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STRONGLY NONLINEAR NONHOMOGENEOUS ELLIPTIC
UNILATERAL PROBLEMS WITH L! DATA AND NO SIGN
CONDITIONS

ELHOUSSINE AZROUL, HICHAM REDWANE, CHIHAB YAZOUGH

ABSTRACT. In this article, we prove the existence of solutions to unilateral
problems involving nonlinear operators of the form:

Au+ H(z,u,Vu) = f

where A is a Leray Lions operator from W&’p(m)(Q) into its dual W_l’pl<°'”)(Q)
and H(z,s,§) is the nonlinear term satisfying some growth condition but no
sign condition. The right hand side f belong to L(f).

1. INTRODUCTION

Partial differential equations with nonlinearities involving non constant expo-
nents have attracted an increasing amount of attention in recent years. The devel-
opment, mainly by Ruzicka [23], of a theory modeling the behavior of electrorheo-
logical fluids, an important class of non-Newtonian fluids, seems to have boosted a
still far from completed effort to study and understand nonlinear PDE’s involving
variable exponents. Other applications relate to image processing [18], elasticity [5],
the flow in porous media [I6] and problems in the calculus of variations involving
variational integrals with nonstandard growth [26].

This in turn, gave rise to a revival of the interest in Lebesgue and Sobolev
spaces with variable exponent,where many of the basic properties of these spaces
are established by the work of Kovacik and Rakosnik [20].

Many models of the obstacle problem have already been analyzed for constant
exponents of nonlinearity. In [4] the authors have proved the existence of solution
for quasilinear degenerated elliptic unilateral problems associated to the operator
Au + g(x,u,Vu) = f in which the nonlinear term satisfies the sign condition.
The principal part A is a differential elliptic operator of the second order in di-
vergence form, acting from W, *(€,w) into its dual W~ (Q,w) and g having
natural growth with respect to Vu and uw not assuming any growth restrictions,
but assuming the sign-condition.

Porretta [22] studied the same problem in the classical Sobolev space that is
(p(.) = p constant) where the right-hand side is a bounded Radon measure on 2
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and where the sign condition is violated, more precisely the problem treated in [22]
is of the form

Au+g(u)|VulP =p in Q
u=0 on 0.

The work by Aharouch et al [2] [3] can be seen as generalization of [22] in the sense
that in [2] the nonlinearity have taken as H(z,u, Vu) and in [3] the degenerated case
for the same problem. Recently, Rodriguez et al in [24] have proved the existence
and uniqueness of an entropy solution to obstacle problem with variable growth
and L' data, of the form

—Apu+B(,u)=f inQ
u=0 on 01,

where [ is some function related to a maximal monotone graph. Besides, while
f(z,u, Vu), Benboubker, Azroul and Barbara have proved the existence results
in Sobolev spaces with variable exponent by using a classical theorem of Lions
operators of the calculus of variations (see [17]).

Recently, while Au = — div(|Vu[P(®*)=2Vu), H = 0, Bendahmane and Wittbold
[6] proved the existence and uniqueness of renormalized solution with L!-data, and
Wittbold and Zimmermann [7] extended the results to the case Au = — div(a(z, u)),
(see also Bendahmane and Karlsen [9]).

The objective of our article, is to study the non homogenous obstacle problem
with L' data associated to the general nonlinear operator of the form

Au+ H(z,u,Vu) = f in Q, .
u=0 on 0N. (1.1)

The principal part Au = —div(a(z, Vu)) is a differential elliptic operator of the

second order in divergence form, acting from W&’p(x) (Q) into its dual W17 @)(Q)
and we suppose that the lower order term satisfies the exact natural growth:

|H (x,5,)| <~(z)+ g(s)|e[P@

with v(z) € LY(Q) and g € L*(R) and g > 0 but not satisfying the sign condition.
Under these assumptions the above problem does not admit, in general, a weak
solution since the terms a(u, Vu) and H(z,u, Vu) may not belong to L{ (£2). In
order to overcome this difficulty, we work with the framework of entropy solutions
introduced by Bénilan et al [I]. Let us mention that an equivalent notion of solution,
called renormalized solution was first introduced by Di-Perna and Lions [I2] for the
study of Boltzmann equation. It has been used by many authors to study the
elliptic equations (see [I1]) and the parabolic equations (see [13, 14} [15]).

