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REDUCIBILITY OF SYSTEMS AND EXISTENCE OF
SOLUTIONS FOR ALMOST PERIODIC DIFFERENTIAL
EQUATIONS

JIHED BEN SLIMENE, JOEL BLOT

ABSTRACT. We establish the reducibility of linear systems of almost periodic
differential equations into upper triangular systems of a. p. differential equa-
tions. This is done while the number of independent a. p. solutions is con-
served. We prove existence and uniqueness of a. p. solutions of a nonlinear
system with an a. p. linear part. Also we prove the continuous dependence of
a. p. solutions of a nonlinear system with respect to an a. p. control term.

1. INTRODUCTION

First we consider the almost periodic, in the Bohr sense, system of linear ordinary
differential equations

T’ (t) = A(t)x(t) (1.1)
where A is an almost periodic (a.p.) real n x n matrix. In Theorem below, we

establish that when all the solutions of (1.1)) are a.p., there exist an a.p. transfor-
mation between the solutions of ([1.1)) and the solutions of

y'(t) = B(t)y(t) (1.2)

where B(t) is an a.p. real n x n matrix that is upper triangular for all ¢ € R.
When there are k linearly independent a. p. solutions of , we can build a
continuous matrix B(t) such that also possesses k linearly independent a.p.
solutions, see Theorem below.
In Section 5 we consider the nonlinear equation

' (t) = B(t)u(t) + f(t,u(t)) (1.3)

where B is an a.p. matrix such that the homogeneous equation of does
not possess any nonzero a.p. solution and f is uniformly a.p. (Theorem [5.4).
In a previous work [2], we considered the case where u/(t) = B(t)u(t) does not
possess any nonzero a.p. solution and where this homogeneous system can be
transformed into a linear system with a constant matrix in the quasi- periodic case
under diophantine conditions.
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In Section 6, by using results of Section 5, we build a parametrized fixed point
approach to obtain an existence result and a continuous dependence results on a.
p. solutions of the equation

a'(t) = A(t)z(t) + f(t, x(t), u(t)), (1.4)

where u is a control term (see Theorem [6.1).

2. PRELIMINARIES AND NOTATION

The usual inner product of R is denoted by (-|-) and || - || will be the associated
norm. RY denotes the set of real sequences, and S(N, N) denotes the space of the
(strictly) increasing functions from N into N.

When (E, | -||) is a Banach space, C°(R, E) denotes the space of the continuous
functions from R into E and BC°(R, E) denotes the space of the u € C°(R, E) witch
are bounded on R. Endowed with the norm [|ulle = sup,cp ||u(t)||, BC*(R, E) is a
Banach space.

When k € N, = N\{0}, C¥(R, E) is the space of the k-times differentiable
functions from R into E.

Following a result by Bochner [8, Definition 1.1, p.1], we define an a.p. function
u : R — FE saying that v € BC°(R, E) and for all (ry,),, € RY there exists
o € S(N,N) such that the sequence of the translated functions (f(. + 74, ))m is
uniformly convergent on N. We denote by APY(E) the space of the a.p. functions
from R into E; it is a Banach subspace of (BC°(R, E), ||.||). When k € N,., AP*(E)
is the space of functions u € C*(R, E) N AP°(E) such that ul) = £4 ¢ APY(E)
for all j € {1,...,k}.

Endowed with the norm ||u||cr = ||u)|oo + Zle |4 || oo, the space AP*(E) is a
Banach space. When u € AP?(E), its mean value

T
M{u} = M{u()}; = %EI;O%[T u(t) dt
exists in E.

For all real number A, there exists a(u, \) = M{e~u(t)}; in E; these vectors
are the Fourier-Bohr coefficients of u. We set A(u) = {A € R: a(u, ) # 0} which
is at most countable, and we denote by Mod(u) the Z-submodule of R which is
spanned by A(u). For all these notions on the a.p. functions, we refer to [0, [ [I8].

When M is a Z-submodule in R, AP*(R", M) = {u € AP*(R") : Mod(u) C M}.
We denote by M(n,R) the space of the n x n real matrices. The transpose of
M € M(n,R) is denoted by M*.

The following result is a corollary of a powerfull theorem, due to Bochner, proven
in [8, Theorem 1.17, p.12].

Theorem 2.1. Let f € AP°(R™) and (ry)m € RY. Then there exists o € S(N,N)
such that lim,, o, f(t + rg(m)) = g(t) uniformly on R and lim, o g(t — rg(m)) =
() uniformly on R.

Theorem 2.2 (|8, Theorem 5.7, p. 85]). Let A € AP°(M(n,R)) and x € AP*(R)
be the solution of x'(t) = A(t)x(t). Then we have infieg ||z (¢)|| >0 or x =0 .

Theorem 2.3 (|8, Theorem 4.5 , p. 61]). Let f € AP°(R") and g € AP°(RF).
If for all (Tm)m € RY which is convergent in [—o00, 0], ((f(. + Tm))m uniformly
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convergent on R) = ((g(- + Tm))m uniformly convergent on R), then Mod(g) C
Mod(f).

A consequence of the above theorem, we have the following result.

Corollary 2.4. Let f € AP°(R") and if ¢ is a continuous mapping from f(R)
into R*, then Mod(¢ o f) C Mod(f).

