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INITIAL-VALUE PROBLEMS FOR FIRST-ORDER
DIFFERENTIAL SYSTEMS WITH GENERAL NONLOCAL

CONDITIONS

OCTAVIA NICA

Abstract. This article concerns the existence of solutions to initial-value
problems for nonlinear first-order differential systems with nonlocal conditions
of functional type. The fixed point principles by Perov, Schauder and Leray-
Schauder are applied to a nonlinear integral operator split into two operators,
one of Fredholm type and the other of Volterra type. The novelty in this arti-
cle is combining this approach with the technique that uses convergent to zero
matrices and vector norms.

1. Introduction

In this article, we study the nonlocal initial-value problem for the first-order
differential system

x′(t) = f1(t, x(t), y(t))

y′(t) = f2(t, x(t), y(t)) a.e. on [0, 1]

x(0) = α[x], y(0) = β[y].

(1.1)

Here, f1, f2 : [0, 1] × R2 → R are Carathéodory functions, α, β : C[0, 1] → R are
linear and continuous functionals.

Nonlocal problems have been extensively discussed in the literature by differ-
ent methods; see Boucherif [2], Boucherif-Precup [3], Byszewski [5], Byszewski-
Lakshmikantham [6], Nica-Precup [9], Ntouyas-Tsamatos [11], Precup [13], Webb-
Lan [16], Webb [17], Webb-Infante [18, 19, 20] and references therein.

In the recent paper, [10], Problem (1.1) was studied using as main tools the
fixed point principles by Perov, Schauder and Leray-Schauder, together with the
technique that uses convergent to zero matrices and vector norms. Note that the m-
point boundary condition x(0)+

∑m
k=1 akx(tk) = 0 is a particular case of condition

x(0) = α[x] when

α[x] = −
m∑
k=1

akx(tk). (1.2)
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In [3], the authors studied the nonlocal initial-value problem for first-order differ-
ential equations

x′(t) = f(t, x(t)) (a.e. on [0, 1])

x(0) +
m∑
k=1

akx(tk) = 0,

assuming that f : [0, 1] × R2 → R is a Carathéodory function, tk are given points
with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm < 1 and ak, ãk are real numbers with 1+

∑m
k=1 ak 6= 0

and 1 +
∑m
k=1 ãk 6= 0. The main idea there was to rewrite the problem as a fixed

point problem, involving a sum of two operators, one of Fredholm type whose
values depend only on the restrictions of functions to [0, tm], and the other one, a
Volterra type operator depending on the restrictions to [tm, 1]. The same strategy
was adapted in [9] for the first-order differential system

x′(t) = f(t, x(t), y(t))

y′(t) = g(t, x(t), y(t)) (a.e. on [0, 1])

x(0) +
m∑
k=1

akx(tk) = 0, y(0) +
m∑
k=1

ãky(tk) = 0.

In this article, the nonlocal conditions are expressed by means of linear contin-
uous functionals on C[0, 1], as in the works by Webb-Lan [16], Webb [17], Webb-
Infante [18], [19], [20]. Our main assumption on functionals α, β extends to the
general case the specific property of the particular functional (1.2) of depending
only on the points from a proper subinterval [0, t0] of [0, 1], namely [0, tm] (taking
t0 := tm). More exactly, we require the following property:

x|[0,t0] = y|[0,t0] implies α[x− y] = 0, whenever x, y ∈ C[0, 1]. (1.3)

Therefore, (1.3) reads that the value of functional α on any function x only depends
on the restriction of x to the fixed subinterval [0, t0]. The key property of functional
α satisfying (1.3) is that

α[u] ≤ ‖α‖ · |u|C[0,t0] , (1.4)
for every u ∈ C[0, 1]. Normally, for a given functional

α : C[0, 1] → R,

we have
|α[g]| ≤ ‖α‖ · |g|C[0,1].

However, if α satisfies condition (1.3), then

|α[g]| ≤ ‖α‖ · |g|C[0,t0].

Indeed, for each g ∈ C[0, 1], if we let g̃ ∈ C[0, 1] be defined by

g̃(t) =

{
g(t), if t ∈ [0, t0]
g(t0), if t ∈ [t0, 1],

then
|α[g]| = |α[g̃]| ≤ ‖α‖ · |g̃|C[0,1] = ‖α‖ · |g|C[0,t0].

