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REDUCIBILITY OF SYSTEMS AND EXISTENCE OF
SOLUTIONS FOR ALMOST PERIODIC DIFFERENTIAL

EQUATIONS

JIHED BEN SLIMENE, JOËL BLOT

Abstract. We establish the reducibility of linear systems of almost periodic
differential equations into upper triangular systems of a. p. differential equa-
tions. This is done while the number of independent a. p. solutions is con-
served. We prove existence and uniqueness of a. p. solutions of a nonlinear
system with an a. p. linear part. Also we prove the continuous dependence of
a. p. solutions of a nonlinear system with respect to an a. p. control term.

1. Introduction

First we consider the almost periodic, in the Bohr sense, system of linear ordinary
differential equations

x′(t) = A(t)x(t) (1.1)

where A is an almost periodic (a.p.) real n× n matrix. In Theorem 3.5 below, we
establish that when all the solutions of (1.1) are a.p., there exist an a.p. transfor-
mation between the solutions of (1.1) and the solutions of

y′(t) = B(t)y(t) (1.2)

where B(t) is an a.p. real n× n matrix that is upper triangular for all t ∈ R.
When there are k linearly independent a. p. solutions of (1.1), we can build a

continuous matrix B(t) such that (1.2) also possesses k linearly independent a.p.
solutions, see Theorem 4.1 below.

In Section 5 we consider the nonlinear equation

u′(t) = B(t)u(t) + f(t, u(t)) (1.3)

where B is an a.p. matrix such that the homogeneous equation of (1.3) does
not possess any nonzero a.p. solution and f is uniformly a.p. (Theorem 5.4).
In a previous work [2], we considered the case where u′(t) = B(t)u(t) does not
possess any nonzero a.p. solution and where this homogeneous system can be
transformed into a linear system with a constant matrix in the quasi- periodic case
under diophantine conditions.
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In Section 6, by using results of Section 5, we build a parametrized fixed point
approach to obtain an existence result and a continuous dependence results on a.
p. solutions of the equation

x′(t) = A(t)x(t) + f(t, x(t), u(t)), (1.4)

where u is a control term (see Theorem 6.1).

2. Preliminaries and notation

The usual inner product of R is denoted by (·|·) and ‖ · ‖ will be the associated
norm. RN denotes the set of real sequences, and S(N, N) denotes the space of the
(strictly) increasing functions from N into N.

When (E, ‖ · ‖) is a Banach space, C0(R, E) denotes the space of the continuous
functions from R into E and BC0(R, E) denotes the space of the u ∈ C0(R, E) witch
are bounded on R. Endowed with the norm ‖u‖∞ = supt∈R ‖u(t)‖, BC0(R, E) is a
Banach space.

When k ∈ N∗ = N\{0}, Ck(R, E) is the space of the k-times differentiable
functions from R into E.

Following a result by Bochner [8, Definition 1.1, p.1], we define an a.p. function
u : R → E saying that u ∈ BC0(R, E) and for all (rm)m ∈ RN there exists
σ ∈ S(N, N) such that the sequence of the translated functions (f(. + rσ(m)))m is
uniformly convergent on N. We denote by AP 0(E) the space of the a.p. functions
from R into E; it is a Banach subspace of (BC0(R, E), ‖.‖). When k ∈ N∗, AP k(E)
is the space of functions u ∈ Ck(R, E) ∩ AP 0(E) such that u(j) = dju

dtj ∈ AP 0(E)
for all j ∈ {1, . . . , k}.

Endowed with the norm ‖u‖Ck = ‖u‖∞+
∑k

j=1 ‖u(j)‖∞, the space AP k(E) is a
Banach space. When u ∈ AP 0(E), its mean value

M{u} = M{u(t)}t = lim
T→∞

1
2T

∫ T

−T

u(t) dt

exists in E.
For all real number λ, there exists a(u, λ) = M{e−iλtu(t)}t in E; these vectors

are the Fourier-Bohr coefficients of u. We set Λ(u) = {λ ∈ R : a(u, λ) 6= 0} which
is at most countable, and we denote by Mod(u) the Z-submodule of R which is
spanned by Λ(u). For all these notions on the a.p. functions, we refer to [6, 8, 18].

When M is a Z-submodule in R, AP k(Rn,M) = {u ∈ AP k(Rn) : Mod(u) ⊂ M}.
We denote by M(n, R) the space of the n × n real matrices. The transpose of
M ∈ M(n, R) is denoted by M∗.

The following result is a corollary of a powerfull theorem, due to Bochner, proven
in [8, Theorem 1.17, p.12].

Theorem 2.1. Let f ∈ AP 0(Rn) and (rm)m ∈ RN. Then there exists σ ∈ S(N, N)
such that limm→∞ f(t + rσ(m)) = g(t) uniformly on R and limm→∞ g(t − rσ(m)) =
f(t) uniformly on R.

Theorem 2.2 ([8, Theorem 5.7, p. 85]). Let A ∈ AP 0(M(n, R)) and x ∈ AP 1(R)
be the solution of x′(t) = A(t)x(t). Then we have inft∈R ‖x(t)‖ > 0 or x = 0 .

Theorem 2.3 ([8, Theorem 4.5 , p. 61]). Let f ∈ AP 0(Rn) and g ∈ AP 0(Rk).
If for all (τm)m ∈ RN which is convergent in [−∞,∞], ((f(. + τm))m uniformly
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convergent on R) =⇒ ((g(. + τm))m uniformly convergent on R), then Mod(g) ⊂
Mod(f).

A consequence of the above theorem, we have the following result.

Corollary 2.4. Let f ∈ AP 0(Rn) and if φ is a continuous mapping from f(R)
into Rk, then Mod(φ ◦ f) ⊂ Mod(f).

3. First result in reducibility

In this section we establish that (1.1) is reducible to a upper triangular system
(1.2) under the following assumptions.

(A1) A ∈ AP 0(M(n, R),M)
(A2) All the solutions of (1.1) are into AP 1(Rn,M),

where M is a fixed Z-submodule of R.

Lemma 3.1. Let u ∈ AP 1(Rn;M) such that inft∈R ‖u(t)‖ > 0. Then t 7→ 1
‖u(t)‖ ∈

AP 1(R;M).

Proof. We know that ‖ · ‖ is of class C1 on Rn \ {0}. Denoting N(z) = ‖z‖ and
N1(z) = 1

‖z‖ , we have that for all z, h ∈ Rn, DN(z)h = 1
‖z‖ (z‖h), DN1(z)h =

−1
‖z‖3 (z‖h). Using the Chain Rule we establish that d

dt (
1

‖u(t)‖ ) = −1
‖u(t)‖3 (u(t)‖u′(t)).