3. FIRST RESULT IN REDUCIBILITY
In this section we establish that is reducible to a upper triangular system
under the following assumptions.
(A1) A€ AP°(M(n,R), M)
(A2) All the solutions of are into AP (R", M),
where M is a fixed Z-submodule of R.

Lemma 3.1. Let u € APY(R"™; M) such that infcg ||u(t)|| > 0. Then t — m €
AP (R; M).

Proof. We know that | - || is of class C! on R™ \ {0}. Denoting N(z) = |z|| and
Ni(2) = ”—i”, we have that for all z,h € R", DN(z)h = ﬁ(z”h), DNy(2)h =

ﬁ(z”h) Using the Chain Rule we establish that < ( Hu(lt)u) = ”u(—t%”g (u(t)||u'(t)).

Since u,u’ € APY(R™; M), since infteR(W) > 0 and using [8, Theorem 1.9, p.
5] we have that %(m) € AP°(R; M) and so m € APY(R; M). O

Lemma 3.2. Assume (A1)—(A2), and let z1,...,z, € APY(R", M) be linearly
independent solutions of . Then there exist wy, ..., w, € AP*(R™, M) which
satisfy the following conditions.
(i) for j,k € {1,...,n} such that j # k, for all t € R, (w;(t)||wx(t)) = 0.
(ii) fork=1,...,n, Vt € R, span{w;(t) : 1 < j < k} = span{z;(t) : 1 < j <
(iii) 1 = w1 and Vk € {2,...,n}, Vt € R, wi(t) = xx(t) — Z;:ll Njk(t)x;(t)
where \j i € APY(R; M).
(iv) 1 = wy and Yk € {2,...,n}, V¥t € R, x(t) = wi(t) — Zf;ll Wik (t)w; (t)
where p; € AP (R; M).
(v) for k=1,...,n, infier ||Jwg ()| > 0.

Proof. We proceed by induction on k € {1,...,n}.

First step: k = 1. We set w; = x1. Since z1,...,x, are linearly independent,
we have z1(t) # 0, and since z; is a solution of we have z1(t) # 0 for all
t € R. Condition (i) has no content for one function, conditions (ii), (iii) and (iv)
are obvious and (v) is a consequence of Theorem

Second step: Induction assumption on k& € {1,...,n — 1}. We assume that
there exist wy, ..., wy € APY(R"; M) such that the following assertions hold.

(O Vi#je{l,....k}, Vt € R, (w;(t)||w;(t)) = 0.

(1)), 1 = wy and V5 € {2,---,n}, V& € R, span{w;(t) : 1 < i < j} =

span{z;(t) : 1 <i < j}.
(i) ©1 = wy and Vj € {2,--- ,n}, Vt € R, w;(t) = x;(t) — S0 Nij(t)ai(t)
where \; ; € APY(R; M).
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(iv)p Vi = 1,....k Vt € R, z;(t) = w;(t) — Y2727 pij(t)wi(t) where pu;; €
APY(R; M).

(V) Vj=1,...k, infiep [|w;(t)|| > 0.

Third step: we prove the existence of wy; € APY(R™; M) such that wy, ...,
Wit satisty (4)k41, (1) k+1, (449) k41, (10)g+1, (V)g+1. We consider Py ; the orthog-
onal projection on span{z;(t) : 1 < i < k} = span{w,;(t) : 1 < ¢ < k} (after (ii)g).
Using (4), it is well known [10], p. 136-138] that

k
Peaein () = 3 et Dl @) ) (3.1)
2 ]
We define
W1 (t) = Tg1 () = Prt(Tr41(1))- (32)

By using the characterization of orthogonal projection [I0, p. 136-138] and (4))
we obtain (7)1.

Using (v), we can assure that ¢t — |Jw;(¢)]|72 € APY(R;M). Since (..) is
bilinear continuous and since xp41, w; € APY(R"™; M), using Corollary we
obtain that ¢ — (zg41(t)||w;(t)) € AP'(R; M). Since AP'(R; M) is an algebra and
since (1, &) +— r& is bilinear continuous from R x R™ into R™, using we obtain

W1 € AP? (Rn, M) (33)

Using (3.1) and the previous arguments we see that (iv)gs1 holds.
The upper index g denoting the g-th coordinate of a vector of R™, the relation
in (iv)g41 is equivalent to following system, for ¢ =1,...,nand j=1,...,k+1

2j(t) = wi(t) = 3 pis (Ol (2). (3.4)

Setting T(t) = (Ti,j(t))lgi,jSkJrl with Ti’j(t) = 0 when j > 1, Ti’i(t) =1and Ti’j(t) =
—p;,5(t) when j <, (3.4) is equivalent to the following system, for ¢ = 1,...,n,
i (t) wi(t)
=T | (3.5)
IZ-H(t) wlqc+1(t)
We see that detT'(t) = Hf:lq 7ii(t) = 1 since T'(¢) is triangular lower, and so
T(t) is invertible, and the inverse of T'(t) is T'(t)~! = cof T(t)* the matrix of the
cofactors of T'(t). Denoting T'(t)~! = (0; ;(t))1<i j<k+1, We have

i = (=1)cof; jT(t) = (=1)"™ det T(t); 5,

where T'(t);~ is the k x k matrix obtained by deleting the é-th row and the j-th
column, [9, Définition 4.15, p. 117].

