γ.

2. Preliminaries

In this section we present some material needed in the proof of our result. We
will us the following assumptions:

(G1) k′, k′′′ : [0,∞) → R+ with k(0) > 0.
(G2) k′′ : [0,∞) → R− with k′′(0) < 0.
(G3) There exist two positive constants ζ1 and ζ2 such that

k′′ ≤ −ζ1k
′ and k′′′ ≥ −ζ2k

′′.

An example of function k satisfying (G1)–(G3) is k(t) = a− e−bt, where a > 1,
b > 0.

Lemma 2.1 (Poincaré). There exists a positive constant β(Ω) such that

|u|22 ≤ β|∇u|22, ∀u ∈ H1
Γ0

(Ω).

Our main task is concerned with the asymptotic behavior of solutions to the
problem

utt − α∆u + k(0)ut +
∫ t

0

k′(t− s)ut(x, s)ds = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0,

∂u

∂ν
+

1
n

ut + b|u|ρu = 0 on Γ1,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(2.1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω = Γ0 ∪Γ1, α > 0
and k(t) ∈ C3(R+) satisfying (G1)–(G3). Once exponential stability for (2.1) is
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established, then the same technique is used for viscoelastic diffusion problem

ut −
∫ t

0

g(t− τ)∆u(τ) dτ = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0,

∂u

∂ν
+ b|u|ρu = 0 on Γ1,

u(x, 0) = u0(x), ut(x, 0) = 0, x ∈ Ω,

(2.2)

obtained by denseness arguments, having in mind the comments established in
section 1. Of course this is not true for all weak solutions of (2.2) unless we have
u = 0 or ∂νu = 0 on Γ.

After integrating by parts the last term in (2.1), we obtain

utt − α∆u + k(0)ut + k′(0)u(t)− k′(t)u0

+
∫ t

0

k′′(t− s)u(x, s)ds = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0,

∂u

∂ν
+

1
n

ut + b|u|ρu = 0 on Γ1,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(2.3)

The modified energy functional associated with (2.3) is

E(t) =
1
2

∫
Ω

u2
t dx +

α

2

∫
Ω

|∇u|2dx +
1
2
k′(t)

∫
Ω

(u(x, t)− u0(x))2 dx

− 1
2

∫
Ω

∫ t

0

k′′(t− s) (u(x, s)− u(x, t))2 ds dx +
αb

ρ + 2

∫
Γ1

|u|ρ+2dx.

3. Decay of solutions

In this section we state and prove our main result. For this purpose, we set

F (t) = E(t) + εϕ(t), t ≥ 0, (3.1)

where ε is a positive constant and

ϕ(t) =
∫

Ω

utu dx +
k(0)
2

∫
Ω

u2dx +
α

2n

∫
Γ1

u2dx, (3.2)

Lemma 3.1. The modified energy satisfies, along the solution of (2.3),

E′(t) = −k(0)
∫

Ω

u2
t dx +

1
2
k′′(t)

∫
Ω

(u(x, t)− u0(x))2 ds dx

− 1
2

∫
Ω

∫ t

0

k
′′′

(t− s) (u(x, s)− u(x, t))2 ds dx− α

n

∫
Γ1

|ut|2dx ≤ 0.

Proof. Multiplying (2.3) by ut and integrating over Ω, using integration by parts,
hypotheses (G1) and (G2) and some manipulations as in [2] , we obtain the result
for any regular solution. This result remains valid for any “limit weak” solution
(not for all weak solutions) by a simple denseness argument. �
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Lemma 3.2. For ε > 0 small enough, we have

|F (t)− E(t)| ≤ ελE(t), t ≥ 0,

where λ is a constant independent of ε and n.

Proof. Using the Poincaré and the Cauchy-Schwarz inequalities, we obtain

|εϕ(t)| ≤ ε

2

∫
Ω

u2
t dx +

ε

2
(1 + k(0))

∫
Ω

u2dx + +
εα

2n

∫
Γ1

u2dx

≤ ε

2

∫
Ω

u2
t dx +

ε
(
1 + k(0) + α

n

)
β

2

∫
Ω

|∇u|2dx

≤ ε

2

∫
Ω

u2
t dx +

ε (1 + k(0) + α) β

2

∫
Ω

|∇u|2dx ≤ λεE(t),

where β is the Poincaré constant and

λ = max
{

1,
(1 + k(0) + α) β

α

}
.

Then from (3.1), it follows that

|F (t)− E(t)| ≤ ελE(t), t ≥ 0. (3.3)

�

Lemma 3.3. Under assumptions(G1)–(G2), the functional ϕ(t) satisfies, along the
solution of (2.3) and for any δ > 0,

ϕ′(t) ≤
∫

Ω

u2
t dx− (α− δβ[k′(t) + 1])

∫
Ω

|∇u|2dx− αb

∫
Γ1

|u|ρ+2dx

− k′(0)
4δ

∫
Ω

∫ t

0

k′′(t− s) (u(s)− u(t))2 ds dx +
k′(t)
4δ

∫
Ω

(u(t)− u0(x))2 dx.