The goal of this work is to revisite system (1.1) under the assumption that both
functionals α and β satisfy (1.3), using the strategy from [9].
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Problem (1.1) is equivalent to the following integral system in C[0, 1]2:

x(t) =
1

1− α[1]
α[g1] +

∫ t

0

f1(s, x(s), y(s))ds

y(t) =
1

1− β[1]
β[g2] +

∫ t

0

f2(s, x(s), y(s))ds,

where

g1(t) :=
∫ t

0

f1(s, x(s), y(s))ds, g2(t) :=
∫ t

0

f2(s, x(s), y(s))ds.

This can be viewed as a fixed point problem in C[0, 1]2 for the completely continuous
operator T : C[0, 1]2 → C[0, 1]2, T = (T1, T2), where T1 and T2 are given by

T1(x, y)(t) =
1

1− α[1]
α[g1] +

∫ t

0

f1(s, x(s), y(s))ds,

T2(x, y)(t) =
1

1− β[1]
β[g2] +

∫ t

0

f2(s, x(s), y(s))ds.

In fact, under assumption (1.3) on α and β, operators T1 and T2 appear as sums
of two integral operators, one of Fredholm type, whose values depend only on
the restrictions of functions to [0, t0], and the other one, a Volterra type operator
depending on the restrictions to [t0, 1], as this was pointed out in [3]. Thus, T1 can
be rewritten as T1 = TF1 + TV1 , where

TF1(x, y)(t) =

{
1

1−α[1]α[g1] +
∫ t
0
f1(s, x(s), y(s))ds, if t < t0

1
1−α[1]α[g1] +

∫ t0
0
f1(s, x(s), y(s))ds, if t ≥ t0;

TV1(x, y)(t) =

{
0, if t < t0∫ t
t0
f1(s, x(s), y(s))ds, if t ≥ t0.

Similarly, T2 = TF2 + TV2 , where

TF2(x, y)(t) =

{
1

1−β[1]β[g2] +
∫ t
0
f2(s, x(s), y(s))ds, if t < t0

1
1−β[1]β[g2] +

∫ t0
0
f2(s, x(s), y(s))ds, if t ≥ t0;

TV2(x, y)(t) =

{
0, if t < t0∫ t
t0
f2(s, x(s), y(s))ds, if t ≥ t0.

This allows us to split the growth condition on the nonlinear terms f1(t, x, y) and
f2(t, x, y) into two parts, one for t ∈ [0, t0] and another one for t ∈ [t0, 1], in such
way that one reobtains the classical growth when t0 = 0, that is for the local initial
condition x(0) = 0.

We conclude this introductory part by some notation, notions and basic results
that are used in the next sections. The symbol |x|C[a,b] stands for the max-norm
on C[a, b],

|x|C[a,b] = maxt∈[a,b] |x(t)|,
while ‖x‖C[a,b] denotes the Bielecki norm

‖x‖C[a,b] = |x(t)e−θ(t−a)|C[a,b]

for some suitable θ > 0.
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In the next sections, three fixed point principles will be used to prove the exis-
tence of solutions for the semilinear problem, namely the fixed point theorems by
Perov, Schauder and Leray-Schauder (see [13]). In all three cases a key role will
be played by the so called convergent to zero matrices. A square matrix M with
nonnegative elements is said to be convergent to zero if

Mk → 0 as k →∞.

It is known that the property of being convergent to zero is equivalent to each of
the following three conditions (for details see [13, 14]):

(a) I −M is nonsingular and (I −M)−1 = I +M +M2 + . . . , where I stands
for the unit matrix of the same order as M ;

(b) the eigenvalues of M are located in the interior of e the unit disc of the
complex plane;

(c) I −M is nonsingular and (I −M)−1 has nonnegative elements.
The following lemma whose proof is immediate from characterization (b) of con-

vergent to zero matrices will be used in the sequel:

Lemma 1.1. If A is a square matrix that converges to zero and the elements of an
other square matrix B are small enough, then A+B also converges to zero.

We finish this introductory section by recalling (see [1, 13]) three fundamental
results which will be used in the next sections. Let X be a nonempty set. By a
vector-valued metric on X we mean a mapping d : X ×X → Rn+ such that

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

Here, for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), by x ≤ y we mean xi ≤ yi for
i = 1, 2, . . . , n. We call the pair (X, d) a generalized metric space. For such a space
convergence and completeness are similar to those in usual metric spaces.