Note that our paper can be seen as a generalization of [2] and [24], and as a
continuation of [I7].

The outline of this paper is as follows. In Section 2, we give some preliminaries
and notations. In Section 3, the existence of entropy solutions of is obtained.
In Section 4, we give the proof of Proposition Lemma and Lemma (see
appendix).
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2. PRELIMINARIES

In what follows, we recall some definitions and basic properties of Lebesgue and
Sobolev spaces with variable exponents. For each open bounded subset Q of RV
(N > 1), we denote

CT(Q) = {continuous function p : @ — R such that 1 <p_ <p, < oo}7
where p_ = inf__gp(z) and p; = sup, g p(r). We define the variable exponent
Lebesgue space for p € C*(Q) by:

LP@)(Q) = {u : Q — R measurable, / lu(z)[P® da < oo}
Q
the space LP(*)(Q) under the norm

[ullp(z) = inf {A >0, / |@|p(r) <1
Q A

is a uniformly convex Banach space, then reflexive. We denote by Lp'(z)(Q) the
conjugate space of LP(*)(Q) where ﬁ + ﬁ =1.

Proposition 2.1 ([19]). (i) For any u € LP™) () and v € LP @) (Q), we have

1 1
wvdz| < (— 4+ — ) [|[u|lpa) || () -
| el < (=4 =) el ol

(ii) For all p1,p2 € CT(Q) such that pi(x) < pa(x) and any x € Q, we have
LP2(@)(Q) — LP1(*)(Q) and the embedding is continuous.

Proposition 2.2 ([I9]). Let us denote
pu) = [ Jul @z, e 1))
Q

then the following assertions hold:
(i) [Jullp@)y <1 (resp. = 1 or > 1) if and only if p(u) < 1 (resp. = 1 or >1)
(i) Hu||g(z) > 1 implies 1|)|u||£(’$) < p(u) < ||u|\§(+m), and ||lullpmy < 1 implies
HU”p&) < p(u) < lul p(x)
(iii) [Jullp@) — O if and only if p(u) — 0, and |ullpm) — oo if and only if
p(u) — oo.

We define the variable exponent Sobolev space by
WP (Q) = {u € LP@(Q) and |Vu| € LP@(Q)}.
where the norm is defined by

L) = [tllp@) + |Vullpe) Yue WhHPE(Q).

[l

We denote by Wol’p(x)(ﬂ) the closure of C§°(2) in Wl’p(m)(ﬂ) and px (x) = J\],vf,(fz))
for p(x) < N.

Proposition 2.3 ([I9]). (i) Assuming 1 < p_ < p, < oo, the spaces W1P*)(Q)
and Wol’p(x)(Q) are separable and reflexive Banach spaces.

(ii) if ¢ € CT(Q) and q(z) < px (x) for any x € Q, then the embedding
VVol’p(x)(Q) e LI@)(Q) is compact and continuous.
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(#ii) There is a constant C > 0, such that
1,p(x
lulloe) < ClIVully@y  Yu € Wo (@),
Remark 2.4. By Proposition (iii), we know that [|Vu|,) and [|ully ) are

equivalent norms on W, 7™ (Q).

3. EXISTENCE OF AN ENTROPY SOLUTIONS

In this section, we study the existence of an entropy solution of the obstacle
problem.

3.1. Basic assumptions and some Lemmas. Throughout the paper, we assume
that the following assumptions hold.

Let Q be a bounded open set of RY (N > 1), p € C*(Q) and (1/p(x)) +
(1/p/(@)) = 1.

