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BIOECONOMICAL RICKER’S MODEL OF MARINE
PROTECTED AREAS

CAMERON N. CHRISTOU, LEV V. IDELS

Abstract. Marine protected areas (MPA) become part of modern fishery
management to safeguard marine life and sustain ecosystem processes. Based
on a classical Ricker’s model, the deterministic nonlinear sink-source model of
MPA is presented. Sufficient conditions for the existence of positive bounded
steady-states are obtained. The present value of net revenue is maximized
subject to population dynamics in the fishing zone and in the protected area.
The analysis has shown that there is an optimal equilibrium solution, and the
best harvesting policy to attain this equilibrium position is a bang-bang control
effort. It was demonstrated numerically by comparing the optimal harvesting
rate against a constant harvesting rate, and the fast convergence to the optimal
equilibrium guarantees greater profits under the optimal harvesting strategy.

1. Introduction

Traditional methods of controlling fishing include:
• limiting the effort (restricting the fishing season);
• limiting the catch (restricting the number or biomass of fish captured);
• limiting the fish size (restricting the size of fish captured);
• limiting the location (restricting the places available for fishing).

The last option includes the establishment of marine reserves, areas permanently
closed to all fishing. These can supplement or potentially replace other methods of
regulation. For this reason, the reserve concept has recently attracted great interest
in the community of fisheries scientists and managers. Marine protected areas
have been promoted as conservation and fishery management tools, and at present,
there are over 1300 marine reserves in the world [1, 12, 13, 16, 21, 22, 23]. Since
1999, the number and extent of, and the amount of research on, MPA has grown
rapidly. Areas protected from fishing provide multiple benefits, including: reduced
likelihood of a stock collapsing, enhanced spawning biomass, improved recruitment
survival of fish to a more mature state, allowing increased harvest and recovery of
the habitat. Much of the empirical case study research on the ecological impact of
MPA indicate that within the no-take area boundaries, fish both grow and attain
a broader age and size distribution [16, 21, 22]. There is robust demonstration of
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conservation benefits of the MPA, but fishery benefits and design of reserves remain
controversial. Most of the researchers suggest that in the long term no-fishing zones
sustain both fisheries and fish populations. It is also known that highly migratory
species are among the most overexploited finfish species. Many species, especially
adults such as cod, show directed migration on an annual basis; thus adults could
be very vulnerable at certain periods of the year when most of them would be likely
to move outside of a protected area [10, 12, 13].

The biological interconnections between patches may be of many varieties and
we will use a sink-source model based on the Ricker’s growth curve. In recent
publications [2, 9, 11, 17], MPAs are modeled by using logistic differential equations.
More complex models were studied in [5, 6, 7, 14, 15].

Suppose that two regions R (reserve area) and U (unprotected or fishing zone)
have habitat areas: A1 is the area of a protected zone and A2 is the area of the
fishing zone. Let x(t) denotes the biomass of fish in the reserve R, and y(t) is the
fish biomass in the unprotected (fishing) area. Assume that fishing takes place only
in the region U , with the region R established as a marine reserve or protected area.
The two equations in model (1.2) are linked by the movement terms, which depend
on a difference of biomass densities per unit of the habitat areas. The depletion
of fish in region U will generally decrease the fish density there and cause fish to
move away from a higher density in the protected region R. We introduced the
migration rate

di =
σ

Ai
, σ > 0,

where σ is a migration coefficient. Then the coupled system of nonlinear differential
equations

dx

dt
= −m1x(t) + d2y(t)− d1x(t) + F1(x(t)),

dy

dt
= −m2y(t) + d1x(t)− d2y(t) + F2(y(t))− E(t)qy(t)

(1.1)

could represent the population dynamics in each region, where mi is a natural
mortality rate,

Fi(x) = pixe−x, pi > 0.

is the birth function. Finally, the system under study has the form

dx

dt
= −m1x + d2y − d1x + p1xe−x,

dy

dt
= −m2y + d1x− d2y + p2ye−y − E(t)qy.

(1.2)

In system (1.2) a positive constant q is called a catchability coefficient, whereas the
effort function E(t) is a dynamic variable.