(3.4)

Proof. Differentiation of (3.2), using (2.3), yields

ϕ′(t) =
∫

Ω

u2
t dx− α

∫
Ω

|∇u|2dx− k′(0)
∫

Ω

u2dx− αb

∫
Γ1

|u|ρ+2dx

+ k′(t)
∫

Ω

u0(x)u(t)dx−
∫

Ω

u(t)
∫ t

0

k′′(t− s)u(s) ds dx.

(3.5)

Using Young’s, Cauchy-Schwarz’s, Poincaré’s and H ölder’s inequalities, the last
two terms in (3.5) can be estimated as follows

k′(t)
∫

Ω

u0(x)u(t)dx

= k′(t)
∫

Ω

(u0(x)− u(t) + u(t))u(t)dx

= k′(t)
∫

Ω

(u0(x)− u(t))u(t)dx + k′(t)
∫

Ω

u2(t)dx

≤ k′(t)
4δ

∫
Ω

(u(t)− u0(x))2 dx + δk′(t)
∫

Ω

u2(t)dx + k′(t)
∫

Ω

u2dx

≤ k′(t)
4δ

∫
Ω

(u(t)− u0(x))2 dx + (δ + 1) k′(t)
∫

Ω

u2dx

(3.6)
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and

−
∫

Ω

u(t)
∫ t

0

k′′(t− s)u(s) ds dx

= −
∫

Ω

u(t)
∫ t

0

k′′(t− s)[
(
u(s)− u(t)

)
+ u(t)] ds dx

= −
∫

Ω

u(t)
∫ t

0

k′′(t− s) (u(s)− u(t)) ds dx−
∫

Ω

u2(t)
∫ t

0

k′′(t− s) ds dx

≤ δ

∫
Ω

u2(t)dx +
1
4δ

∫
Ω

( ∫ t

0

k′′(t− s) (u(s)− u(t)) ds
)2

dx

−
∫

Ω

u2(t)
∫ t

0

k′′(t− s) ds dx

≤ δ

∫
Ω

u2(t)dx +
k′(0)
4δ

∫
Ω

∫ t

0

−k′′(t− s) (u(s)− u(t))2 ds dx

+ k′(0)
∫

Ω

u2dx− k′(t)
∫

Ω

u2dx

≤ −k′(0)
4δ

∫
Ω

∫ t

0

k′′(t− s) (u(s)− u(t))2 ds dx + [δ + k′(0)− k′(t)]
∫

Ω

u2dx.

(3.7)
Combining (3.5)-(3.7), the result in (3.4) follows. �

At this point, we state and prove our main result.

Theorem 3.4. Assume that (G1)–(G3) hold, and let (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω).
Then, there exist two positive constants C and ω, independent of n, such that the
limit weak solution of (2.3) satisfies, for all t ≥ 0,

E(t) ≤ CE(0)e−ωt.

Proof. Using Lemmas 3.1 and 3.3, we have

F ′(t) = E′(t) + εϕ′(t)

≤ − (k(0)− ε)
∫

Ω

u2
t dx− ε (α− δβ[k′(t) + 1])

∫
Ω

|∇u|2dx

− ε
k′(0)
4δ

∫
Ω

∫ t

0

k′′(t− s) (u(s)− u(t))2 ds dx

− 1
2

∫
Ω

∫ t

0

k′′′(t− s) (u(s)− u(t))2 ds dx− εαb

∫
Γ1

|u|ρ+2dx

+
(

k′′(t)
2

+ ε
k′(t)
4δ

) ∫
Ω

(u(t)− u0(x))2 dx− α

n

∫
Γ1

|ut|2dx.

(3.8)

Using (G3), (3.8), and k′(t) ≤ k′(0), and dropping the last term, we arrive at

F ′(t) ≤ − (k(0)− ε)
∫

Ω

u2
t dx− ε (α− δβ[k′(0) + 1])

∫
Ω

|∇u|2dx

+
(

ζ2

2
− ε

k′(0)
4δ

) ∫
Ω

∫ t

0

k′′(t− s) (u(s)− u(t))2 ds dx

− k′(t)
(

ζ1

2
− ε

1
4δ

) ∫
Ω

(u(t)− u0(x))2 dx− εα

∫
Γ1

|u|ρ+2dx.

(3.9)
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Now, we choose δ such that
δ <

α

β (k′(0) + 1)
.

Whence δ is fixed, we select ε satisfying

ε < min{k(0),
2δζ2

k′(0)
, 2δζ1,

1
λ
},

hence (3.9) yields, for some c > 0,

F ′(t) ≤ −cE(t), ∀t ≥ 0. (3.10)

Also (3.3) leads to

(1− λε)E(t) ≤ F (t) ≤ (1 + λε)E(t), ∀t ≥ 0.

Consequently, for any 0 < γ ≤ 1− λε, we have

γE(t) ≤ F (t) ≤ (2− γ) E(t), ∀t ≥ 0. (3.11)

Inserting (3.11) in (3.10), we obtain

F ′(t) ≤ − c

2− γ
F (t) = −ωF (t), ∀t ≥ 0,

where ω = c
2−γ . A direct integration yields

F (t) ≤ F (0)e−ωt, ∀t ≥ 0.

Using (3.11) again gives

E(t) ≤ 1
γ

F (t) ≤ 1
γ

F (0)e−ωt ≤ 2− γ

γ
E(0)e−ωt = CE(0)e−ωt, ∀t ≥ 0.

This completes the proof. �
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