The function a : © x RY — RY is a Carathéodory function satisfying the follow-
ing conditions: For all £,7 € RY and for almost every z € €,

la(z,€)] < Blk(z) + €771, (3.1)
la(z,&) —a(z, )] —n) >0 VE#n,
a(z, )€ > al¢P™), (3.3)

where k(z) is a positive function in L?' ()(Q) and o and /3 are a positive constants.
Let H(x,5,&): QxR xRY — R be a Carathéodory function such that for a.e.
r € Q and for all s € R, £ € RV the growth condition:

|[H(x,5,6)| < 7(x) + g(s)[€[") (3-4)

is satisfied, where g : R — R™ is a continuous positive function that belongs to
LY(R), while v(z) belongs to L'(Q).

ferL(). (3.5)
Finally, let the convex set
Ky={ue Wol’p(x)(Q), u>1 ae. in Q}
where v is a measurable function such that
ot e WEPT(Q)n L2 (Q) (3.6)

Lemma 3.1 ([17]). Let g € LT(I)(Q) and g, € LT(I)(Q) with Hgn”T(m) < C for
1 < r(z) < oo. If gn(z) — g(x) a.e. on Q, then g, — g in L™ (Q).

Lemma 3.2. Assume that (3.1)—(3.3), and let (u,), be a sequence in Wol’p(m)(ﬂ)
such that u, — u weakly in Wol’p(w)(Q) and

/Q[a(ac7 Vuy) — a(z, Vu)|V(u, — u)dr — 0. (3.7

Then u, — u strongly in Wol’p(z)(Q).

The proof of the above Lemma is a slight modification of the analogues one of
[I7, Lemma 3.2].
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Lemma 3.3. Let F: R — R be a uniformly Lipschitz function with F(0) =0 and
peCL(Q). Ifue Wol’p(w)(Q), then F(u) € Wol’p(w)(Q), moreover, if D is the set
of discontinuity points of F' is finite, then

O(F ou) _ {F’(u)au a.e. in{x € N:u(x)¢ D}

ox;
Ox; 0 a.e. in{x € Q:u(zr) € D}.

The proof of the above lemma is presented in the appendix. The following
Lemma is a direct deduction from Lemma 3.3

Lemma 3.4. Let u € Wo™™(Q) then ut = max(u,0) and u~ = max(—u,0) lie
in Wol’p(m)(Q). Moreover

aw_{g;i ifu>0  du {o ifu>0

dr; |0 ifu<0, Oz |—£ ifu<o.

3.2. Definition and existence result of an entropy solution. In this article,
T}, denotes the truncation function at height k > 0: Ty (r) = min(k, max(r, —k)).
Define

Tol’p(z)(Q) = {u measurable in 2 : Tj;(u) € Wol’p(x)(ﬂ), Vk>0}.
We now give the following definition and existence theorem.

Definition 3.5. An entropy solution of the obstacle problem for {f,v} is a mea-
surable function u € Tol’p(w)(Q) such that u > v a.e. in Q, and

/ a(x, Vu)VTi(p — u)dx + / H(z,u,Vu)Ti(p — u)dx > / fTi(p —u)dx

Q Q Q

for all k > 0 for all ¢ € K, N L>™(Q).

Theorem 3.6. Under assumptions (3.1), (3.2)), (3.3), (3.4), (3.5) and (3.6]) there

ezists at least an entropy solution.

3.3. Approximate problem. Let {2, be a sequence of compact subsets of {2 such
that €2, is increasing to 2 as n — oo. We consider the following sequence of
approximate problems

UREKw

/Qa(x, Vun,)V(uy, —v)dx + /Q H, (z,upn, Vuy)(un —v)de < /an(un —v)dz
(

3.8)
for all v € Ky, where f, are regular functions such that f, € L*(Q), strongly
converge to f in L'(Q) and || f,][z10) < || f]|L1(0) and

Ho(z,5,€) = — &2 58) o,

1—|—%‘H(l‘,8,§

where xq,, is the characteristic function of ,,. Note that |H,(z,s,&)| < |H(x,s,§)|
and |Hy(z,s,£)] < n.