MPA design is a joint economic and biological problem, and MPA creation alters
economic incentives. In fisheries the optimal control has often been applied to
compute bieconomic optima via locally-optimal linear feedback controls, and mostly
the optimal solutions obtained are bang-bang controls [2, 3, 8, 9, 11, 14, 19, 20].
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2. Equilibrium analysis

To find all equilibria of system (1.2) we set

m1x + d1x− d2y − p1xe−x = 0,

m2y − d1x + d2y + Eqy − p2ye−y = 0.
(2.1)

Apart of a trivial solution, system (2.1) has a positive equilibrium (x∗, y∗). From
system (2.1) we have two curves:

L1 : y = φ1(x) =
m1 + d1 − p1e

−x

d2
x,

L2 : x = φ2(y) =
m2 + d2 + Eq − p2e

−y

d1
y.

(2.2)

Theorem 2.1. System (1.2) has a unique internal positive equilibrium if the fol-
lowing two conditions hold: (i) m1 + d1 ≤ p1 and (ii) m2 + d2 + Eq ≤ p2.

Proof. To prove the existence of a nontrivial equilibrium, firstly note that curves
L1 and L2 have asymptotes

y =
m1 + d1

d2
x and y =

d1

m2 + d2 + Eq
x

correspondingly. Clearly,

m1 + d1

d2
>

d1

m2 + d2 + Eq
,

thus, for sufficiently large x, points on the curve L1 lie above the corresponding
points of the curve L2. On the other hand, in the neighborhood of the origin, each
of the conditions (i)–(ii) guarantees that points on the curve L2 lie above the points
of the curve L1. Therefore a positive internal equilibrium of system (1.2) exists.

To prove that this equilibrium is a unique point, firstly, we note that from system
(2.2)

L1 :
dy

dx
=

y

x
+

p1

d2
x exp(−x) >

y

x
,

L2 :
dx

dy
=

x

y
+

p2

d1
y exp(−y) >

x

y
,

(2.3)

since x > 0 on L1 and y > 0 on L2. Let θ be a polar angle of the point on the curve
L1 (with Ox as a polar axis),

θ = arctan
y

x
= arctan

φ1

x
.

If x moves from 0 to ∞, then

dθ

dx
=

1
1 + ( y

x )2
d

dx

φ1

x
=

x

x2 + y2

(dφ1

dx
− φ1

x

)
.

The latter equality and inequalities (2.3) guarantee dθ
dx > 0; thus θ(x) is a monotone

increasing function with

θ0 < θ(x) < arctan
m1 + d1

d2
.
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Similarly, let ϑ be a polar angle of the point on the curve L2 with the same polar
axis. If y moves from 0 to ∞, then ϑ(y) is a monotone decreasing function, with

arctan
d1

m2 + d2 + Eq
< ϑ(y) < ϑ0.

At the equilibrium point θ = ϑ, increase of the function θ and decrease of the
function ϑ guarantee the uniqueness of a nontrivial equilibrium.

Let none of the conditions (i)-(ii) hold; then for any x > 0 and y > 0,

arctan
m1 + d1

d2
> θ ≥ θ0 = arctan

m1 + d1 − p1

d2
>

ϑ0 = arctan
d1

m2 + d2 + Eq − p2
≥ ϑ > arctan

d1

m2 + d2 + Eq
.

Therefore, the equality θ = ϑ is impossible, and the positive equilibrium does not
exist. Theorem 2.1 is proved. �

Remark 2.2. Note that nonlinear system (2.1) can not be solved analytically,
the latter fact makes bioeconomical analysis of the model more difficult than the
corresponding analysis of the system with logistic growth

m1x + d1x− d2y − p1x
2 = 0,

m2y − d1x + d2y + Eqy − p2y
2 = 0.

in [9, 11, 13, 17].

Theorem 2.3. Any solution of system (1.2) with nonnegative initial functions and
positive initial conditions ultimately enters the square region

K = {0 < x(t) ≤ a and 0 < y(t) ≤ a},

where a is defined by

a =
2 max(p1, p2)
min(m1,m2)

,

and remains in it.

Proof. Note that from standard differential equation theory [4], system (1.2) has
solution x(t) > 0 and y(t) > 0 for t > 0, provided that x(0) > 0 and y(0) > 0. Let
z = x + y, then from system (1.2) we have

dz

dt
= −m1x−m2y − Eqy + F1(x) + F2(y).