Since the 7;; € AP'(R; M) and since a determinant is multilinear continuous,
by using Corollary [2.4f we obtain that o; ; € APY(R; M) for all i, j.

Since T'(t) is lower triangular, T'(t)~! is also lower triangular, and from (3.5)) we
obtain, for all ¢ =1,...,n,

wi(t) i (t)
: =Tt ! : , (3.6)

wZ+1 (t) $Z+1 ()
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that implies (747)41.

Using (#49) 41 and (iv)x41 we see that (97)r41 holds.

It remains to prove that (v)g1 holds. For this, using (v)y, it suffices to prove that
infyer ||wg+1 ()| > 0. We proceed by contradiction, assume that inf e |Jwr41(t)]] =
0. Consequently, there exists (7,,)m € RY such that lim,,, oo wy41 () = 0. Using
Theorem there exists o € S(N,N) such that , for all j = 1,...,k + 1, and
i=1,...,7, we have

im 25 (4 o) = yi (1), Hm g (E—rom)) = z;(1),
im 2G(t+rony) = yi(1),  m yi(t—ro(m)) = 25(1),
hmOO A(t +rom)) = L(t), mlgnOO L(t = ro(m)) = Alt),
i Aij(t+7o(m) = pi(8), - Tm g (= 1o(m)) = Xi;(1),

m—00
where all these convergences are uniform on R.
Therefore, for all j =1,.... k+1,

y; () = L(t)y;(t). (3.7)
Note that

k
0= hm wk+1(ra(m)) = hm [mk_H Ta(m) Z)\ xj ’I“a(m))]
j=1

= yi41(0) — _Zvj,kw)yj(t)); and 50 yj41(0) = Zuj,km)yj(m

Since the y; are solutions of (3.7)) we have, forallt € R, yx41(t) = 25:1 1k (0)y;(t).
Consequently,

Lh+1 (t) = hm yk+1 t_ To(m) ZM} 0 hm y] t_ T'o(m) ZM37

for all t € R, that is impossible since 1, ..., 241 are linearly 1ndependent. And so
the proof is achieved. ([

Lemma 3.3. Assume (A1)—(A2), and let t — X(t) be a fundamental matriz of
(1.1). Then there exist R € AP*(M(n,R); M) and Q € AP'(M(n,R); M) such
that Q(t) is orthogonal, R(t) is upper triangular and Q(t) = X (t)R(t) for allt € R.

Proof. We denote by x1(t),...,z,(t) the columns of X(t). Note that xi,...,z,
satisfy the assumptions of Lemma [3:2] Let wy, ..., w, be provided by Lemma[3.2]
We set vg(t) = ||wi(t)|| " twi(t) for all k € {1,...,n} and for ¢t € R. Using (v)
of Lemma and Corollary we obtain that |lwi(.)]|7t € APY(R; M), and
v € APY(R™; M). Since wy(t),...,wy(t) are orthogonal we obtain
Vik=1,...,n, Yt e R, (v;(t)]|vx(t)) = (5§c (Kronecker symbol). (3.8)

We define Q(t) as the matrix whom the columns are vy (t),...,v,(t). From (3.8)
we deduce that Q()*Q(t) = I; i.e., Q(t) is orthogonal. Since vy € AP (R"; M),
Q € APY(M(n,R); M).

From (iii) in Lemma we deduce that, forallk =1,...,nand for allt € R, we
have 0(t) — lw(8)]|Tox(t) — S0y e (®)| = Ay (B)as (8) with Aj(t) = 0 when
j>k.
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The upper index denoting the coordinate of the vectors, we obtain, for all k =
1,...,nand forallt=1,...n,

ok(0) = s Ol 2k(8) = X I A (050
j=1

lwe ()17 Ak (2)

: ‘ , ok (O e (8) (3.9)
= (2(t) ...z (t) ...z (2)) wae(é)\l‘l

and so, setting

|lwe ()| 7 A1, (t) when j <k —1
rik(t) = w71 when j =k
0 when j > k
the matrix R(t) = (rj(t))1<jk<n is upper triangular, and (3.9) means that Q(t) =
X (t)R(t). Using Lemma we obtain that R € AP*(M(n,R); M) since its entries
belong to AP(R; M). O

Lemma 3.4. Assume (A1)—(A2) and lett t — X (t) be a fundamental matriz of
(1.1). Let Q and R be provided by Lemma , We set

B(t) = -Q7'(HQ'(1) + Q71 (HAMQ()
for all t € R. Then B € APY(M(n,R); M) and B(t) is upper triangular for all
teR.
Proof. For all t € R,
Q'(t) = X'(OR®) + X () R() = A()X () R(1) + X () R'(t) = AW)Q(t) + X (1) R'(2)

which implies

which in turn implies
B(t) = —R ()R (t). (3.10)

Since R(t) is upper triangular, R~1(¢) and R'(t) are also upper triangular, and
since a product of upper triangular matrices is upper triangular, we obtain from
that B(t) is upper triangular.