Theorem 3.7. For fived n, the approximate problem (3.8) has at least one solution.
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Proof. Let X = K, we define the operator G, : X — X* by

(Gru,v) = /QHn(x, u, Vu)vdz
Thanks to Holder’s inequality, for all u,v € X,

1
|/H x,u, Vu) vdx| <( p——l—— /|H x,u, Vu)? (=) dz)? vl Lo ()
Q
< i i 0p+ 0 6
< (= 4 7 )n"+ (meas(2))"[[v]| Lo (0
p-  pP-
with

_ {1/]9' if | Ho (2,0, V)| o o gy = 1 (3.9)

1/py i || Hn (@, u, V)| o o) < 1

We deduce that the operator B, = A + G, is pseudomonotone (see appendix,
Lemma [4.2). On the other hand, we show that B, is coercive in the following
sense: there exists vg € Ky such that

<ana v — U0>

— 400 if [|v]l1 p@) — 00 and v € Ky,
Hvlll,p(m’)

Let vy € Ky, we use Holder inequality and the growth condition to have
(Av,vg) = / a(z, Vu)Vudz
Q
< C(f -|- — / la(x, Vv)|P (I)) ||U0HW1 P(®) ()

<C(-+ —)||voHW1 oo [ B+ [9opr)”

< Co(Ch + p(V)?

where
g _ [ i 1a@ Vo)l e > 1 510)
P’1+ if Ha(x7vv)”Lp’(r)(Q) <1
From ({3.3)), we have
(Av)  (Avwy) 1 )
a V) = Co(C \Y% 3.11
[olhate) ~ Tollpte) = Tollipe 2PV~ ColCt Vo)) (3.11)

p(Vv)

hence — OO a R : G G
¢ Il (z) S ”UHl,p(a:) 0o. Since SGnpv,v> <Gnv,v90>
p(z

HUHLP(:E) Hvul,p(z)

are bounded,
then we have

(Bpv,v —vo)  (Av,v —wg) | (Gpv,v)  (Gpv,v0)

1,p(z) B HU”Lp(w) [|v 1,p(x) ||U||1,p(z)

as [[vl1,p@) — oo. Finally B, is pseudomonotone and coercwe Hence by virtue
of [2I, Theorem 8.2, chapter 2], the approximate problem (3.8) has at least one
solution. (]
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3.3.1. A priori estimate.

Proposition 3.8. Assume that (3.1)—(3.6) hold, and let u, is a solution of the
approximate problem (3.8). Then, there exists a constant C' (which does not depend
on the n and k) such that

/ VT (u,)|P®dz < Ck Y k> 0.
Q
Proof. Let v = u, — nexp(G(un))Tr(u) — ") where G(s) = [ %dt and n > 0,
we have v € Wol’p(x)(Q), and for 1 small enough we deduce that v > v, and thus v
is an admissible test function in (3.8)). Then

/ a(x, Vun)V(exp(G(un))Tk(qu — 1/)*))dx

Q
+ / H (2, U, Vg ) exp(G(un)) T (u)f — ) da
Q

< /an exp(G(up)) Ty (u) — T )dx
which implies
/ a(zx, Vun)Vun@ exp(G(un))Tk(uI — ¢ M)dx
Q
+/ a(z, Vu, ) VT (ul — 1) exp(G(uy))dz
Q
< 7/ H, (2, U, Vg ) exp(G (un)) T (ut —p+)da
Q
+ [ desp(Glun)Tuluf, ~ v*)ds
Q
< [+ 9@ expl Gl Tl — i)
- / 9| Vn [P exp(G(un)) Th (u)f — ) d.
Q
In view of and since || fnllLr @) < [|fll1), v € L* () we deduce that
/ a(x, Vu,) VT (ub — ™) exp(G(uy,)dz
Q

< / fo exp(Glun)) Ti(ut — ) da + / () exp(G (un)) Tt} — %) de
Q Q

lgllzr e
< (1l @) + Il @) exp(= Nk < Crk

where C1 is a positive constant. Consequently,
/ a(x, Vu,)Vu! exp(G(uy,))dz
{luif —¢F|<k}

< / a(z, Vu,)VT exp(G(uy,))dz + Cik
{lud —y+ | <k}
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Thanks to (3.3) and Young’s inequality, we deduce that
/ |Vu [P@dz < Oyk. (3.12)
{luf | <k}
Since {z € O, |u| <k} C{zr € Q,|uf —T| <k+ [T ||}, it follows that
[ vnapde= [ vape < Vet
Q {lui <k} {lum —v+ [<k+ll9+ oo}
Moreover, (3.12)) implies
/ VT3 (u])|P®dz < Csk, Yk >0, (3.13)
Q
where C3 is a positive constant.