Since u, u′ ∈ AP 0(Rn;M), since inft∈R( 1
‖u(t)‖3 ) > 0 and using [8, Theorem 1.9, p.

5] we have that d
dt (

1
‖u‖ ) ∈ AP 0(R;M) and so 1

‖u‖ ∈ AP 1(R;M). �

Lemma 3.2. Assume (A1)–(A2), and let x1, . . . , xn ∈ AP 1(Rn,M) be linearly
independent solutions of (1.1). Then there exist w1, . . . , wn ∈ AP 1(Rn,M) which
satisfy the following conditions.

(i) for j, k ∈ {1, . . . , n} such that j 6= k, for all t ∈ R, (wj(t)‖wk(t)) = 0.
(ii) for k = 1, . . . , n, ∀t ∈ R, span{wj(t) : 1 ≤ j ≤ k} = span{xj(t) : 1 ≤ j ≤

k}.
(iii) x1 = w1 and ∀k ∈ {2, . . . , n}, ∀t ∈ R, wk(t) = xk(t) −

∑k−1
j=1 λj,k(t)xj(t)

where λj,k ∈ AP 1(R;M).
(iv) x1 = w1 and ∀k ∈ {2, . . . , n}, ∀t ∈ R, xk(t) = wk(t) −

∑k−1
j=1 µj,k(t)wj(t)

where µj,k ∈ AP 1(R;M).
(v) for k = 1, . . . , n, inft∈R ‖wk(t)‖ > 0.

Proof. We proceed by induction on k ∈ {1, . . . , n}.
First step: k = 1. We set w1 = x1. Since x1, . . . , xn are linearly independent,

we have x1(t) 6= 0, and since x1 is a solution of (1.1) we have x1(t) 6= 0 for all
t ∈ R. Condition (i) has no content for one function, conditions (ii), (iii) and (iv)
are obvious and (v) is a consequence of Theorem 2.2.

Second step: Induction assumption on k ∈ {1, . . . , n − 1}. We assume that
there exist w1, . . . , wk ∈ AP 1(Rn;M) such that the following assertions hold.

(i)k ∀i 6= j ∈ {1, . . . , k}, ∀t ∈ R, (wi(t)‖wj(t)) = 0.
(ii)k x1 = w1 and ∀j ∈ {2, · · · , n}, ∀t ∈ R, span{wi(t) : 1 ≤ i ≤ j} =

span{xi(t) : 1 ≤ i ≤ j}.
(iii)k x1 = w1 and ∀j ∈ {2, · · · , n}, ∀t ∈ R, wj(t) = xj(t) −

∑j−1
i=1 λi,j(t)xi(t)

where λi,j ∈ AP 1(R;M).
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(iv)k ∀j = 1, . . . , k, ∀t ∈ R, xj(t) = wj(t) −
∑j−1

i=1 µi,j(t)wi(t) where µi,j ∈
AP 1(R;M).

(v)k ∀j = 1, . . . , k, inft∈R ‖wj(t)‖ > 0.
Third step: we prove the existence of wk+1 ∈ AP 1(Rn;M) such that w1, . . . ,

wk+1 satisfy (i)k+1, (ii)k+1, (iii)k+1, (iv)k+1, (v)k+1. We consider Pk,t the orthog-
onal projection on span{xi(t) : 1 ≤ i ≤ k} = span{wi(t) : 1 ≤ i ≤ k} (after (ii)k).
Using (i)k, it is well known [10, p. 136-138] that

Pk,t(xk+1(t)) =
k∑

j=1

(xk+1(t)‖wj(t))
‖wj(t)‖2

wj(t). (3.1)

We define
wk+1(t) = xk+1(t)− Pk,t(xk+1(t)). (3.2)

By using the characterization of orthogonal projection [10, p. 136-138] and (i)k)
we obtain (i)k+1.

Using (v)k we can assure that t 7→ ‖wj(t)‖−2 ∈ AP 1(R;M). Since (.‖.) is
bilinear continuous and since xk+1, wj ∈ AP 1(Rn;M), using Corollary 2.4, we
obtain that t 7→ (xk+1(t)‖wj(t)) ∈ AP 1(R;M). Since AP 1(R;M) is an algebra and
since (r, ξ) 7→ rξ is bilinear continuous from R×Rn into Rn, using (3.1) we obtain

wk+1 ∈ AP 1(Rn;M). (3.3)

Using (3.1) and the previous arguments we see that (iv)k+1 holds.
The upper index q denoting the q-th coordinate of a vector of Rn, the relation

in (iv)k+1 is equivalent to following system, for q = 1, . . . , n and j = 1, . . . , k + 1

xq
j(t) = wq

j (t)−
j−1∑
i=1

µi,j(t)w
q
i (t). (3.4)

Setting T (t) = (τi,j(t))1≤i,j≤k+1 with τi,j(t) = 0 when j > i, τi,i(t) = 1 and τi,j(t) =
−µi,j(t) when j < i, (3.4) is equivalent to the following system, for q = 1, . . . , n, xq

1(t)
...

xq
k+1(t)

 = T (t)

 wq
1(t)
...

wq
k+1(t)

 . (3.5)

We see that detT (t) =
∏k+q

i=1 τii(t) = 1 since T (t) is triangular lower, and so
T (t) is invertible, and the inverse of T (t) is T (t)−1 = cof T (t)∗ the matrix of the
cofactors of T (t). Denoting T (t)−1 = (σi,j(t))1≤i,j≤k+1, we have

σi,j = (−1)i+jcofi,jT (t) = (−1)i+j det T (t)bi,bj ,
where T (t)bi,bj is the k × k matrix obtained by deleting the i-th row and the j-th
column, [9, Définition 4.15, p. 117].

Since the τi,j ∈ AP 1(R;M) and since a determinant is multilinear continuous,
by using Corollary 2.4 we obtain that σi,j ∈ AP 1(R;M) for all i, j.