An operator T : X → X is said to be contractive (with respect to the vector-
valued metric d on X) if there exists a convergent to zero matrix M such that

d(T (u), T (v)) ≤Md(u, v) for all u, v ∈ X.

Theorem 1.2 (Perov). Let (X, d) be a complete generalized metric space and T :
X → X a contractive operator with Lipschitz matrix M . Then T has a unique fixed
point u∗ and for each u0 ∈ X we have

d(T k(u0), u∗) ≤Mk(I −M)−1d(u0, T (u0)) for all k ∈ N.

Theorem 1.3 (Schauder). Let X be a Banach space, D ⊂ X a nonempty closed
bounded convex set and T : D → D a completely continuous operator (i.e., T is
continuous and T (D) is relatively compact). Then T has at least one fixed point.

Theorem 1.4 (Leray-Schauder). Let (X, ‖ · ‖X) be a Banach space, R > 0 and
T : BR(0;X) → X a completely continuous operator. If ‖u‖X < R for every
solution u of the equation u = λT (u) and any λ ∈ (0, 1), then T has at least one
fixed point.

Throughout the paper we shall assume that the following conditions are satisfied:
(H1) 1− α[1] 6= 0 and 1− β[1] 6= 0.
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(H2) f1, f2 : [0, 1] × R2 → R are such that f1(., x, y), f2(., x, y) are measurable
for each (x, y) ∈ R2 and f1(t, ., .), f2(t, ., .) are continuous for almost all
t ∈ [0, 1].

2. Nonlinearities with the Lipschitz property. Application of
Perov’s fixed point theorem

Here we show that the existence of solutions to problem (1.1) follows from Perov’s
fixed point theorem when f1, f2 satisfy Lipschitz conditions in x and y:

|f1(t, x, y)− f1(t, x, y)| ≤

{
a1|x− x|+ b1|y − y|, if t ∈ [0, t0]
a2|x− x|+ b2|y − y|, if t ∈ [t0, 1],

(2.1)

|f2(t, x, y)− f2(t, x, y)| ≤

{
A1|x− x|+B1|y − y|, if t ∈ [0, t0]
A2|x− x|+B2|y − y|, if t ∈ [t0, 1],

(2.2)

for all x, y, x, y ∈ R.
In what follows we denote by Aα := ‖α‖

|1−α[1]| + 1, Bβ := ‖β‖
|1−β[1]| + 1.

Theorem 2.1. If f1, f2 satisfy the Lipschitz conditions (2.1), (2.2) and the matrix

M0 :=
[
a1t0Aα b1t0Aα
A1t0Bβ B1t0Bβ

]
(2.3)

converges to zero, then problem (1.1) has a unique solution.

Proof. We shall apply Perov’s fixed point theorem in C[0, 1]2 endowed with the
vector norm ‖ · ‖ defined by

‖u‖ = (‖x‖, ‖y‖)
for u = (x, y), where for z ∈ C[0, 1], we let

‖z‖ = max{|z|C[0,t0], ‖z‖C[t0,1]}.

We have to prove that T is contractive, more exactly that

‖T (u)− T (u)‖ ≤Mθ‖u− u‖

for all u = (x, y), u = (x, y) ∈ C[0, 1]2 and some matrix Mθ converging to zero. To
this end, let u = (x, y), u = (x, y) be any elements of C[0, 1]2. For t ∈ [0, t0], we
have

|T1(x, y)(t)− T1(x, y)(t)|

=
∣∣∣ 1
1− α[1]

α[g1] +
∫ t

0

f1(s, x(s), y(s))ds−
1

1− α[1]
α[g1]−

∫ t

0

f1(s, x(s), y(s))ds
∣∣∣

≤ | 1
1− α[1]

||α[g1 − g1]|+
∫ t

0

|f1(s, x(s), y(s))− f1(s, x(s), y(s))|ds.

Thus, using (1.3),
α[g1 − g1] ≤ ‖α‖ · |g1 − g1|C[0,t0]

and therefore by (1.4), we obtain the following evaluation:

|T1(x, y)(t)− T1(x, y)(t)|

≤ ‖α‖
|1− α[1]|

|g1 − g1|C[0,t0] +
∫ t

0

(a1|x(s)− x(s)|+ b1|y(s)− y(s)|)ds.
(2.4)
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Now, taking the supremum, we have

|T1(x, y)− T1(x, y)|C[0,t0]

≤ ‖α‖
|1− α[1]|

|g1 − g1|C[0,t0] + a1t0|x− x|C[0,t0] + b1t0|y − y|C[0,t0].