Since Q(t) is orthogonal, we have B(t) = —Q*(¢)Q’(t) + Q*(t)A(

t)Q(t). Since
Q, Q*, A€ AP°(M(n,R); M), we have obtain that B € AP°(M(n,R);

M). O
Theorem 3.5. Under (A1) and (A2), there exist Q € APY(M(n,R); M) and B =
(bjk)1<jr<n € AP°(M(n,R); M) such that the following conditions hold:

(i) Q(t) is orthogonal for all t € R.
(ii) B(t) is upper triangular for all t € R.
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(iii) If = is a solution of then y defined by y(t) = Q~(t)x(t) is a solution
of and conversely if y is a solution of then x defined by x(t) =
Q()y(t) is a solution of (L.1).

(iv) Forallk=1,...,n, t — [ br(s)ds € AP'(R; M).

Proof. Let X be a fundamental matrix of (L.1), let @ and R be provided by Lemma
and let B be provided by Lemma fter Lemma (7) holds and after
Lemma [3.4) we know that (¢7) holds.

To prove (iii), if 2/(t) = A(t)z(t) and y(t) = Q~1(t)z(t), then

using (3.10). Conversely, if y/(t) = B(t)y(t) and z(t) = Q(t)y(t), then
() = Q'(y(t) + Q)Y (1)

=Q'(MQ ™ (Hx(t) + QE)B(t)y(t)
=Q'(MHQ (Mz(t) + QU[-QT(HQ' (1) + QT (M AMQM)]Q ™ (H)a(t)
=Q'(MQ™ (Hz(t) - Q' Q™ () (t) + At)x(t)

= A()x(t).

And so (iii) is proven.
Last, to prove (iv) note that (1.2)) is equivalent to

L () = zn:bkj(t)yj(t), 1<k<n.

Now we proceed following a decreasing induction.

First step: k& = n. Since all the solutions of the scalar equation y,,(t) =
bun(t)yn(t) are a.p., by using [B] we necessarily have that ¢ — fot bnn(s)ds is
bounded and consequently it is a.p.

Second step: the induction assumption k& € {2,...,n}ist — fg bjj(s)ds is a.p.
for all j € {k,...,n}.

Third step: the case £k — 1. We consider the subsystem

Since the b;; are a. p and since all the solutions of are a.p., using [0] we
know that ¢ — fo i k 1 bii(s) ds is a.p., and by using the induction assumption
we know that ¢ — fo " o bii(s)dsis a.p. as asum of a.p. functions. Consequently
t fot br—1,6—1(5) ds is a.p. as a difference of two a.p. functions. O
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Remark 3.6. In the setting of the previous theorem, Y(t) = Q ()X (¢) is a
fundamental matrix for (I.2)). Since Q(t) = X (t)R(t) we have Y (t) = R~'(t) which
is upper triangular since the inverse of a regular upper triangular matrix is also
upper triangular.

Remark 3.7. Such a construction of B(t) from A(t) is made in the continuous case
in [I3l Theorem 1.4, p.4], in the periodic case in [I3] (in the proof of the Theorem
1.7, p.12-13) and in the quasi-periodic case in [I3] (in the proof of the Lemma 4.3,
p.134-135) under diophantine conditions. Theorem contains the quasi-periodic
case since we can choose M as a Z-submodule of R having a finite basis, and we
have not need any diophantine condition.

Remark 3.8. In the Floquet-Lin theory for quasi-periodic systems developed by
Lin [IT], T2, [13], the Floquet characteristic exponents (FL-CER) of , denoted by
By, Bn, satisty B = M{bgi}e [13L p. 137]. A consequence of (iv) in Theorem
is By = 0 for all k = 1,...,n. If there exists a real n X n constant upper
triangular matrix  provided by the Lin theory [I3] Theorem 4.1, p. 139] then
is reducible to 2/(t) = Qz(t) and the eigenvalues of Q are fi,...,0,. And
so, under (A1l — A2), we can easily verify that Q = 0 since all the solutions of
Z'(t) = Qz(t) are a.p.

4. SECOND RESULT OF REDUCIBILITY

To study (1.1)) we consider the condition

(A3) Equation (|1.1)) possesses k linearly independent almost periodic solutions
in APY(R™; M), where M is aZ-submodule of R and k € {1,...,n}.

Theorem 4.1. Under assumptions (A1), (A3), there exist Q € C*(R,M(n,R)),
B € C°(R,M(n,R)) such that the following conditions hold.

(i) Q(t) is orthogonal for all t € R.

(ii) B(t) is upper triangular for all t € R.

(iii) If = is a solution of then y defined by y(t) = Q~1(t)x(t) is a solution
of and conversely if y is a solution of then = defined by x(t) =
Q(t)y(t) is a solution of (L.1)).

(iv) If Q(t) = col(vyi(t),...,va(t)) then vi(t),...,vx(t) € APY(R,R™; M).

(v) Equation possesses k linearly independent a.p. solutions.

Proof. We denote by z1,...,x, € APY(R"; M) k linearly independent solutions of
(T.1). We choose xjy1, ..., 2, € CH(R,R"™) solutions of such that z1,...,x,
are linearly independent.