Since T (t) is lower triangular, T (t)−1 is also lower triangular, and from (3.5) we
obtain, for all q = 1, . . . , n, wq

1(t)
...

wq
k+1(t)

 = T (t)−1

 xq
1(t)
...

xq
k+1(t)

 , (3.6)
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that implies (iii)k+1.
Using (iii)k+1 and (iv)k+1 we see that (ii)k+1 holds.
It remains to prove that (v)k+1 holds. For this, using (v)k, it suffices to prove that

inft∈R ‖wk+1(t)‖ > 0. We proceed by contradiction, assume that inft∈R ‖wk+1(t)‖ =
0. Consequently, there exists (rm)m ∈ RN such that limm→∞ wk+1(rm) = 0. Using
Theorem 2.1, there exists σ ∈ S(N, N) such that , for all j = 1, . . . , k + 1, and
i = 1, . . . , j, we have

lim
m→∞

xj(t + rσ(m)) = yj(t), lim
m→∞

yj(t− rσ(m)) = xj(t),

lim
m→∞

x′j(t + rσ(m)) = y′j(t), lim
m→∞

y′j(t− rσ(m)) = x′j(t),

lim
m→∞

A(t + rσ(m)) = L(t), lim
m→∞

L(t− rσ(m)) = A(t),

lim
m→∞

λi,j(t + rσ(m)) = µi,j(t), lim
m→∞

µi,j(t− rσ(m)) = λi,j(t),

where all these convergences are uniform on R.
Therefore, for all j = 1, . . . , k + 1,

y′j(t) = L(t)yj(t). (3.7)

Note that

0 = lim
m→∞

wk+1(rσ(m)) = lim
m→∞

[xk+1(rσ(m))−
k∑

j=1

λj,k(rσ(m))xj(rσ(m))]

= yk+1(0)−
k∑

j=1

νj,k(0)yj(0); and so yk+1(0) =
k∑

j=1

µj,k(0)yj(0).

Since the yj are solutions of (3.7) we have, for all t ∈ R, yk+1(t) =
∑k

j=1 µj,k(0)yj(t).
Consequently,

xk+1(t) = lim
m→∞

yk+1(t− rσ(m)) =
k∑

j=1

µj,k(0) lim
m→∞

yj(t− rσ(m)) =
k∑

j=1

µj,k(0)xj(t)

for all t ∈ R, that is impossible since x1, . . . , xk+1 are linearly independent. And so
the proof is achieved. �

Lemma 3.3. Assume (A1)–(A2), and let t 7→ X(t) be a fundamental matrix of
(1.1). Then there exist R ∈ AP 1(M(n, R);M) and Q ∈ AP 1(M(n, R);M) such
that Q(t) is orthogonal, R(t) is upper triangular and Q(t) = X(t)R(t) for all t ∈ R.

Proof. We denote by x1(t), . . . , xn(t) the columns of X(t). Note that x1, . . . , xn

satisfy the assumptions of Lemma 3.2. Let w1, . . . , wn be provided by Lemma 3.2.
We set vk(t) = ‖wk(t)‖−1wk(t) for all k ∈ {1, . . . , n} and for t ∈ R. Using (v)
of Lemma 3.2 and Corollary 2.4, we obtain that ‖wk(.)‖−1 ∈ AP 1(R;M), and
vk ∈ AP 1(Rn;M). Since w1(t), . . . , wn(t) are orthogonal we obtain

∀j, k = 1, . . . , n, ∀t ∈ R, (vj(t)‖vk(t)) = δk
j (Kronecker symbol). (3.8)

We define Q(t) as the matrix whom the columns are v1(t), . . . , vn(t). From (3.8)
we deduce that Q(t)∗Q(t) = I; i.e., Q(t) is orthogonal. Since vk ∈ AP 1(Rn;M),
Q ∈ AP 1(M(n, R);M).

From (iii) in Lemma 3.2, we deduce that, for all k = 1, . . . , n and for all t ∈ R, we
have vk(t) = ‖wk(t)‖−1xk(t) −

∑n
j=1 ‖wk(t)‖−1λj,k(t)xj(t) with λj,k(t) = 0 when

j > k.
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The upper index denoting the coordinate of the vectors, we obtain, for all k =
1, . . . , n and for all i = 1, . . . n ,

vi
k(t) = ‖wk(t)‖−1xi

k(t)−
n∑

j=1

‖wk(t)‖−1λj,k(t)xi
j(t)

= (xi
1(t) . . . xi

k(t) . . . xi
n(t))



‖wk(t)‖−1λ1,k(t)
. . .

‖wk(t)‖−1λk−1,k(t)
‖wk(t)‖−1

0
. . .
0


(3.9)

and so, setting

rj,k(t) =


‖wk(t)‖−1λ1,k(t) when j ≤ k − 1
‖wk(t)‖−1 when j = k

0 when j > k

the matrix R(t) = (rj,k(t))1≤j,k≤n is upper triangular, and (3.9) means that Q(t) =
X(t)R(t). Using Lemma 3.2, we obtain that R ∈ AP 1(M(n, R);M) since its entries
belong to AP 1(R;M). �

Lemma 3.4. Assume (A1)–(A2) and lett t 7→ X(t) be a fundamental matrix of
(1.1). Let Q and R be provided by Lemma 3.2. We set

B(t) = −Q−1(t)Q′(t) + Q−1(t)A(t)Q(t)

for all t ∈ R. Then B ∈ AP 0(M(n, R);M) and B(t) is upper triangular for all
t ∈ R.

Proof. For all t ∈ R,

Q′(t) = X ′(t)R(t)+X(t)R′(t) = A(t)X(t)R(t)+X(t)R′(t) = A(t)Q(t)+X(t)R′(t)

which implies

−Q−1(t)Q′(t) = −Q−1(t)A(t)Q(t)−Q−1(t)X(t)R′(t)

= −Q−1(t)A(t)Q(t)−R−1(t)R′(t)

which in turn implies
B(t) = −R−1(t)R′(t). (3.10)

Since R(t) is upper triangular, R−1(t) and R′(t) are also upper triangular, and
since a product of upper triangular matrices is upper triangular, we obtain from
(3.10) that B(t) is upper triangular.

Since Q(t) is orthogonal, we have B(t) = −Q∗(t)Q′(t) + Q∗(t)A(t)Q(t). Since
Q, Q∗, A ∈ AP 0(M(n, R);M), we have obtain that B ∈ AP 0(M(n, R);M). �

Theorem 3.5. Under (A1) and (A2), there exist Q ∈ AP 1(M(n, R);M) and B =
(bjk)1≤j,k≤n ∈ AP 0(M(n, R);M) such that the following conditions hold:

(i) Q(t) is orthogonal for all t ∈ R.
(ii) B(t) is upper triangular for all t ∈ R.



EJDE-2012/75 REDUCIBILITY OF SYSTEMS AND EXISTENCE OF SOLUTIONS 7

(iii) If x is a solution of (1.1) then y defined by y(t) = Q−1(t)x(t) is a solution
of (1.2) and conversely if y is a solution of (1.2) then x defined by x(t) =
Q(t)y(t) is a solution of (1.1).