Also

|g1(t)− g1(t)| ≤
∫ t

0

|f1(s, x(s), y(s))− f1(s, x(s), y(s))|ds

≤
∫ t

0

(a1|x(s)− x(s)|+ b1|y(s)− y(s)|)ds

≤ a1t0|x− x|C[0,t0] + b1t0|y − y|C[0,t0],

which gives

|g1 − g1|C[0,t0] ≤ a1t0|x− x|C[0,t0] + b1t0|y − y|C[0,t0]. (2.5)

From (2.4) and (2.5), we obtain

|T1(x, y)− T1(x, y)|C[0,t0]

≤
( ‖α‖
|1− α[1]|

+ 1
)
(a1t0|x− x|C[0,t0] + b1t0|y − y|C[0,t0])

= Aαa1t0|x− x|C[0,t0] +Aαb1t0|y − y|C[0,t0].

(2.6)

For t ∈ [t0, 1] and any θ > 0, we have

|T1(x, y)(t)− T1(x, y)(t)|

≤ | 1
1− α[1]

||α[g1 − g1]|+
∫ t

0

|f1(s, x(s), y(s))− f1(s, x(s), y(s))|ds

+
∫ t

t0

|f1(s, x(s), y(s))− f1(s, x(s), y(s))|ds.

Hence, (1.4) gives

|T1(x, y)(t)− T1(x, y)(t)|

≤
( ‖α‖
|1− α[1]|

+ 1
)(
a1t0|x− x|C[0,t0] + b1t0|y − y|C[0,t0]

)
+
∫ t

t0

|f1(s, x(s), y(s))− f1(s, x(s), y(s))|ds.

The last integral can be further estimated as follows:∫ t

t0

|f1(s, x(s), y(s))− f1(s, x(s), y(s))|ds

≤
∫ t

t0

(a2|x(s)− x(s)|+ b2|y(s)− y(s)|)ds

= a2

∫ t

t0

|x(s)− x(s)| · e−θ(s−t0) · eθ(s−t0)ds

+ b2

∫ t

t0

|y(s)− y(s)| · e−θ(s−t0) · eθ(s−t0)ds
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≤ a2

θ
eθ(t−t0)‖x− x‖C[t0,1] +

b2
θ
eθ(t−t0)‖y − y‖C[t0,1].

Thus

|T1(x, y)(t)− T1(x, y)(t)| ≤ Aαa1t0|x− x|C[0,t0] +Aαb1t0|y − y|C[0,t0]

+
a2

θ
eθ(t−t0)‖x− x‖C[t0,1] +

b2
θ
eθ(t−t0)‖y − y‖C[t0,1].

Dividing by eθ(t−t0) and taking the supremum when t ∈ [t0, 1], we obtain

‖T1(x, y)− T1(x, y)‖C[t0,1] ≤ Aαa1t0|x− x|C[0,t0] +Aαb1t0|y − y|C[0,t0]

+
a2

θ
‖x− x‖C[t0,1] +

b2
θ
‖y − y‖C[t0,1].

(2.7)

Now (2.6) and (2.7) imply

‖T1(x, y)− T1(x, y)‖ ≤ (Aαa1t0 +
a2

θ
)‖x− x‖+ (Aαb1t0 +

b2
θ

)‖y − y‖. (2.8)

Similarly,

‖T2(x, y)− T2(x, y)‖ ≤ (BβA1t0 +
A2

θ
)‖x− x‖+ (BβB1t0 +

B2

θ
)‖y − y‖. (2.9)

Using the vector norm we can put both inequalities (2.8), (2.9) under the vector
inequality

‖T (u)− T (u)‖ ≤Mθ‖u− u‖,
where

Mθ =
[
Aαa1t0 + a2

θ Aαb1t0 + b2
θ

BβA1t0 + A2
θ BβB1t0 + B2

θ

]
. (2.10)

Clearly the matrix Mθ can be represented as Mθ = M0 +M1, where

M1 =
[
a2
θ

b2
θ

A2
θ

B2
θ

]
.

