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POLYNOMIAL DIFFERENTIAL SYSTEMS WITH EXPLICIT
NON-ALGEBRAIC LIMIT CYCLES

REBIHA BENTERKI, JAUME LLIBRE

Abstract. Up to now all the examples of polynomial differential systems for
which non-algebraic limit cycles are known explicitly have degree at most 5.
Here we show that already there are polynomial differential systems of degree
at least exhibiting explicit non-algebraic limit cycles. It is well known that
polynomial differential systems of degree 1 (i.e. linear differential systems) has
no limit cycles. It remains the open question to determine if the polynomial
differential systems of degree 2 can exhibit explicit non-algebraic limit cycles.

1. Introduction and statement of the main results

Probably the existence of limit cycles is one of the more difficult objects to
study in the qualitative theory of differential equations in the plane. There is a
huge literature dedicated to this topic, see for instance the book of Ye et al [12], or
the famous Hilbert 16th problem [6] and [7]. Publications more closely related to
the problem in this article are [4, 5, 1, 2, 8, 9].

A polynomial differential system is a system of the form

ẋ = P (x, y),

ẏ = Q(x, y),
(1.1)

where P (x, y) and Q(x, y) are real polynomials in the variables x and y. The degree
of the system is the maximum of the degrees of the polynomials P and Q. As usual
the dot denotes derivative with respect to the independent variable t.

A limit cycle of system (1.1) is an isolated periodic solution in the set of all
periodic solutions of system (1.1). If a limit cycle is contained in an algebraic curve
of the plane, then we say that it is algebraic, otherwise it is called non-algebraic. In
other words a limit cycle is algebraic if there exists a real polynomial f(x, y) such
that the algebraic curve f(x, y) = 0 contains the limit cycle. In general, the orbits
of a polynomial differential system (1.1) are contained in analytic curves which are
not algebraic.

To distinguish when a limit cycle is algebraic or not, usually, it is not easy.
Thus, the well-known limit cycle of the van der Pol differential system exhibited in
1926 (see [11]) was not proved until 1995 by Odani [10] that it was non-algebraic.
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The van der Pol system can be written as a polynomial differential system (1.1) of
degree 3, but its limit cycle is not known explicitly.

These previous years (from 2006 up to now) several papers have been published
exhibiting polynomial differential systems for which non-algebraic limit cycles are
known explicitly. This means that in some coordinates we have an explicit analytic
expression of the curve containing the non-algebraic limit cycle. The first explicit
non-algebraic limit cycle, due to Gasull, Giacomini and Torregrosa [4], was for a
polynomial differential system of degree 5. Of course, multiplying the right hand
part of this polynomial differential system of degree 5 by (ax + by + c)n with n an
arbitrary positive integer, where the straight line ax+ by + c = 0 must be chosen in
such a way that it does not intersect the explicit limit cycle of the system, we get a
polynomial differential system of degree 5 + n exhibiting an explicit non-algebraic
limit cycle.

Immediately after this first paper appeared the paper of Al-Dosary [1] inspired
by [4] (note that this reference is quoted in [1]), providing a similar polynomial
differential system of degree 5 exhibiting an explicit non-algebraic limit cycle.

Giné and Grau [5] provide a polynomial differential system of degree 9 exhibiting
simultaneously two explicit limit cycles one algebraic and another non-algebraic.
Note that the paper [4] is also quoted in [5].

The aim of this paper is to show that there exist polynomial differential systems
of degree 3 exhibiting explicit non-algebraic limit cycles. Thus, our main result is
the following one.

Theorem 1.1. The differential polynomial system of degree 3,

ẋ = x + (y − x)(x2 − xy + y2),

ẏ = y − (y + x)(x2 − xy + y2),
(1.2)

has a unique non-algebraic limit cycle whose expression in polar coordinates (r, θ),
defined by x = r cos θ and y = r sin θ, is

r(θ) = eθ
√

r2
∗ − f(θ), (1.3)

where

r∗ = e2π

√
f(2π)
e4π − 1

≈ 1.1911644871948721 . . . ,

f(θ) = 4
∫ θ

0

e−2s

2− sin(2s)
ds.