(iv) For all k = 1, . . . , n, t 7→
∫ t

0
bkk(s) ds ∈ AP 1(R;M).

Proof. Let X be a fundamental matrix of (1.1), let Q and R be provided by Lemma
3.3, and let B be provided by Lemma 3.4. After Lemma 3.3, (i) holds and after
Lemma 3.4 we know that (ii) holds.

To prove (iii), if x′(t) = A(t)x(t) and y(t) = Q−1(t)x(t), then

y′(t)

= (Q−1)′(t)x(t) + Q−1(t)x′(t)

= −Q−1(t)Q′(t)Q−1(t)x(t) + Q−1(t)A(t)x(t)

= −Q−1(t)X ′(t)R(t)Q−1(t)x(t)−Q−1(t)X(t)R′(t)Q−1(t)x(t) + Q−1(t)A(t)x(t)

= −Q−1(t)A(t)X(t)R(t)Q−1(t)x(t)−R−1(t)R′(t)y(t) + Q−1(t)A(t)x(t)

= Q−1(t)A(t)x(t) + Q−1(t)A(t)x(t)−R−1(t)R′(t)y(t)

= B(t)y(t),

using (3.10). Conversely, if y′(t) = B(t)y(t) and x(t) = Q(t)y(t), then

x′(t) = Q′(t)y(t) + Q(t)y′(t)

= Q′(t)Q−1(t)x(t) + Q(t)B(t)y(t)

= Q′(t)Q−1(t)x(t) + Q(t)[−Q−1(t)Q′(t) + Q−1(t)A(t)Q(t)]Q−1(t)x(t)

= Q′(t)Q−1(t)x(t)−Q′(t)Q−1(t)x(t) + A(t)x(t)

= A(t)x(t).

And so (iii) is proven.
Last, to prove (iv) note that (1.2) is equivalent to

y′k(t) =
n∑

j=k

bkj(t)yj(t), 1 ≤ k ≤ n.

Now we proceed following a decreasing induction.
First step: k = n. Since all the solutions of the scalar equation y′n(t) =

bnn(t)yn(t) are a.p., by using [5] we necessarily have that t 7→
∫ t

0
bnn(s) ds is

bounded and consequently it is a.p.
Second step: the induction assumption k ∈ {2, . . . , n} is t 7→

∫ t

0
bjj(s) ds is a.p.

for all j ∈ {k, . . . , n}.
Third step: the case k − 1. We consider the subsystem

y′j(t) =
n∑

i=j

bji(t)yi(t), i = k − 1, . . . , n. (3.11)

Since the bji are a.p., and since all the solutions of (3.11) are a.p., using [5] we
know that t 7→

∫ t

0

∑n
i=k−1 bii(s) ds is a.p., and by using the induction assumption

we know that t 7→
∫ t

0

∑n
i=k bii(s) ds is a.p. as a sum of a.p. functions. Consequently

t 7→
∫ t

0
bk−1,k−1(s) ds is a.p. as a difference of two a.p. functions. �
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Remark 3.6. In the setting of the previous theorem, Y (t) = Q−1(t)X(t) is a
fundamental matrix for (1.2). Since Q(t) = X(t)R(t) we have Y (t) = R−1(t) which
is upper triangular since the inverse of a regular upper triangular matrix is also
upper triangular.

Remark 3.7. Such a construction of B(t) from A(t) is made in the continuous case
in [13, Theorem 1.4, p.4], in the periodic case in [13] (in the proof of the Theorem
1.7, p.12-13) and in the quasi-periodic case in [13] (in the proof of the Lemma 4.3,
p.134-135) under diophantine conditions. Theorem 3.5 contains the quasi-periodic
case since we can choose M as a Z-submodule of R having a finite basis, and we
have not need any diophantine condition.

Remark 3.8. In the Floquet-Lin theory for quasi-periodic systems developed by
Lin [11, 12, 13], the Floquet characteristic exponents (FL-CER) of (1.1), denoted by
β1, . . . , βn, satisfy βk = M{bkk}t [13, p. 137]. A consequence of (iv) in Theorem
3.5 is βk = 0 for all k = 1, . . . , n. If there exists a real n × n constant upper
triangular matrix Ω provided by the Lin theory [13, Theorem 4.1, p. 139] then
(1.1) is reducible to z′(t) = Ω z(t) and the eigenvalues of Ω are β1, . . . , βn. And
so, under (A1 − A2), we can easily verify that Ω = 0 since all the solutions of
z′(t) = Ωz(t) are a.p.

4. Second result of reducibility

To study (1.1) we consider the condition
(A3) Equation (1.1) possesses k linearly independent almost periodic solutions

in AP 1(Rn;M), where M is aZ-submodule of R and k ∈ {1, . . . , n}.

Theorem 4.1. Under assumptions (A1), (A3), there exist Q ∈ C1(R, M(n, R)),
B ∈ C0(R, M(n, R)) such that the following conditions hold.

(i) Q(t) is orthogonal for all t ∈ R.
(ii) B(t) is upper triangular for all t ∈ R.
(iii) If x is a solution of (1.1) then y defined by y(t) = Q−1(t)x(t) is a solution

of (1.2) and conversely if y is a solution of (1.2) then x defined by x(t) =
Q(t)y(t) is a solution of (1.1).

(iv) If Q(t) = col(v1(t), . . . , vn(t)) then v1(t), . . . , vk(t) ∈ AP 1(R, Rn;M).
(v) Equation (1.2) possesses k linearly independent a.p. solutions.

Proof. We denote by x1, . . . , xk ∈ AP 1(Rn;M) k linearly independent solutions of
(1.1). We choose xk+1, . . . , xn ∈ C1(R, Rn) solutions of (1.1) such that x1, . . . , xn

are linearly independent.
We set X(t) = col(x1(t), . . . , xn(t)), and so it is a fundamental matrix of (1.1).

We set w1(t) = x1(t) and, for all k ∈ {2, . . . , n},

wk(t) = xk(t)−
k−1∑
j=1

(xk(t)‖wj(t))
‖wj(t)‖2

wj(t).

We set vk(t) = 1
‖wk(t)‖wk(t) for all k ∈ {1, . . . , n}.

We have v1, . . . , vn ∈ C1(R, Rn) since x1, . . . , xn ∈ C1(R, Rn). We define Q(t) =
col(v1(t), . . . , vn(t)). We verify that Q(t) = X(t)R(t) where R ∈ C1(R, M(n, R))
and R(t) is upper triangular for all t ∈ R. Then we set B(t) = −Q−1(t)Q′(t) +
Q−1(t)A(t)Q(t). B(t) is upper triangular for all t ∈ R and B ∈ C0(R, M(n, R)).
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This construction is proven in [13, Theorem 1.4, p.4], and the assertions (i), (ii),
(iii) result of this theorem.