For 0 < ε < min(m1,m2) we have

dz

dt
+ εz = −(m1 − ε)x− (m2 − ε)y − Eqy + F1(x)) + F2(y)

< F1(x) + F2(y) ≤ max{F1, F2}
≤ max{p1, p2} = W.

Therefore, dz
dt + εz < W , or

z(t) <
W

ε
+

(
z(0) +

W

ε

)
e−εt. (2.4)

Thus all solutions of (1.2) are bounded. �
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3. Optimal harvesting

In the presence of an MPA, the objective is to optimally exploit the available
resources. The discounted revenue of the fishing industry is given in [18]

J =
∫ ∞

0

e−δt [pqy(t)− c]E(t)dt,

where δ is the instantaneous rate of annual discount, p is the unit price of the
biomass being harvested, and c is the cost per unit of harvested biomass. The cost
of fishing is assumed to decrease with the size of the stock, i.e. c′ = dc

dy ≤ 0. Thus,
the objective is to maximize the revenue functional J with respect to the harvesting
rate E(t). In order to prevent extinction of the species, for the given size of the
MPA, determined by the parameters A1 and A2, a critical harvesting rate Ec is
defined as

Ec = sup{E : m1 + d1 ≤ p1 orm2 + d2 + Eq ≤ p2}

or

Ec = sup{E : (m1 + d1 − p1)(m2 + d2 + Eq − p2) < d1d2}

Therefore, conditions (i)–(ii) in Theorem 2.1 are satisfied. Note that if condition (i)
of Theorem 2.1 is satisfied, then Ec = ∞ since any fishing effort will lead to non-
trivial solutions. Also note that Ec > 0, otherwise the fish population will become
extinct by natural causes. Therefore, a maximal harvesting rate is chosen so that
0 ≤ E ≤ Emax < Ec. In this manner, the fish population should be protected
from over-exploitation. Hence the set of allowable harvesting rate functions, E(t),
belongs to the set

E = {E(t) : 0 ≤ E(t) ≤ Emax}.

The objective is to find supE J subject to the dynamical system (1.2).
An application of the Pontryagin’s Maximum Principle yields the Hamiltonian

H = e−δt(pqy − c)E(t) + λ1

(
− (m1 + d1) x + d2y + p1xe−x

)
+ λ2

(
− (m2 + d2 + Eq) y + d1x + p2ye−y

)
.

(3.1)

The PMP also produces the equations of motion for the shadow prices

−λ̇1 =
∂H

∂x
= λ1

[
− (m1 + d1) + p1(1− x)e−x

]
+ λ2d1

−λ̇2 =
∂H

∂y
= e−δt (pq − c′) E(t) + λ1d2 + λ2

[
− (m2 + d2 + Eq) + p2(1− y)e−y

]
.

Consider the change of variables: λ1 = e−δtΓ1, λ2 = e−δtΓ2. Substitution of Γ1

and Γ2 in (3.1) yields

H = e−δt
[
(pqy − c)E(t) + Γ1

(
− (m1 + d1) x + d2y + p1xe−x

)]
+ e−δt

[
Γ2

(
− (m2 + d2 + Eq) y + d1x + p2ye−y

)]
.

(3.2)

Equivalently, substitution of Γ1 and Γ2 in (3.2) produces

−e−δtΓ̇1 + δe−δtΓ1 = e−δtΓ1

[
− (m1 + d1) + p1(1− x)e−x

]
+ e−δtΓ2d1

⇒ Γ̇1 = Γ1

[
δ + m1 + d1 − p1(1− x)e−x

]
− Γ2d1,

(3.3)
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and

−e−δtΓ̇2 + δe−δtΓ2 = e−δt (pq − c′) E(t) + e−δtΓ1d2

+e−δtΓ2

[
− (m2 + d2) + p2(1− y)e−y − Eq

]
⇒ Γ̇2 = (c′ − pq)E − Γ1d2 + Γ2[δ + m2 + d2 − p2(1− y)e−y + Eq].