Since M0 is assumed to be convergent to zero, from Lemma 1.1 we have that Mθ

also converges to zero for large enough θ > 0. The result follows now from Perov’s
fixed point theorem. �

3. Nonlinearities with growth at most linear. Application of
Schauder’s fixed point theorem

Here we show that the existence of solutions to problem (1.1) follows from
Schauder’s fixed point theorem when f1, f2, instead of the Lipschitz condition,
satisfy the more relaxed condition of growth at most linear:

|f1(t, x, y)| ≤

{
a1|x|+ b1|y|+ c1, if t ∈ [0, t0]
a2|x|+ b2|y|+ c2, if t ∈ [t0, 1],

(3.1)

|g(t, x, y)| ≤

{
A1|x|+B1|y|+ C1, if t ∈ [0, t0]
A2|x|+B2|y|+ C2, if t ∈ [t0, 1].

(3.2)

Theorem 3.1. If f1, f2 satisfy (3.1), (3.2) and matrix (2.3) converges to zero, then
(1.1) has at least one solution.
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Proof. To apply Schauder’s fixed point theorem, we look for a nonempty, bounded,
closed and convex subset B of C[0, 1]2 so that T (B) ⊂ B. Let x, y be any elements
of C[0, 1]. For t ∈ [0, t0], using (1.3) and (1.4), we have

|T1(x, y)(t)| = | 1
1− α[1]

α[g1] +
∫ t

0

f1(s, x(s), y(s))ds|

≤ | 1
1− α[1]

||α[g1]|+
∫ t

0

(a1|x(s)|+ b1|y(s)|+ c1)ds

≤ ‖α‖
|1− α[1]|

|g1|C[0,t0] + a1t0|x|C[0,t0] + b1t0|y|C[0,t0] + c1t0.

(3.3)

Also

|g1(t)| ≤
∫ t

0

|f1(s, x(s), y(s))|ds

≤
∫ t

0

(a1|x(s)|+ b1|y(s)|+ c1)ds

≤ a1t0|x|C[0,t0] + b1t0|y|C[0,t0] + c1t0,

which gives
|g1|C[0,t0] ≤ a1t0|x|C[0,t0] + b1t0|y|C[0,t0] + c1t0. (3.4)

From (3.3) and (3.4), we obtain

|T1(x, y)|C[0,t0] ≤ (
‖α‖

|1− α[1]|
+ 1)(a1t0|x|C[0,t0] + b1t0|y|C[0,t0]) + c̃1

= a1t0Aα|x|C[0,t0] + b1t0Aα|y|C[0,t0] + c̃1,

(3.5)

where c̃1 := c1t0Aα. For t ∈ [t0, 1] and any θ > 0, we have

|T1(x, y)(t)| = a1t0Aα|x|C[0,t0] + b1t0Aα|y|C[0,t0] + c̃1

+
∫ t

t0

(a2|x(s)|+ b2|y(s)|+ c2 )ds

≤ a1t0Aα|x|C[0,t0] + b1t0Aα|y|C[0,t0] + c̃1 + (1− t0)c2

+ a2

∫ t

t0

|x(s)| · e−θ(s−t0) · eθ(s−t0)ds

+ b2

∫ t

t0

|y(s)| · e−θ(s−t0) · eθ(s−t0)ds

≤ a1t0Aα|x|C[0,t0] + b1t0Aα|y|C[0,t0] + c0

+
a2

θ
eθ(t−t0)‖x‖C[t0,1] +

b2
θ
eθ(t−t0)‖y‖C[t0,1],

where c0 := c̃1 + (1 − t0)c2. Dividing by eθ(t−t0) and taking the supremum, it
follows that

‖T1(x, y)‖C[t0,1] ≤ a1t0Aα|x|C[0,t0] + b1t0Aα|y|C[0,t0]

+
a2

θ
eθ(t−t0)‖x‖C[t0,1] +

b2
θ
eθ(t−t0)‖y‖C[t0,1] + c0.