For all j ∈ {1, . . . , k} we set yj(t) = Q−1(t)xj(t) = Q∗(t)xj(t) for all t ∈ R. Then
y1, . . . , yk are solutions of (1.2). Following the definition of vj for j ∈ {1, . . . , k} and
reasoning as in the proof of Lemma 3.2, we verify that v1, . . . , vk ∈ AP 1(Rn;M)
that proves (iv).

For all p ∈ {2, . . . , n} and for all t ∈ R we know that vp(t) is orthogonal to
{xq(t) : 1 ≤ q ≤ p− 1}, and so we have

∀p ∈ {2, . . . , n},∀q ∈ {1, . . . , p− 1},∀t ∈ R, (vp(t)‖xq(t)) = 0. (4.1)

When j ∈ {1, . . . , k}, since yj(t) = Q∗(t)xj(t) we have, for all i ∈ {1, . . . , n},
yi

j(t) = (vi(t)‖xj(t)), and so, using (4.1), we have yi
j(t) = 0 when i > j and therefore

yi
j(t) = 0 when i > k.

When i ≤ k we have yi
j ∈ AP 1(R;M) since vi, vj ∈ AP 1(Rn;M). And so all

the coordinates of yj belong to AP 1(R;M) that implies that yj ∈ AP 1(Rn;M).
And so y1, . . . , yk are solutions of (1.2) which belong to AP 1(Rn;M). Moreover
they are linearly independent since

∑k
j=1 ξjyj = 0 implies 0 =

∑k
j=1 ξjQ

−1(.)xj =

Q−1(.)
( ∑k

j=1 ξjxj

)
implies

∑k
j=1 ξjxj = 0 that implies ξ1 = · · · = ξk = 0 since

x1, . . . , xk are linearly independent. And so (v) is proven. �

5. Existence result

In this section we study the existence of a.p. solutions of (1.3). First we establish
results on linear systems.

Lemma 5.1. Let a ∈ AP 0(R;M) such that M{a} 6= 0. Then the following two
assertions hold.

(i) The scalar equation x′(t) = a(t)x(t) does not possess any almost periodic
solution.

(ii) For all b ∈ AP 0(R;M) there exists a unique x ∈ AP 0(R;M) which is
a solution of x′(t) = a(t)x(t) + b(t). Moreover there exists a constant
α ∈ (0,∞) such that

‖xb‖∞ ≤ α‖b‖∞. (5.1)

Proof. We consider the following two systems

x′(t) = a(t)x(t) (5.2)

x′(t) = a(t)x(t) + b(t), (5.3)

and distinguish the cases: M{a} > 0 and M{a} < 0.

5.1. Case M{a} > 0. (i) By the existence of mean value we have for all ε ∈
(0,M{a}), there exists tε > 0, such that ll t ≥ tε,M{a}−ε ≤ 1

t

∫ t

0
a(r)dr ≤M{a}+

ε. This implies that ∀t ≥ tε,
∫ t

0
a(r)dr ≥ t(M{a} − ε). Hence exp

( ∫ t

0
a(r)dr

)
≥

exp
(
t(M{a} − ε)

)
→∞ when t →∞, and consequently

lim
t→∞

∫ t

0

a(r)dr = ∞. (5.4)

A consequence of (5.4) is that all the solutions of (5.2), which is in the form
x(t) = exp

( ∫ t

0
a(r)dr

)
x(0) are not bounded and consequently are not a.p.
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Since the difference of two a.p. solutions of (5.3) are necessarily an a.p. solution
of (5.2), (5.3) cannot possess more than one a.p. solution.

(ii) Now we prove the assertion that∫ ∞

0

exp
(
−

∫ s

0

a(r)dr
)
ds exists in R+. (5.5)

Since lims→∞
1
s

∫ s

0
a(r)dr = M{a} > 0, for all ε ∈ (0,M{a}), there exists sε > 0,

such that for s ≥ sε, M{a} − ε ≤ 1
s

∫ s

0
a(r)dr ≤ M{a} + ε implies for all s ≥ sε,

s
(
M{a}−ε

)
≤

∫ s

0
a(r)dr which implies for all s ≥ sε, −

∫ s

0
a(r)dr ≤ −s

(
M{a}−ε

)
which implies for all s ≥ sε, exp

(
−

∫ s

0
a(r)dr

)
≤ exp

(
−s(M{a}−ε)

)
which implies∫ ∞

sε

exp
(
−

∫ s

0

a(r)dr
)
ds ≤

∫ ∞

sε

exp(−s(M{a} − ε))ds

=
1

M{a} − ε
exp

(
− sε(M{a} − ε)

)
= ξε.

Since s 7→ exp
(
−

∫ s

0
a(r)dr

)
is continuous on the compact interval [0, sε], it follows

that
∫ sε

0
exp

(
−

∫ sε

0
a(r)dr

)
ds ≤ ∞, and so∫ ∞

0

exp
(
−

∫ s

0

a(r)dr
)
ds

=
∫ sε

0

exp
(
−

∫ s

0

a(r)dr
)
ds +

∫ ∞

sε

exp
(
−

∫ s

0

a(r)dr
)
ds

≤
∫ sε

0

exp
(
−

∫ s

0

a(r)dr
)
ds + ξε < ∞.

And so (5.5) is proven.
Since s 7→ exp

(
−

∫ s

0
a(r)dr

)
b(s) is continuous on R+, it is Borel-mesurable, and

using the Lebesgue integral for nonnegative functions on R+, we have∫
R+

‖ exp
(
−

∫ s

0

a(r)dr
)
b(s)‖ds ≤ ‖b‖∞

∫
R+

exp
(
−

∫ s

0

a(r)dr
)
ds

by using (5.5). Thus s 7→ ‖ exp
(
−

∫ s

0
a(r)dr

)
b(s)‖ is Lebesgue integrable on R+;

therefore s 7→ exp
(
−

∫ s

0
a(r)dr

)
b(s) is Lebesgue integrable on R+, and we have∫ ∞

0

exp
(
−

∫ s

0

a(r)dr
)
b(s)ds exists in R. (5.6)

Now for t ∈ R, we set

x̂(t) = exp
( ∫ t

0

a(r)dr
)[
−

∫ ∞

0

exp
(
−

∫ s

0

a(r)dr
)
b(s)ds

+
∫ t

0

exp
(
−

∫ s

0

a(r)dr
)
b(s)ds].