Moreover, this limit cycle is a stable hyperbolic limit cycle.

The above theorem is proved in section 2. In short, since it is well known that
the linear differential systems (or polynomial differential systems of degree 1) have
no limit cycles, it remains the following open question:
Open question. Are there or not polynomial differential systems of degree 2 ex-
hibiting explicit non-algebraic limit cycles.
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2. Proof of Theorem 1.1

The polynomial differential system (1.2) in polar coordinates becomes

ṙ = r +
1
2
(sin(2θ)− 2)r3,

θ̇ =
1
2
r2(sin(2θ)− 2).

(2.1)

Taking as independent variable the coordinate θ, this differential system writes
dr

dθ
= r +

2
r(sin(2θ)− 2)

. (2.2)

Note that since θ̇ < 0, the orbits r(θ) of the differential equation (2.2) has
reversed their orientation with respect to the orbits (r(t), θ(t)) or (x(t), y(t)) of the
differential systems (2.1) and (1.2), respectively.

It is easy to check that the solution r(θ; r0) of the differential equation (2.2) such
that r(0; r0) = r0 is

r(θ; r0) = eθ
√

r2
0 − f(θ), (2.3)

where f(θ) is the function defined in the statement of Theorem 1.1.
Clearly the unique equilibrium point of the differential system (1.2) is the origin

of coordinates, which is an unstable node because its eigenvalues are 1 with mul-
tiplicity two, for more details see for instance [3, Theorem 2.15]. This equilibrium
point in polar coordinates become r = 0. This is the unique point of the plane
where the differential equation (2.2) is not defined. But we can extend the flow of
this differential equation to r = 0, assuming that at the origin of the plane in polar
coordinates we have an unstable node.

Figure 1. The phase portrait in the Poincaré disc of the polyno-
mial differential system (1.2)

The periodic orbits r(θ; r0) of (2.2) must satisfy r(2π; r0) = r0. A solution of
this equation is r0 = r∗, where r∗ is defined in the statement of Theorem 1.1. So,
if r(θ; r∗) > 0 for all θ ∈ R, we shall have r(θ; r∗) > 0 would be a periodic orbit,
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and consequently a limit cycle. In what follows it is proved that r(θ; r∗) > 0 for all
θ ∈ R. Indeed

r(θ; r∗) = eθ

√
e4π

e4π − 1
f(2π)− f(θ)

≥ eθ
√

f(2π)− f(θ)

= 2eθ

√∫ 2π

θ

e−2s

2− sin(2s)
ds > 0,

because e−2s/(2− sin(2s)) > 0 for all s ∈ R.
An easy computation shows that

d r(2π; r0)
d r0

∣∣
r0=r∗

= e4π > 1.

Therefore the limit cycle of the differential equation (2.2) is unstable and hyperbolic,
for more details see [3, section 1.6]. Consequently, this is a stable and hyperbolic
limit cycle for the differential system (1.2).

Clearly the curve (r(θ) cos θ, r(θ) sin θ) in the (x, y) plane with

r(θ)2 = e2θ(r2
∗ − f(θ)),

is not algebraic, due to the expression e2θr2
∗. More precisely, in cartesian coordinates

the curve defined by this limit cycle is

f(x, y) = x2 + y2 − e2 arctan(y/x)
(
r2
∗ − 4

∫ arctan(y/x)

0

e−2s

2− sin(2s)
ds

)
= 0.

If the limit cycle is algebraic this curve must be given by a polynomial, but a
polynomial f(x, y) in the variables x and y satisfies that there is a positive integer
n such that ∂nf/(∂x)n = 0, and this is not the case because in the derivative

∂f

∂x
= 2x +

2ye2 arctan(y/x)

x2 + y2

(
r2
∗ − 4

∫ arctan(y/x)

0

e−2s

2− sin(2s)
ds

)
− 4y

(x2 + y2)
(
2− sin

(
2 arctan(y/x)

))
it appears again the expression

e2 arctan(y/x)
(
r2
∗ − 4

∫ arctan(y/x)

0

e−2s

2− sin(2s)
ds

)
,

which already appears in f(x, y), and this expression will appear in the partial
derivative at any order.