(3.6)

Clearly, (3.5) and (3.6) give

‖T1(x, y)‖ ≤ (a1t0Aα +
a2

θ
)‖x‖+ (b1t0Aα +

b2
θ

)‖y‖+ c̃0, (3.7)
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where c̃0 = max {c̃1, c0}. Similarly,

‖T2(x, y)‖ ≤ (A1t0Bβ +
A2

θ
)‖x‖+ (B1t0Bβ +

B2

θ
)‖y‖+ C̃0, (3.8)

with C̃0 = max{C̃1, C0}, where C̃1 := C1t0Bβ and C0 := C̃1 + (1 − t0)C2. Now
(3.7) and (3.8) can be put together as[

‖T1(x, y)‖
‖T2(x, y)‖

]
≤Mθ

[
‖x‖
‖y‖

]
+
[
c̃0
C̃0

]
,

where the matrix Mθ is given by (2.10) and converges to zero for a large enough
θ > 0. Next we look for two positive numbers R1, R2 such that if ‖x‖ ≤ R1, ‖y‖ ≤
R2, then ‖T1(x, y)‖ ≤ R1, ‖T2(x, y)‖ ≤ R2. To this end it is sufficient that

(a1t0Aα +
a2

θ
)R1 + (b1t0Aα +

b2
θ

)R2 + c̃0 ≤ R1

(A1t0Bβ +
A2

θ
)R1 + (B1t0Bβ +

B2

θ
)R2 + C̃0 ≤ R2,

(3.9)

or equivalently

Mθ

[
R1

R2

]
+
[
c̃0
C̃0

]
≤
[
R1

R2

]
,

whence [
R1

R2

]
≥ (I −Mθ)−1

[
c̃0
C̃0

]
.

Note that I −Mθ is invertible and its inverse (I −Mθ)−1 has nonnegative elements
since Mθ converges to zero. Thus, if B = {(x, y) ∈ C[0, 1]2 : ‖x‖ ≤ R1, ‖y‖ ≤ R2},
then T (B) ⊂ B and Schauder’s fixed point theorem can be applied. �

4. More general nonlinearities. Application of the Leray-Schauder
principle

We now consider that nonlinearlities f1, f2 satisfy more general growth condi-
tions, namely:

|f1(t, u)| ≤

{
ω1(t, |u|e), if t ∈ [0, t0]
γ(t)β1(|u|e), if t ∈ [t0, 1],

(4.1)

|f2(t, u)| ≤

{
ω2(t, |u|e), if t ∈ [0, t0]
γ(t)β2(|u|e), if t ∈ [t0, 1],

(4.2)

for all u = (x, y) ∈ R2, where by |u|e we mean the Euclidean norm in R2. Here ω1, ω2

are Carathéodory functions on [0, t0]×R+, nondecreasing in their second argument,
γ ∈ L1[t0, 1], while β1, β2 : R+ → R+ are nondecreasing and 1/β1, 1/β2 ∈ L1

loc(R+).

Theorem 4.1. Assume that (4.1), (4.2) hold. In addition assume that there exists
a positive number R0 such that for ρ = (ρ1, ρ2) ∈ (0,∞)2,

1
ρ1

∫ t0

0

ω1(t, |ρ|e)dt ≥
1
Aα

and
1
ρ2

∫ t0

0

ω2(t, |ρ|e)dt ≥
1
Bβ

imply |ρ|e ≤ R0

(4.3)
and ∫ ∞

R∗

dτ

β1(τ) + β2(τ)
>

∫ 1

t0

γ(s)ds, (4.4)
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where R∗ =
[
(Aα

∫ t0
0
ω1(t, R0)dt)2 + (Bβ

∫ t0
0
ω2(t, R0)dt)2

]1/2. Then (1.1) has at
least one solution.

Proof. The result will follow from the Leray-Schauder fixed point theorem once we
have proved the boundedness of the set of all solutions to equation u = λT (u),
for λ ∈ [0, 1]. Let u = (x, y) be such a solution. Then, for t ∈ [0, t0], also using
condition (1.3) and (1.4), we have

|x(t)| = |λT1(x, y)(t)|

= λ| 1
1− α[1]

α[g1] +
∫ t

0

f1(s, x(s), y(s))ds|

≤ ‖α‖
|1− α[1]|

|g1|C[0,t0] +
∫ t

0

|f1(s, x(s), y(s))|ds

≤ (
‖α‖

|1− α[1]|
+ 1)

∫ t0

0

ω1(s, |u(s)|e)ds

= Aα

∫ t0

0

ω1(s, |u(s)|e)ds.