We set X (t) = col(z1(t),...,zn(t)), and so it is a fundamental matrix of (L.1).
We set wy(t) = z1(¢) and, for all k € {2,...,n},

k—1
wi(t) = zp(t) — 3 N0y
= (@)

We set vy (t) = wi(t) for all k € {1,...,n}.

1
llwr (£)]

We have vy, ...,v, € C}(R,R") since z1,...,r, € C}(R,R"). We define Q(t) =
col(vy(t),...,v,(t)). We verify that Q(t) = X (t)R(t) where R € C’l(R M(n,R))
and R(t) is upper triangular for all ¢ € R. Then we set B(t) = Q' (t) +
Q 1(t)A()Q(t). B(t) is upper triangular for all t € R and B € C’O(R M(n,R)).
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This construction is proven in [I3], Theorem 1.4, p.4], and the assertions (i), (ii),
(iii) result of this theorem.

Forall j € {1,...,k} weset y;(t) = Q1 (t)z;(t) = Q*(t)z;(t) for all t € R. Then
Y1, -- -, Yk are solutions of . Following the definition of v; for j € {1,...,k} and
reasoning as in the proof of Lemma m we verify that vy,...,v, € APY(R™; M)
that proves (iv).

For all p € {2,...,n} and for all ¢ € R we know that v,(t) is orthogonal to
{z4(t) : 1 < ¢ < p—1}, and so we have

Vpe{2,...,n},Vge{l,....p—1},Vt e R, (v,(t)||z4(t)) = 0. (4.1)

When j € {1,...,k}, since y;(t) = Q*(t)x;(t) we have, for all i € {1,...,n},
yi(t) = (vi(t)||z;(t)), and so, using ([.1), we have y:(t) = 0 when i > j and therefore
yi(t) = 0 when i > k.

When i < k we have yi € AP'(R; M) since v;,v; € AP*(R"; M). And so all
the coordinates of y; belong to AP(R; M) that implies that y; € AP'(R™; M).
And so y1, ...,y are solutions of which belong to AP(R"; M). Moreover
they are linearly independent since Z?:l &y; = 0 implies 0 = Zle Q7Y () =
Q1) ( b, &) implies S5 &a; = 0 that implies & = -+ = & = 0 since
x1,..., 2 are linearly independent. And so (v) is proven. (]

5. EXISTENCE RESULT

In this section we study the existence of a.p. solutions of ([1.3)). First we establish
results on linear systems.

Lemma 5.1. Let a € AP°(R; M) such that M{a} # 0. Then the following two
assertions hold.
(i) The scalar equation z'(t) = a(t)x(t) does not possess any almost periodic

solution.
(ii) For all b € AP°(R; M) there exists a unique x € AP°(R; M) which is
a solution of x'(t) = a(t)x(t) + b(t). Moreover there exists a constant

a € (0,00) such that
[23]lc0 < ctl[bloo- (5.1)

Proof. We consider the following two systems
a'(t) = a(t)z(t)
2/ (t) = a(t)x(t) + b(t),
and distinguish the cases: M{a} > 0 and M{a} < 0.

5.1. Case M{a} > 0. (i) By the existence of mean value we have for all ¢ €
(0, M{a}), there exists t > 0, such that 1 ¢ > t., M{a}—e€ < %fg a(r)ydr < M{a}+
e¢. This implies that V¢ > ¢, fg a(r)dr > t(M{a} — €). Hence exp (fg a(r)dr) >
exp (¢(M{a} — €)) — oo when ¢ — oo, and consequently

lim t a(r)dr = oc. (5.4)

t—oo 0

A consequence of (5.4) is that all the solutions of (5.2, which is in the form
x(t) = exp (f(f a(r)dr)x(()) are not bounded and consequently are not a.p.
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Since the difference of two a.p. solutions of ([5.3)) are necessarily an a.p. solution
of (5.2)), (5.3) cannot possess more than one a.p. solution.
(ii) Now we prove the assertion that

/ exp ( —/ a(r)dr)ds exists in Ry. (5.5)
0 0

Since lim, .o < [3 a(r)dr = M{a} > O for all e € (0, M{a}), there exists s. > 0,
such that for s > SE, M{a} —e< L [a(r)dr < M{a} +e 1mphes for all s > s,
s(M{a}—€) < [, a(r)dr which 1mphes for all 5> se, — [y a(r)dr < —s(M{a} —e)
which implies for all s > s, exp (— fo (r)dr) < exp (—S(M{a}—e)) which implies

/oo exp ( B /0 a(r)dr)ds < /oo exp(—s(M{a} — €))ds

1
= ey e O (—scMfa} —9) =&

Since s +— exp ( fos a(r )dr) is continuous on the compact interval [0, s.], it follows
that f exp (— fo (r)dr) ds < oo, and so

/OOO exp ( - A a(r)dr) ds
_ /O exp (- /O a(r)dr)ds + /:O exp ( /0 a(r)dr ) ds

€

< /OSE exp(— /Os a(r)dr)ds—i—fE < 00.

And so (.5) is proven.