(5.7)

Using a calculation formula, called variation of constants, we obtain that

x̂ is a solution on R of (NH). (5.8)

In the following step, we want to prove that x̂ is bounded on R+. Using the
Chasles relation we deduce from (5.7) the equality

x̂(t) = exp
(
−

∫ t

0

a(r)dr
)[
−

∫ ∞

t

exp
(
−

∫ s

0

a(r)dr
)
b(s)ds

]
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= −
∫ ∞

t

exp
( ∫ t

0

a(r)dr −
∫ s

0

a(r)dr
)
b(s)ds, ∀t ≥ 0.

Therefore,

x̂(t) = −
∫ ∞

t

exp
(
−

∫ s

t

a(r)dr
)
b(s)ds, ∀t ≥ 0. (5.9)

Introducing the change of variables σ : R+ → [t,∞], σ(ρ) = ρ + t, from (5.9) and
using the change of variable formula, we have

x̂(t) = −
∫ σ(∞)

σ(0)

exp
(
−

∫ s

t

a(r)dr
)
b(s)ds

= −
∫ ∞

0

exp
(
−

∫ σ(ρ)

t

a(r)dr
)
b(σ(ρ))σ′(ρ)dρ

= −
∫ ∞

0

exp
(
−

∫ t+ρ

t

a(r)dr
)
b(t + ρ)dρ.

Using the mean value theorem for integrals,

‖x̂(t)‖ ≤
( ∫ ∞

0

exp
(
−

∫ t+ρ

t

a(r)dr
)
dρ

)
‖b‖∞, ∀t ≥ 0. (5.10)

Using a result by Bohr [4, p.44] we have for all ε ∈ (0,M{a}), there exists ρε > 0,
∀ρ ≥ ρε, ∀t ∈ R,

M{a} − ε ≤ 1
ρ

∫ t+ρ

t

a(r)dr ≤M{a}+ ε.

=⇒ ∀ρ ≥ ρε, ∀t ∈ R, ρ (M{a} − ε) ≤
∫ t+ρ

t
a(r)dr ≤ ρ (M{a}+ ε).

=⇒ ∀ρ ≥ ρε, ∀t ∈ R, −ρ (M{a} − ε) ≥ −
∫ t+ρ

t
a(r)dr.

=⇒ ∀ρ ≥ ρε, ∀t ∈ R, exp
(
−

∫ t+ρ

t
a(r)dr

)
≤ exp (−ρ (M{a} − ε)), which implies∫ ∞

ρε

exp
(
−

∫ t+ρ

t

a(r)dr
)
dρ ≤

∫ ∞

ρε

exp(−ρ(M{a} − ε))dρ

=
1

M{a} − ε
exp(−ρε(M{a} − ε)) = ξε, ∀t ∈ R,

Moreover, when ρ ∈ [0, ρε],

−
∫ t+ρ

t

a(r)dr ≤ ‖
∫ t+ρ

t

a(r)dr‖ ≤ ρ sup
s∈[0,ρε]

‖a(s)‖ ≤ ρ‖a‖∞

implies

exp
(
−

∫ t+ρ

t

a(r)dr
)
≤ exp(ρ‖a‖∞) ∀t ∈ R

which implies∫ ρε

0

exp
(
−

∫ t+ρ

t

a(r)dr
)
dρ ≤

∫ ρε

0

exp(ρ‖a‖∞)dρ =
1

‖a‖∞
(exp(ρε‖a‖∞)−1) = ξ1

ε .

Now using the Chasles relation we obtain,∫ ∞

0

exp
(
−

∫ t+ρ

t

a(r)dr
)
dρ ≤ ξε + ξ1

ε = ξ2
ε < ∞, for all t ∈ R. (5.11)
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Note that ξε and ξ1
ε do not depend of t. A consequence of (5.10) and (5.11) is the

assertion that
x̂ is bounded on R+. (5.12)

In the following step we want to prove that x̂ is bounded on R− = (−∞, 0]. We
introduce

x1(t) = exp
( ∫ t

0

a(r)dr
)(

−
∫ ∞

0

exp
(
−

∫ s

0

a(r)dr
)
b(s)ds

)
x2(t) = exp

( ∫ t

0

a(r)dr
)( ∫ t

0

exp
(
−

∫ s

0

a(r)dr
)
b(s)ds

)
.

Therefore,
x̂(t) = x1(t) + x2(t) for all t ∈ R−. (5.13)

We know that M{a} = limT→∞
1

2T

∫ T

−T
a(r)dr = limT→∞

1
T

∫ T

0
a(r)dr [4, p.

44], and since 1
2T

∫ T

−T
a(r)dr = 1

2 ( 1
T

∫ T

0
a(r)dr + 1

T

∫ 0

−T
a(r)dr), taking t = −T , we

obtain

lim
t→−∞

1
−t

∫ 0

t

a(r)dr = M{a}. (5.14)

Note that, for t ≤ 0,
∫ t

0
a(r)dr = −

∫ 0

t
a(r)dr = t 1

−t

∫ 0

t
a(r)dr which implies

exp
( ∫ t

0
a(r)dr

)
= exp

(
t. 1
−t

∫ 0

t
a(r)dr

)
→ exp (−∞.M{a}) = 0 as t → −∞, and so

we have proven that

lim
t→−∞

exp
( ∫ t

0

a(r)dr
)

= 0. (5.15)

Then using (5.6) and (5.15), we obtain limt→−∞ x1(t) = 0, and, since x1 is contin-
uous on R−, we obtain

x1 is bounded on R−. (5.16)
For all t ≤ 0,

x2(t) =
∫ t

0

exp
( ∫ t

0

a(r)dr
)

exp
(
−

∫ s

0

a(r)dr
)
b(s)ds

= −
∫ 0

t

exp
(
−

∫ s

t

a(r)dr
)
b(s)ds.

Hence ‖x2(t)‖ ≤
∫ 0

t
exp

(
−

∫ s

t
a(r)dr

)
ds‖b‖∞. Introducing γ : [0,−t] → [t, 0],

γ(ρ) = ρ + t and using the change of variable formula, we obtain∫ 0

t

exp
(
−

∫ s

t

a(r)dr
)
ds =

∫ γ(−t)

γ(0)

exp
(
−

∫ s

t

a(r)dr
)
ds

=
∫ −t

0

exp
(
−

∫ γ(ρ)

t

a(r)dr
)
γ′(ρ)dρ

=
∫ −t

0

exp
(
−

∫ t+ρ

t

a(r)dr
)
dρ

≤
∫ ∞

0

exp
(
−

∫ t+ρ

t

a(r)dr
)
dρ ≤ ξ2

ε ,

for all t ≤ 0 after (5.11) where ξ2
ε is independent of t. Consequently, ∀t ≤ 0,

‖x2(t)‖ ≤ ξ2
ε ‖b‖∞, that proves that

x2 is bounded on R−. (5.17)
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From (5.13), (5.16) and (5.17), we have that x̂ is bounded on R−, and with (5.12)

x̂ is bounded on R. (5.18)

Using [8, Theorem 6.3, p.100], x̂ is an a.p. solution of (5.3), and it is the unique
solution. So the proof of the lemma is complete in the case M{a} > 0.