(4.5)

Similarly,

|y(t)| ≤ Bβ

∫ t0

0

ω2(s, |u(s)|e)ds. (4.6)

Let ρ1 = |x|C[0,t0], ρ2 = |y|C[0,t0]. Then from (4.5), (4.6), we deduce

ρ1 ≤ Aα

∫ t0

0

ω1(s, |u(s)|e)ds

ρ2 ≤ Bβ

∫ t0

0

ω2(s, |u(s)|e)ds.

By (4.3), this guarantees
|ρ|e ≤ R0. (4.7)

Next we let t ∈ [t0, 1]. Then

|x(t)| = |λT1(x, y)(t)|

≤ Aα

∫ t0

0

ω1(s,R0)ds+
∫ t

t0

|f1(s, x(s), y(s))|ds

≤ Aα

∫ t0

0

ω1(s,R0)ds+
∫ t

t0

γ(s)β1(|u(s)|e)ds

=: φ1(t)

and similarly

|y(t)| ≤ Bβ

∫ t0

0

ω2(s,R0)ds+
∫ t

t0

γ(s)β2(|u(s)|e)ds =: φ2(t).

Denote ψ(t) := (φ2
1(t) + φ2

2(t))
1/2. Then

φ′1(t) = γ(t)β1(|u(t)|e) ≤ γ(t)β1(ψ(t))

φ′2(t) = γ(t)β2(|u(t)|e) ≤ γ(t)β2(ψ(t))).
(4.8)
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Consequently,

ψ′(t) =
φ1(t)φ′1(t) + φ2(t)φ′2(t)

ψ(t)

≤ γ(t) · φ1(t)
ψ(t)

· β1(ψ(t)) + γ(t) · φ2(t)
ψ(t)

· β2(ψ(t))

≤ γ(t)[β1(ψ(t)) + β2(ψ(t))].

It follows that ∫ t

t0

ψ′(s)
β1(ψ(s)) + β2(ψ(s))

ds ≤
∫ t

t0

γ(s)ds.

Furthermore, using (4.4) we obtain∫ ψ(t)

ψ(t0)

dτ

β1(τ) + β2(τ))
≤
∫ t

t0

γ(s)ds ≤
∫ 1

t0

γ(s)ds <
∫ ∞

R∗

dτ

β1(τ) + β2(τ)
. (4.9)

Note that ψ(t0) = R∗. Then from (4.9) it follows that there exists R1 such that

ψ(t) ≤ R1,

for all t ∈ [t0, 1]. Then |x(t)| ≤ R1 and |y(t)| ≤ R1, for all t ∈ [t0, 1], whence

|x|C[t0,1] ≤ R1, |y|C[t0,1] ≤ R1. (4.10)

Let R = max{R0, R1}. From (4.7), (4.10) we have |x|C[0,1] ≤ R and |y|C[0,1] ≤ R
as desired. �

Remark 4.2. If ω1(t, τ) = γ0(t)β0(τ), then the first inequality in (4.3) implies that
β0(τ) ≤ cτ + c′ for all τ ∈ R+ and some constants c and c′; i.e., the growth of β0

is at most linear. However, β1 may have a superlinear growth. Thus we may say
that under the assumptions of Theorem 4.1, the growth of f1(t, u) in u is at most
linear for t ∈ [0, t0] and can be superlinear for t ∈ [t0, 1]. The same can be said
about f2(t, u).

In particular, when α = β = 0, problem (1.1) becomes the classical local initial
value problem

x′ = f1(t, x, y)

y′ = f2(t, x, y) (a.e. t ∈ [0, 1])

x(0) = y(0) = 0,

(4.11)

and our assumptions reduce to the classical conditions (see [7, 12]) and Theorem
4.1 gives the following result.

Corollary 4.3. Assume that

|f1(t, u)| ≤ γ(t)β1(|u|e), |f2(t, u)| ≤ γ(t)β2(|u|e)
for t ∈ [0, 1] and u ∈ R2, where γ ∈ L1[0, 1], while β1, β2 : R+ → R+ are nonde-
creasing and 1/β1, 1/β2 ∈ L1

loc(R+). In addition assume that∫ ∞

0

dτ

β1(τ) + β2(τ)
>

∫ 1

0

γ(s)ds.

Then problem (4.11) has at least one solution.

A result similar to the above corollary was given in [10].