Since s — exp ( fo ) ) is continuous on Ry, it is Borel-mesurable, and
using the Lebesgue mtegral for nonnegative functions on R, we have

/R || exp ( — /Osa(r)dr)b(s)ﬂds < |15l o0 /}RJr exp ( — /Osa(r)dr)ds

+

by using (5.5). Thus s — || exp( Jy a(r)dr)b(s)| is Lebesgue integrable on R;
therefore s — exp (— fos a(r)dr) b(s) is Lebesgue integrable on Ry, and we have

/OOO exp ( - /05 a(r)dr)b(s)ds exists in R. (5.6)

Now for t € R, we set
exp ( - / a(r)dr) b(s)ds
0

Z(t) = exp (/Ot a(r)dr) [— /0
v exp (- | atryir)ocsias.

Using a calculation formula, called variation of constants, we obtain that
# is a solution on R of (NH). (5.8)

In the following step, we want to prove that Z is bounded on R;. Using the
Chasles relation we deduce from ([5.7)) the equality

Z(t) = exp ( - /Ot a(r)dr) {— /t exp ( — /08 a(r)dr) b(s)ds}

o0

(5.7)

oo
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_ _/tooexp(/Ota(r)dr—/Osa(r)dr)b(s)ds, Wt > 0.

(t) = — /too exp ( - /tS a(r)dr) b(s)ds, Vt>0. (5.9)

Introducing the change of variables o : Ry — [t,o0], o(p) = p + ¢, from (5.9) and
using the change of variable formula, we have

z(t) =— /U::O) exp ( - /ts a(r)dr) b(s)ds

—[Tew (- ™ atr)ar) oo (o))" (o

o0 t+p
= —/ exp ( - / a(r)dr)b(t + p)dp.
0 t
Using the mean value theorem for integrals,
[e’e] t+p
12(8)]| < (/ exp ( - / a(r)dr)dp) IBllse, VE > 0. (5.10)
0 t

Using a result by Bohr [4, p.44] we have for all € € (0, M{a}), there exists p. > 0,
Vp > pe, Vt € R,

Therefore,

1 t+p
M{a} —e < ;/t a(r)dr < M{a} +e.

= Vp>p, Vt €R, p(M{a} —¢€) < :er a(r)dr < p(M{a} +¢).

= Vp>p, VteER, —pM{a} —€) > — tt+pa(r)dr.
= VYp > p, Yt € R, exp (f ftt“a(r)dr) < exp (—p (M{a} — €)), which implies

[ e (- / ™ aryir)dp < / °° exp(—p(M{a} — ))dp

€

1
= iy —c oPpMla} —e) =& VEER,

Moreover, when p € [0, p],

t+p t+p
- / a(r)dr < | / a(r)drl| < p sup lla()l| < pllalls
t t

s€[0,pc]

implies
t+p
exp ( - / a(r)dr) <exp(pllall) VEtER
t
which implies
Pe t+p Pe 1 1
[ e (= [ atdr)ao< [ explplall)dp = riexplpdal ) 1) = €
0 t 0 llalleo

Now using the Chasles relation we obtain,

00 t+p
/ exp ( - / a(r)dr)dp <&+ =€ <00, foralteR. (5.11)
0 t
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Note that & and &} do not depend of t. A consequence of (5.10) and (5.11)) is the
assertion that

Z is bounded on Ry. (5.12)
In the following step we want to prove that Z is bounded on R_ = (—o00,0]. We
introduce
t o] s
x1(t) = exp / a(r)dr —/ exp —/ a(r)dr)b(s)ds
(J, etmar)(= oo (= [ atwr)iioyis)
t t s
xo(t) = exp /a(r)dr /exp 7/ a(r)dr )b(s)ds).
(f, ewar) () exe (= [ atrr)icoris)
Therefore,
Z(t) = x1(t) +x2(t) forallteR_. (5.13)
We know that M{a} = limT_>OO 21T fT r)dr = limy_ %fOTa(r)dr [4 p.
44], and since 5= ffTa Ydr = % fo r)dr + & L [° ra(r)dr), taking t = =T, we
obtain
1 0
, lim —t/ a(r)dr = M{a}. (5.14)
——00 — t
Note that, for ¢ < 0, fot = - ft rydr = t4 L r)dr which implies

exp (fo r)dr) = exp (t.2 ft dr) — exp (—oo.M{a}) = 0 as t — —o0, and so
we have proven that
t
lim exp (/ a(r)dr) =0. (5.15)
t——o0 0

Then using (5.6) and , we obtain lim;_, o, #1(t) = 0, and, since z; is contin-
uous on R_, we obtain
x1 is bounded on R_. (5.16)

For all t <0,

2a(t) = /O exp ( /0 t a(r)dr) exp ( /0 a(r)dr ) b(s)ds
=— /tO exp ( — /ts a(r)dr) b(s)ds.

Hence |z2(t)]] < fto exp (— [, a(r)dr) ds||bl|sc. Introducing v : [0,—t] — [t,0],
v(p) = p + t and using the change of variable formula, we obtain

/toexp(—/ts a(r)dr)ds:fy::)_t) exp(—/ts a(r)dr)ds
_ /O e (- /t " a(r)dr)/ (p)dp
_ /Ot exp ( - /tha(r)dr)dp
< /O Texp (- /t T arar)dp < &2,

for all + < 0 after (5.11) where £2 is independent of ¢. Consequently, V¢ < 0,
lz2()|| < €2||b]|oo, that proves that

x9 is bounded on R_. (5.17)
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From ([5.13)), (5.16) and (5.17), we have that & is bounded on R_, and with (5.12))
Z is bounded on R. (5.18)

Using [8 Theorem 6.3, p.100], & is an a.p. solution of (5.3), and it is the unique
solution. So the proof of the lemma is complete in the case M{a} > 0.