Now we shall prove that the limit cycle given by r(θ; r∗) is the unique periodic
orbit of the differential system, and consequently the unique limit cycle. We recall
the so called Generalized Dulac’s Theorem, for a proof of it see [3, Theorem 7.12].

Theorem 2.1. Let R be an n-multiply connected region of R2 (i.e. R has one outer
boundary curve, and n − 1 inner boundary curves). Assume that the divergence
function ∂P/∂x + ∂Q/∂y of the C1 differential system ẋ = P (x, y), ẏ = Q(x, y)
has constant sign in the region R, and is not identically zero on any subregion of
R. Then this differential system has at most n− 1 periodic orbits which lie entirely
in R.
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We take as new independent variable the variable τ defined by dτ = (x2 +
y2)(x2 − xy + y2)dt. Since (x2 + y2)(x2 − xy + y2) only vanishes at the origin of
coordinates the differential system (1.2) and the differential system

x′ =
x + (y − x)(x2 − xy + y2)
(x2 + y2)(x2 − xy + y2)

,

y′ =
y − (y + x)(x2 − xy + y2)
(x2 + y2)(x2 − xy + y2)

,

(2.4)

where the prime denotes derivative with respect to the variable τ , have the same
phase portrait in R = R2\{(0, 0)}. An easy computation shows that the divergence
of the differential system (2.4) is

− 2
(x2 + y2)(x2 − xy + y2)

< 0 in R.

So, by Theorem 2.1, and since R is 2-multiply connected region of R2 it follows that
the differential system (2.4) and consequently the differential system (1.2) has at
most one periodic solution. In short, the unique periodic solution of system (1.2)
is r(θ; r∗). This completes the proof of Theorem 1.1.

Now we shall present the phase portrait of the differential system (1.2) in the
Poincaré disc, see the Poincaré compactification in [3, Chapter 5].

Since the polynomial ẋy− ẏx = (x2 +y2)(x2−xy+y2) has no real linear factors,
the compactification of Poincaré of the differential system (1.2) has no equilibrium
points at infinity, i.e. the infinity is a periodic orbit. Doing the change of variables
r = 1/ρ, the infinity of the differential equation (2.2) passes at the origin, and
equation (2.2) becomes

dρ

dθ
= −ρ− 2ρ3

sin(2θ)− 2
.

Hence, clearly ρ = 0 is an stable equilibrium point of this differential equation,
consequently the periodic orbit at infinity of the differential equation (1.3) is an
unstable limit cycle. Then the phase portrait in the Poincaré disc of the polynomial
differential system (1.2) is given in Figure 1.
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[5] J. Giné, M. Grau; Coexistence of algebraic and non-algebraic limit cycles, explicitly given,
using Riccati equations, Nonlinearity 19 (2006), 1939–1950.

[6] D. Hilbert; Mathematische Problem (lecture), Second Internat. Congress Math. Paris, 1900,
Nachr. Ges. Wiss. Göttingen Math.–Phys. Kl. 1900, pp 253–297.



6 R. BENTERKI, J. LLIBRE EJDE-2012/78

[7] Yu. S. Ilyashenko; Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. 39
(2002), 301–354.

[8] J. Llibre, M. Lima; Limit cycles and invariant cylinders for a class of continuous and dis-
continuous vector field in dimension 2n, Appl. Math. Comput. 217 (2011), 9985–9996.

[9] J. Llibre, A. Makhlouf; Bifurcation of limit cycles from a 4-dimensional center in 1:n reso-
nance, Appl. Math. Comput. 215 (2009), 140–146.

[10] K. Odani; The limit cycle of the van der Pol equation is not algebraic, J. Differential Equa-
tions 115 (1995), 146–152.

[11] B. van der Pol; On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. &
J. of Sci. 2(7) (1926), 978–992.

[12] Yan Qian Ye, Sui Lin Cai, Lan Sun Chen, Ke Cheng Huang, Ding Jun Luo, Zhi En Ma, Er
Nian Wang, Ming Shu Wang, Xin An Yang; Theory of Limit Cycles, Translations of Math.
Monographs, Vol. 66, Amer. Math. Soc, Providence, 1986.

Rebiha Benterki
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