(3.4)
Equations (3.3) and (3.4) represent the weighted shadow prices [18]. The objective
now is to maximize the Hamiltonian (3.2) over the set E subject to equations (3.3)
and (3.4). Note that the Hamiltonian is linearly dependent on E; therefore, the
optimal harvesting rate must be a bang-bang control in the set E . Explicitly, the
optimal harvesting rate is

Eopt(t) =


Emax T > 0
0 T < 0
Ẽ T = 0,

where Ẽ is a singular harvesting rate and T = pqy − c − qyΓ2. This singular
harvesting rate occurs because the value of E(t) is not determined when T = 0.
The possible end-states of the system (1.2) under the optimal harvesting rate Eopt(t)
are the same as those mentioned in [17]. These states are

• No harvesting
• Maximum harvesting
• Singular rate harvesting
• A “bang-bang” cycle of harvesting rates.

If “no harvesting” is the optimal end-state of the system, then it must be the case
that it is never profitable to fish for any biomass up to the natural carrying capacity
of the unprotected fishing zone, i.e. pqy − c ≤ 0 for all positive values of y up to
the carrying capacity of the zone. If this was not the case, then there would exist
a bang-bang cycle that would produce a greater profit. If “maximum harvesting”
is the optimal end-state of the system; then it must be the case that fishing at a
constant rate of E(t) = Emax drives the system (1.2) to a non-trivial equilibrium
point (x∗, y∗), and that pqy∗ − c(y∗) ≥ 0. If this was not the case, then the profit
would be negative, and greater profit would be obtained by not harvesting at all.
For the singular harvesting rate i.e. T = 0, function Γ2 satisfies

Γ2 = p− c

qy
. (3.5)

If the end-state is a singular rate, then equation (3.5) holds for an extended period
of time, and

Γ̇2 =
( c′

qy
− c

qy2

)
ẏ. (3.6)

Equating (3.4) and (3.6) produce an expression for function Γ1 which can be solved
explicitly.

Γ1 =
1
fy

(
δ
(
p− c

qy

)
− (pq − c′)E −

(
p− c

qy

)
gy +

c′g

qy
− cg

qy2

)
, (3.7)

where

f = −m1x + d2y − d1x + p1xe−x, g = −m2y − d2y + d1x + p2ye−y − Eqy.
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Since the system stays in this singular state, function Γ1 also satisfies

Γ̇1 = −fyy ẏ

f2
y

(
δ
(
p− c

qy

)
− (pq − c′)E −

(
p− c

qy

)
gy +

c′g

qy
− cg

qy2

)
+

1
fy

(−δc′ẏ

qy
+

δcẏ

qy2
+ c′′Eẏ − gyy ẏ

(
p− c

qy

)
+ 2

c′ẏgy

qy
− 2

cẏgy

qy2
+

c′′ẏg

qy
− 2

c′gẏ

qy2
+ 2

cgẏ

qy3

) (3.8)

Equating (3.3) and 3.8 implicitly define a singular harvesting rate for every point
in the first quadrant of the (x, y)-plane. However, due to the imposed restriction
0 ≤ E(t) ≤ Emax, it may not be possible to employ a singular harvesting rate to
certain points in the plane. If system (1.2) reaches an equilibrium, while fishing at
a singular harvesting rate, (x∗, y∗); then the harvesting rate is defined by

Ẽ =
1
q

(
−m2 − d2 + d1

x∗

y∗
+ p2e

−y∗
)
. (3.9)

4. Optimal harvesting: equilibrium solutions

The objective of this section is to optimize the profit earned while keeping the
total biomass of system (1.2) at equilibrium. If system (1.2) is in stable equilibrium,
then the harvesting rate must be constant and equal to Ẽ defined by (3.9).

Part 1. For a given harvesting rate to be optimal, in the sense that profit is
maximized, the following condition must be satisfied:

∂H

∂E
= 0,

where H is given by equation (3.2). Therefore, equation
∂H

∂E
= pqy − c− Γ2qy = 0

must be satisfied and
Γ2 = p− c

qy
. (4.1)

Under an equilibrium solution, it is also the case that Γ̇1 = Γ̇2 = 0; i.e.,

Γ2d1 − Γ1[δ + m1 + d1 − p1(1− x)e−x] = 0, (4.2)

(pq − c′)E(t) + Γ1d2 − Γ2[δ + m2 + d2 − p2(1− y)e−y + Eq] = 0. (4.3)

Substitution of equations (3.7), (3.9) and (4.1) in (4.2) and (4.3) define a system
of equations that can be solved for the optimal equilibrium solution, (x∗, y∗). Al-
ternatively, the optimal equilibrium solution can be found by locating the critical
points of the profit function

(pqy − c)Ẽ,

where Ẽ is given by equations (3.9), and

y =
m1x + d1x− p1xe−x

d2
.