5.2. Case M{a} < 0. To treat this case, we consider the additional equation
y'(t) = —a(=t)y(t) — b(-1) (5.19)

and we note that y(t) = x(—t) is a solution of when and only when x
is a solution of (5.3). Also note that My{—a(—t)} = —M{a(-t)} = —M{a}.
When M{a} < 0, then M¢{—a(—t)} > 0 and using the previous reasoning, ([5.19)
possesses a unique a.p. solution y. Consequently z(t) = y(—t) is the unique a.p.
solution of . This completes the proof of the lemma. ]

Now we consider the linear ordinary differential equation
x'(t) = A(t)x(t) + b(t) (5.20)
where A = (Aij)1<ij<n € AP°(M(n,R)) and b € AP°(R™) such that
(A4) A is upper triangular s.t. M{A;} #0fori=1,...,n.
Lemma 5.2. Let A € AP°(M(n,R)) which satisfies (A4) and b € AP°(R™). Then

(5.20) possesses a unique solution in AP°(R™). Moreover there exists o € (0,00)
such that

[#]loc < [b]]oo-
Proof. Equation ([5.20)) can be written as
21 (t) = A )z (t) + Ara(t)22(t) + - + Arp(t)2a(t) + b1(t)

2h(t) = Asp(B)72(t) + -+ + Az ()70 () + ba (1) (5.21)

x% (t) = Ann(t)xn (t) + bn(t)

where z = (z1,...,2,) and b= (by,...,by).
Since M{A4,,,} # 0 and by using Lemma we deduce that the last scalar

equation in (5.21),

2, (1) = Apn ()20 () + bu(t), (5.22)
has a unique solution %, € AP°(R) such that
[Znlloo < anllballoo (5.23)

where ay, is a positive constant. The (n — 1)-th equation of system (5.21)) is
Ty 1 (1) = Ap—1n1(t)zn-1(t) + dn1(t), (5.24)

where dp,_1(t) = An—1n(t)2n(t) + bp_1(t) for all ¢ € R. It is clear that d,_; €
AP°(R) as a sum and product of a.p. functions An_1n, x, and b, 1. Using always
Lemma and the fact that M{A,_1 -1} # 0, we conclude that equation
has a unique solution Z,,_; € AP°(R) and there exists a,,_1 € (0,00) such that

[Zn—1lloo < an—1lldn-1llco- (5.25)
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And so using the same reasoning as above, we can prove by induction that for
k =1,...,n the k-th equation of (5.21)) has a unique solution #; € AP°(R) and
there exists ay, € (0,00) such that

lklloe < alldilloo, (5.26)

where di(t) = Ak g1 (E)Trp1 () +- -+ Ap n(B)zn () +bi(2), for all t € R. Therefore
(5.21) has a unique solution & € AP°(R™).
Now we shall prove that there exists o € (0, 00) such that

[l < al[b]loo, (5.27)
Since on BCY(R,R") the norm .|| is equivalent to the norm || - ||o, where ||z|o =

Yt llwilleo and [|l2llee = supyeg [2(t)ll2 = sup,cr /3771 2 (B, with z =
(z1,...,2n), it is enough to prove (5.27) for ||-||o. For this we proceed by induction
on the order k € {1,...,n} of A.

First step: k = 1. So (5.21)) is the scalar equation (5.22) and by (5.23)), (5.27)

is obtained.
Second step: k =n — 1. We assume that there exists v,_1 € (0,00) such that

[Znlloe + -+ + [[Z2]loc < Yn-1([Ibnlloc + -+ + [[b2]ls)- (5.28)

Third step: k£ = n. By (5.28)) we obtain ||Z,||oo + -+ [|Z1]loc < Yn—1(|[bnlloc +
<o+ ||b2lloo) + l1£1]lc0, and by (5.26) we know that ||Z1]jec < a1||di]|oo, Where
dq (t) = Alg(t)l‘g (t) —+ -+ Aln(t)l‘n (t) + by (t) for all t € R that implies

[Z1]lo0 < 1 ([|Arzlloc €2l + -+ - + [A1nlloc [ Enlloo + [11][o0)
< ay (max([[Arzllos - - [ Anlloo) ([Z2]loc + - -+ + [Enlloc) + [1b1]loo) -

After using induction assumption and noting ¢, = max(||A12|lcc, - -, [[A1nllcc), We
obtain

[21][oc < r(cnn-1(lIb2lloc + -+ + [[bnlloo) + [1b1]|oc)
< arkn([[b2lloc + -+ [[bnlloc + [1b1]loc)
< Mn(”blHoo +eee ||bn||<x>)

where k,, = max(c,yn—1,1) and M,, = ayk,,. Hence we conclude that
[Z1]loo + - + [[Enlloc < Mm—1(llb2lloc + -+ [bnlloc) + Mn([[b1lloc + - -+ + [[bnllec)

with 7, = max(yn—1, M) € (0,00); ie., [|Z]lo < Vnllbllo. And so (5.27) is proven.
[