5.2. Case M{a} < 0. To treat this case, we consider the additional equation

y′(t) = −a(−t)y(t)− b(−t) (5.19)

and we note that y(t) = x(−t) is a solution of (5.19) when and only when x
is a solution of (5.3). Also note that Mt{−a(−t)} = −Mt{a(−t)} = −M{a}.
When M{a} < 0, then Mt{−a(−t)} > 0 and using the previous reasoning, (5.19)
possesses a unique a.p. solution y. Consequently x(t) = y(−t) is the unique a.p.
solution of (5.3). This completes the proof of the lemma. �

Now we consider the linear ordinary differential equation

x′(t) = A(t)x(t) + b(t) (5.20)

where A = (Aij)1≤i,j≤n ∈ AP 0(M(n, R)) and b ∈ AP 0(Rn) such that
(A4) A is upper triangular s.t. M{Aii} 6= 0 for i = 1, . . . , n.

Lemma 5.2. Let A ∈ AP 0(M(n, R)) which satisfies (A4) and b ∈ AP 0(Rn). Then
(5.20) possesses a unique solution in AP 0(Rn). Moreover there exists α ∈ (0,∞)
such that

‖x‖∞ ≤ α‖b‖∞.

Proof. Equation (5.20) can be written as

x′1(t) = A11(t)x1(t) + A12(t)x2(t) + · · ·+ A1n(t)xn(t) + b1(t)

x′2(t) = A22(t)x2(t) + · · ·+ A2n(t)xn(t) + b2(t)
. . .

x′n(t) = Ann(t)xn(t) + bn(t)

(5.21)

where x = (x1, . . . , xn) and b = (b1, . . . , bn).
Since M{Ann} 6= 0 and by using Lemma 5.1, we deduce that the last scalar

equation in (5.21),
x′n(t) = Ann(t)xn(t) + bn(t), (5.22)

has a unique solution x̂n ∈ AP 0(R) such that

‖xn‖∞ ≤ αn‖bn‖∞ (5.23)

where αn is a positive constant. The (n− 1)-th equation of system (5.21) is

x′n−1(t) = An−1,n−1(t)xn−1(t) + dn−1(t), (5.24)

where dn−1(t) = An−1,n(t)xn(t) + bn−1(t) for all t ∈ R. It is clear that dn−1 ∈
AP 0(R) as a sum and product of a.p. functions An−1,n, xn and bn−1. Using always
Lemma 5.1 and the fact that M{An−1,n−1} 6= 0, we conclude that equation (5.24)
has a unique solution x̂n−1 ∈ AP 0(R) and there exists αn−1 ∈ (0,∞) such that

‖x̂n−1‖∞ ≤ αn−1‖dn−1‖∞. (5.25)
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And so using the same reasoning as above, we can prove by induction that for
k = 1, . . . , n the k-th equation of (5.21) has a unique solution x̂k ∈ AP 0(R) and
there exists αk ∈ (0,∞) such that

‖x̂k‖∞ ≤ αk‖dk‖∞, (5.26)

where dk(t) = Ak,k+1(t)xk+1(t)+ · · ·+Ak,n(t)xn(t)+ bk(t), for all t ∈ R. Therefore
(5.21) has a unique solution x̂ ∈ AP 0(Rn).

Now we shall prove that there exists α ∈ (0,∞) such that

‖x̂‖∞ ≤ α‖b‖∞, (5.27)

Since on BC0(R, Rn) the norm ‖.‖∞ is equivalent to the norm ‖ · ‖0, where ‖x‖0 =∑n
j=1 ‖xj‖∞ and ‖x‖∞ = supt∈R ‖x(t)‖2 = supt∈R

√∑n
j=1 ‖xj(t)‖2, with x =

(x1, . . . , xn), it is enough to prove (5.27) for ‖ ·‖0. For this we proceed by induction
on the order k ∈ {1, . . . , n} of A.

First step: k = 1. So (5.21) is the scalar equation (5.22) and by (5.23), (5.27)
is obtained.

Second step: k = n− 1. We assume that there exists γn−1 ∈ (0,∞) such that

‖x̂n‖∞ + · · ·+ ‖x̂2‖∞ ≤ γn−1(‖bn‖∞ + · · ·+ ‖b2‖∞). (5.28)

Third step: k = n. By (5.28) we obtain ‖x̂n‖∞+ · · ·+‖x̂1‖∞ ≤ γn−1(‖bn‖∞+
· · · + ‖b2‖∞) + ‖x̂1‖∞, and by (5.26) we know that ‖x̂1‖∞ ≤ α1‖d1‖∞, where
d1(t) = A12(t)x2(t) + · · ·+ A1n(t)xn(t) + b1(t) for all t ∈ R that implies

‖x̂1‖∞ ≤ α1(‖A12‖∞‖x̂2‖∞ + · · ·+ ‖A1n‖∞‖x̂n‖∞ + ‖b1‖∞)

≤ α1 (max(‖A12‖∞, . . . , ‖A1n‖∞)(‖x̂2‖∞ + · · ·+ ‖x̂n‖∞) + ‖b1‖∞) .

After using induction assumption and noting cn = max(‖A12‖∞, . . . , ‖A1n‖∞), we
obtain

‖x̂1‖∞ ≤ α1(cnγn−1(‖b2‖∞ + · · ·+ ‖bn‖∞) + ‖b1‖∞)

≤ α1kn(‖b2‖∞ + · · ·+ ‖bn‖∞ + ‖b1‖∞)

≤ Mn(‖b1‖∞ + · · ·+ ‖bn‖∞)

where kn = max(cnγn−1, 1) and Mn = α1kn. Hence we conclude that

‖x̂1‖∞ + · · ·+ ‖x̂n‖∞ ≤ γn−1(‖b2‖∞ + · · ·+ ‖bn‖∞) + Mn(‖b1‖∞ + · · ·+ ‖bn‖∞)

with γn = max(γn−1,Mn) ∈ (0,∞); i.e., ‖x̂‖0 ≤ γn‖b‖0. And so (5.27) is proven.
�

Definition 5.3. We so-call the Bohr-Neugebauer constant is the least constant α
which satisfies the last assertion of Lemma 5.2.