Remark 4.4. Since the trivial solution satisfies the boundary conditions, the solu-
tion given by Theorem 4.1 might be zero.
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5. Numerical examples

In this section, we give some numerical examples to illustrate the existence results
from Sections 2 and 3.

Example 5.1. Consider the initial value problem

x′(t) = 0.1 +
1
4

y2(t)
1 + y2(t)

sin(2x(t)) =: f(x, y)

y′(t) = 0.1 +
2
3

y2(t)
1 + y2(t)

cos(2x(t)) =: g(x, y)

x(0) =
∫ 1/2

0

x(s)ds, y(0) =
∫ 1/2

0

y(s)ds,

(5.1)

for t ∈ [0, 40].

We have that

α[u] =
∫ 1/2

0

u(s)ds =⇒ α[1] =
1
2

=⇒ ‖α‖ =
1
2
.

Consequently, t0 = 1/2, Aα = 2 = Bβ and

M0 =
(
a1 b1
A1 B1

)
.

However,

sup
ξ,η∈R

|∂f(ξ, η)
∂x

| ≤ 1
2

= a1, sup
ξ,η∈R

|∂f(ξ, η)
∂y

| ≤ 3
√

3
32

= b1,

sup
ξ,η∈R

|∂g(ξ, η)
∂x

| ≤ 4
3

= A1, sup
ξ,η∈R

|∂g(ξ, η)
∂y

| ≤
√

3
4

= B1

and then

M0 =

(
1
2

3
√

3
32

4
3

√
3

4

)
has the eigenvalues λ1 = 0, λ2 = 0.9330 · · · . From Theorem 2.1, problem (5.1) has
a unique solution, see Figure 1.

The exact solution is approximated by the Matlab package Chebpack [15] and
verified by the ode45 solver of Matlab (i.e. ode45 is applied to (5.1) with the initial
conditions x(0), y(0) given by Chebpack).

Example 5.2. Consider the initial value problem

x′ = −0.9x− 1.8
xy

2 + x2
+ 90 := f(x, y)

y′ = −0.2y − 1.8
xy

2 + x2
+ 750 := g(x, y)

x(0) =
∫ 1/2

0

x(s)ds, y(0) =
∫ 1/2

0

y(s)ds,

(5.2)

for t ∈ [0, 1].
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10 20 30 40
→
t

0.0

0.5

1.0

1.5

2.0

2.5
x(t)

y(t)

Figure 1. The Chebpack x, y solutions of the problem (5.1). The
numerical errors for the nonlocal boundary conditions are bc1 and
bc2

We consider

M0 =
(
a1 b1
A1 B1

)
.

We have

| x

2 + x2
| ≤

√
2

4
,

so that the matrix

M0 =
(

0.9 0.6364
0 0.8364

)
has the eigenvalues λ1 = 0.9, λ2 = 0.8364. From Theorem 3.1, problem (5.2) has
at least one solution. Let us denote

bc1(x0, y0) = x0 −
∫ 1/2

0

x(s)ds, bc2(x0, y0) = y0 −
∫ 1/2

0

y(s)ds

where x(s) and y(s) are obtained by integrating the differential system (5.2) with
initial conditions x(0) = x0, y(0) = y0. In Figure 2, approximated x0, y0, shows
the numerical contour lines of bc1(x0, y0) = 0 (solid line) and of bc2(x0, y0) = 0
(dashed line). Their intersections give the initial conditions for which the solutions
x(s), y(s) approximate the nonlocal conditions from (5.2). We have in that region
three intersection points 1, 2, 3 corresponding to three different solutions, which are
improved by fsolve from Matlab to

init1 = [11.7467173136538 167.2358959061741];

init2 = [3.6799740768135 156.9860214200612];

init3 = [0.1962071293693 152.5406128950519].

Taking these values as initial conditions for a Matlab solver for differential systems,
we obtain the corresponding three numerical solutions of (5.2) represented in Figure
2 with an accuracy about 10−7 in nonlocal conditions.
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0 5 10 15
150

160

170

bc2
1

2

3

bc1

bc1

0 0.5 1.0

20

40

x1(t)

0.5 1.0
0

5

10

x2(t)

0.5 1.0
0

0.5

x3(t)

Figure 2. Contour lines of bc1(x0, y0) = 0 and of bc2(x0, y0) = 0.
The solutions of problem (5.2) in example 5.2
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