Definition 5.3. We so-call the Bohr-Neugebauer constant is the least constant «
which satisfies the last assertion of Lemma

Now let A € AP°(M(n,R)) and define the two matrices T = (T};)1<; j<n and
R = (Rij)lgi,jgn as fOHOWS7 for t € R,

Tij(t):{glij(t) ftieijise and  R(t) = A(t) — T(t). (5.29)

Note that T'(¢) is upper triangular.
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Theorem 5.4. Let A € AP°(M(n,R)) such that M{A;} #0 fori=1,...,n and
let f € APU(R x R™). We also assume that

1
[Tleca+1+a’

and that for all t € R and all x,y € R", there exists k € (0, (| T||ccax + 1+ )™t —
|IR||oo) such that

IRl < (5.30)

£t 2) = f(t, )l < kllz —yll, (5.31)
where T and R are defined as in (5.29)). Then the equation
2(t) = A(R)r(t) + £t 2(0)) (5.32)

possess a unique solution in AP!(R™).
Proof. First we remark that (5.32)) can be written as
a'(t) = T(t)x(t) + g(t, x(t)) (5.33)

where g(¢,z(t)) = R(t)x(t) + f(t,z(t)) for all ¢ € R.

Consider the linear operator L : APY(R") — AP°(R") defined by Lz = [t —
2'(t) — T(t)x(t)]. Since M{Ay;} # 0 for i = 1,...,n, the operator T satisfy the
assumption in Lemma and we deduce that for b € AP?(R™) there exists a unique
solution of the differential equation

2/ (t) =T(t)x(t) + b(t). (5.34)
Then L is invertible, we denote by x[b] the unique solution of ([5.34]), and so we have
L=Y(b) = z[b]. By Lemma there exists o € (0, 00) such that [|2[b]co < @||b]lco
and using (5.34)), we obtain
12 [B]llose < 1T [los 2 [B]lloc + IBlloe < [T llocetl|Blloe + 1Blloc = (1T [loc0r + 1) bl -
This implies
I O)lor < (1Tl + 1+ @)[b]|co-
Consequently,
17 e < (1T |loca + 1 + ). (5.35)
Now we consider the superposition operator N, : AP°(R") — AP%(R"), Ny(z) =
[t — g(t,x(t))]. Ng is well defined, [3].
Using assumption (5.31]), we have
[Ng(2) = Ng()lloo < ([Rlloc +F)llz = ¥l (5.36)
for all z,y € AP°(R™). Now, from (5.35) and (5.36)) it is easy to verify that for
z,y € AP°(R"),
IL7" o Nyg(2) = L™ 0 Ny(y)lloo < Kallz = ylloc
where k1 = (||T||cca + 1 + @)(||R||oc + k). From (5.30) and (5.31)), it is clear to
see that k; € (0,1) and hence the operator L=! o N, : AP°(R") — AP°(R") is
a contraction. Then by using the Picard-Banach Fixed Point Theorem, we obtain
that there exists a unique z € AP°(R") such that

L™ o Ny(z) = z.

This is equivalent to saying that  is a solution of (5.33]) in AP!(R") and so it is a
unique solution of (5.32) in AP(R"). O
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6. A CONTINUOUS DEPENDENCE RESULT

Theorem 6.1. Let A € AP°(M(n,R)) such that M{A;} #0 fori=1,...,n and
f € APUR x R™ x RP) which satisfy the following condition: For all t € R and
for (z,y,u) € R" x R™ x RP, there exists ¢ € (0, (| T||cccx + 1 + )~ ) such that

I1f(t,2,u) = f(t,y, u)l < cllz —yl|, (6.1)

where « is the Bohr-Neugebauer constant, and T is defined as above. Then, for all
u € APO(RP), there exists a unique solution Z[u] of

2(t) = A)a(t) + f(t2(t), u(t)) (6.2)

which is in APY(R™). Moreover the mapping u — ¥[u] is continuous from AP°(RP)
into AP*(R™).

Proof. Let L the operator be defined in the proof of the above theorem, and Ny

the superposition operator defined by Ny : AP°(R") x APY(R") — APY(R"),

Ny(z,u) = [t — f(t,z(t),u(t))]. Ny is well defined and continuous (see [3]).

This implies that the mapping u — ®(x,u) is continuous on AP°(RP) for all z €

APY(R™), where ® : AP°(R") x AP°(RP) — APY(R"™), ®(z,u) = L™' o N¢(z,u).
Now by it follows that

[Nf(x,u) = Ny (y, u)loo < cllz = ylloo (6.3)
for all z,y € AP°(R™) and for all u € AP°(RP). With (5.35)), this implies that
[@(,u) = (Y, u)lloo < c([T]looar + 1+ )|l = ylloo

for all z,y € AP°(R™) and for all u € APY(RP). Therefore we can apply the
Theorem of parametrized fixed point in [I5, p. 103] to conclude that equation
possess a unique solution Z[u] € AP'(R") and the mapping u — Z[u] is continuous
from AP°(RP) into AP°(R™). O
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