Now let A ∈ AP 0(M(n, R)) and define the two matrices T = (Tij)1≤i,j≤n and
R = (Rij)1≤i,j≤n as follows, for t ∈ R,

Tij(t) =

{
Aij(t) if j ≥ i

0 otherwise
and R(t) = A(t)− T (t). (5.29)

Note that T (t) is upper triangular.
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Theorem 5.4. Let A ∈ AP 0(M(n, R)) such that M{Aii} 6= 0 for i = 1, . . . , n and
let f ∈ APU(R× Rn). We also assume that

‖R‖∞ <
1

‖T‖∞α + 1 + α
, (5.30)

and that for all t ∈ R and all x, y ∈ Rn, there exists k ∈ (0, (‖T‖∞α + 1 + α)−1 −
‖R‖∞) such that

‖f(t, x)− f(t, y)‖ ≤ k‖x− y‖, (5.31)
where T and R are defined as in (5.29). Then the equation

x′(t) = A(t)x(t) + f(t, x(t)) (5.32)

possess a unique solution in AP 1(Rn).

Proof. First we remark that (5.32) can be written as

x′(t) = T (t)x(t) + g(t, x(t)) (5.33)

where g(t, x(t)) = R(t)x(t) + f(t, x(t)) for all t ∈ R.
Consider the linear operator L : AP 1(Rn) → AP 0(Rn) defined by Lx = [t 7→

x′(t) − T (t)x(t)]. Since M{Aii} 6= 0 for i = 1, . . . , n, the operator T satisfy the
assumption in Lemma 5.2 and we deduce that for b ∈ AP 0(Rn) there exists a unique
solution of the differential equation

x′(t) = T (t)x(t) + b(t). (5.34)

Then L is invertible, we denote by x[b] the unique solution of (5.34), and so we have
L−1(b) = x[b]. By Lemma 5.2, there exists α ∈ (0,∞) such that ‖x[b]‖∞ ≤ α‖b‖∞
and using (5.34), we obtain

‖x′[b]‖∞ ≤ ‖T‖∞‖x[b]‖∞ + ‖b‖∞ ≤ ‖T‖∞α‖b‖∞ + ‖b‖∞ = (‖T‖∞α + 1)‖b‖∞.

This implies
‖L−1(b)‖C1 ≤ (‖T‖∞α + 1 + α)‖b‖∞.

Consequently,
‖L−1‖L ≤ (‖T‖∞α + 1 + α). (5.35)

Now we consider the superposition operator Ng : AP 0(Rn) → AP 0(Rn), Ng(x) =
[t 7→ g(t, x(t))]. Ng is well defined, [3].

Using assumption (5.31), we have

‖Ng(x)−Ng(y)‖∞ ≤ (‖R‖∞ + k)‖x− y‖∞, (5.36)

for all x, y ∈ AP 0(Rn). Now, from (5.35) and (5.36) it is easy to verify that for
x, y ∈ AP 0(Rn),

‖L−1 ◦Ng(x)− L−1 ◦Ng(y)‖∞ ≤ k1‖x− y‖∞,

where k1 = (‖T‖∞α + 1 + α)(‖R‖∞ + k). From (5.30) and (5.31), it is clear to
see that k1 ∈ (0, 1) and hence the operator L−1 ◦ Ng : AP 0(Rn) → AP 0(Rn) is
a contraction. Then by using the Picard-Banach Fixed Point Theorem, we obtain
that there exists a unique x ∈ AP 0(Rn) such that

L−1 ◦Ng(x) = x.

This is equivalent to saying that x is a solution of (5.33) in AP 1(Rn) and so it is a
unique solution of (5.32) in AP 1(Rn). �
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6. A continuous dependence result

Theorem 6.1. Let A ∈ AP 0(M(n, R)) such that M{Aii} 6= 0 for i = 1, . . . , n and
f ∈ APU(R × Rn × Rp) which satisfy the following condition: For all t ∈ R and
for (x, y, u) ∈ Rn × Rn × Rp, there exists c ∈ (0, (‖T‖∞α + 1 + α)−1) such that

‖f(t, x, u)− f(t, y, u)‖ ≤ c‖x− y‖, (6.1)

where α is the Bohr-Neugebauer constant, and T is defined as above. Then, for all
u ∈ AP 0(Rp), there exists a unique solution x̃[u] of

x′(t) = A(t)x(t) + f(t, x(t), u(t)) (6.2)

which is in AP 1(Rn). Moreover the mapping u 7→ x̃[u] is continuous from AP 0(Rp)
into AP 1(Rn).

Proof. Let L the operator be defined in the proof of the above theorem, and Nf

the superposition operator defined by Nf : AP 0(Rn) × AP 0(Rn) → AP 0(Rn),
Nf (x, u) = [t 7→ f(t, x(t), u(t))]. Nf is well defined and continuous (see [3]).
This implies that the mapping u 7→ Φ(x, u) is continuous on AP 0(Rp) for all x ∈
AP 0(Rn), where Φ : AP 0(Rn)×AP 0(Rp) → AP 0(Rn), Φ(x, u) = L−1 ◦Nf (x, u).

Now by (6.1) it follows that

‖Nf (x, u)−Nf (y, u)‖∞ ≤ c‖x− y‖∞ (6.3)

for all x, y ∈ AP 0(Rn) and for all u ∈ AP 0(Rp). With (5.35), this implies that

‖Φ(x, u)− Φ(y, u)‖∞ ≤ c(‖T‖∞α + 1 + α)‖x− y‖∞
for all x, y ∈ AP 0(Rn) and for all u ∈ AP 0(Rp). Therefore we can apply the
Theorem of parametrized fixed point in [15, p. 103] to conclude that equation (6.2)
possess a unique solution x̃[u] ∈ AP 1(Rn) and the mapping u 7→ x̃[u] is continuous
from AP 0(Rp) into AP 0(Rn). �
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Joël Blot
Laboratoire SAMM, Université Paris 1 Panthéon-Sorbonne, Centre P.M.F., 90 rue de
Tolbiac, 75634 Paris Cedex 13, France

E-mail address: joel.blot@univ-paris1.fr


	1. Introduction
	2. Preliminaries and notation
	3. First result in reducibility
	4. Second result of reducibility
	5. Existence result
	5.1. Case M{a}>0
	5.2. Case M{a}<0

	6. A continuous dependence result
	References