The latter is a necessary condition for system (1.2) to be at the steady state. Clearly,
either of these two methods will produce the same result.

Part 2. The objective now is to reach the optimal equilibrium state in an
optimal way. As shown in the Section 3, this objective can be achieved by using



8 C. N. CHRISTOU, L. V. IDELS EJDE-2012/76

a bang-bang control policy for the harvesting rate E(t). Until the system reaches
the optimal equilibrium point, we define

E(t) =

{
Emax, if pqy(t)− cy(t)− Γ2qy(t) > 0
0, otherwise

and then E(t) is a constant at the equilibrium harvesting rate. Note that

Γ2 = p− c(y∗)
qy∗

,

where (x∗, y∗) is the optimal equilibrium point. Alternatively, since an internal
equilibrium point of system (1.2) is globally asymptotically stable under constant
harvesting rates, the optimal equilibrium point can be reached by employing the
constant optimal harvesting rate for all time.

5. Numerical simulations

The following simulations were produced using the system parameter values:
m1 = 0.5, m2 = 0.2, σ = 0.4, A1 = 0.2, A2 = 0.8, p1 = p2 = 1, q = 0.1, p = 7,
Emax = 7, and c = 0.4 + 1

1+y .

Example 5.1. Using the methods described in Section 4, the optimal equilibrium
solution is found to be (x∗, y∗) = (0.4044, 1.4822). Keeping for all time the system
(1.2) at this equilibrium position produces a maximum profit of 0.17085. This
information is presented in Figure 1.
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Figure 1. Finding the optimal equilibrium point for maximizing profit

Starting from the initial conditions (x0, y0) = (0, 2), the trajectory of the system
is shown in Figure 2.

The full phase portrait of this system is shown in Figure (3).
The switching times of the function and the value of the harvesting rate become

apparent in view of the phase portrait. Also, the time where the singular solution
is the optimal harvesting rate is also visible.
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Figure 2. Trajectory of the system given the initial condition (0, 2)

Figure 3. Phase portrait of the system

Example 5.2. As a second example of the optimal harvesting strategy, consider the
trajectory followed by the system (1.2) from the initial position (x0, y0) = (2, 1.2).
The trajectory is shown in Figure (4). The benefits of the optimal harvesting
strategy are clearly demonstrated in this example.

6. Conclusions

It is difficult to solve the marine protected areas problems empirically, because
they require population data of large spatial and temporal extent. One of the
benefits of a theoretical modeling of MPAs is insight into the type of informative
fisheries data that should be collected in order that the best design can be estab-
lished. Based on a classical Ricker’s model, the deterministic nonlinear sink-source
model of MPAs is presented. Sufficient conditions for the existence of the positive
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Figure 4. Trajectory of the system given the initial condition (2, 1.2)

bounded steady-states are obtained. The present value of net revenue is maximized
subject to population dynamics in the fishing zones and in the protected areas.

The impact of MPA can be felt in the critical value of the harvesting rate.
For most parameter choices, it is unreasonable to create an MPA big enough so
that condition (i) of Theorem 2.1 is satisfied, and hence a critical value of the
harvesting rate E must not be exceeded in order to ensure that the fish species
does not go extinct. The analysis has shown that there is an optimal equilibrium
solution, and the best harvesting policy to attain this equilibrium position is a
bang-bang control effort. This was demonstrated numerically by comparing the
optimal harvesting rate against constant harvesting rates. The convergence to the
optimal equilibrium solution was always faster, which implies greater profits under
the optimal harvesting strategy. Also included is a phase portrait, which shows a
more complete picture of the system being studied. We have attempted to illustrate
the effect of the optimal harvesting strategy more clearly by picking parameters
and initial conditions that better demonstrate the benefit of the optimal harvesting
policy.

Unfortunately, field data required to adequately populate mathematical models
is not classified and scattered in various scientific papers and reports. Access to
the specific fishery data will help to develop models that can predict the features
required for optimizing the economic benefits of MPA. Contrariwise, one of the
benefits of a theoretical modeling of MPA is insight into the type of data that
should be collected in order that the best harvest strategies can be established in
the fishing zones. There are many assumptions and simplifications in our model
that are open to objections.
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