On the other hand, taking v = u,, +exp(—G(u,)Tk(u,, ) as test function in (3.8)),

we obtain
_ /Q (2, V)V (exp(— G (un)) To(us ) )da
- / Ho (2t V) exp(— G () Ti (1 )
Q
- n €X *Gun T’I,L:l dx
< /Qfep( (un)) T (1)
Using 7 we have

/Qa(:r, Vuy,)Vu, 9(un)

exp(—G(un)) Ty (5 )
—/a(x7Vun)VTk(u;)exp(—G(un))dx
Q
< / (@) exp(=G(un))Ti (uy, )dz +/ 9(un) [V [P exp(—G (un)) Tio(uy, )d
Q Q
= [ fep(-Glun)) Tl )iz
Q
By (3.3) and since v € LY(Q), || fnll22(0) < | f]lL2 () we have
—/a(x,Vun)VTk(u;)exp(—G(un))dac
Q
= / a(z, Vun) VT (u,) exp(—G(uy,))dz < Csk
{un <0}
By using again (3.3]) we deduce that
/ VT (1) |P@dz < Cyk, (3.14)
{un<0}
where Cy is a constant positive. Combining (3.13)) and (3.14)), we conclude

/ VT (un)[P@dz < Ck - with C > 0, (3.15)
Q

VT (un) | oo () < (CR)”", (3.16)
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with

(3.17)

v J1pT W VT (un) ey ) 2 1
L/pt i VT (un) || Lo o) < 1.

3.3.2. Strong convergence of truncations.

Proposition 3.9. There exist a measurable function u and a subsequence of up
such that

Ti(upn) — Tr(u)  strongly in Wol’p(r) Q).
The proof of the above proposition is done in two steps.

Step 1. We will show that (u,), is a Cauchy sequence in measure in Q. Ac-
cording to the Poincaré inequality and (3.16]),

k meas{|un| > k} = T (un)|da < / Ty (uy,)|d
{lun|>k} Q
1 1
< (= + =)l @) 1T () e (318)
p- P
1 1 )
< (? + F)(meas(Q) + 1)1/177 1T ()| () < Ok
Thus

meas{|u,| >k} < C —0 ask — oo (3.19)

1—1
5

For all 6 > 0, we obtain

meas{|u, — Uy | > 0} < meas{|u,| > k} + meas{|u,,| > k}
+ meas{|Tk (un) — Tk (um)| > d}.

In view of (3.19)), we deduce that for all £ > 0, there exists kg > 0 such that

meas{|un| > k} < % and  meas{|un| > k} < g Vk > ko. (3.20)

and by (3.15), we have (T (uy)), bounded in Wol’p(m) (), then there exists a subse-
quence (T (ty,)), such that T} (u,) converges to 7, a.e. in Q, strongly in LP(*)(Q)
and weakly in Wol’p(z)(Q) as n tends to co. Thus, we can assume that (Tg(un))n is
a Cauchy sequence in measure in (2, then there exists ng which depend on ¢ and &
such that

meas{|Tx(un) — Tk (um)| > 0} < % Ym,n > ng and k > ko. (3.21)
by combining(3.20))and(3.21)), we obtain for all § > 0, there exists ¢ > 0 such that
meas{|u, —upm| >} <e Vn, m > no(ko,9).

Then (uy), is a Cauchy sequence in measure in 2, thus, there exists a subsequence
still denoted u,, which converges almost everywhere to some measurable function
u, and by Lemma [3.1] we obtain

Tr(un) — Ti(u) strongly in LP®) () and weakly in Wol’p(x)(ﬂ). (3.22)
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Step 2. We will use the following function of one real variable, which is defined

as follows
1 if |s| <j
hi(s)=<0 if |[s| >j5+1 (3.23)
jHl—ls| ifj<Is|<j+1
where j is a nonnegative real parameter.

To prove the strong convergence of truncation T (u,), we have to prove the
following assertions:

Proposition 3.10. The subsequence of u, solution of problem (3.8|) satisfies, for
any k > 0, Assertion (i):
lim lim a(x, Vuy)Vupdr = 0. (3.24)
JTeonTo0 J i< un |<j+1}

Assertion(ii):

lim lim [ a(z, VIi(un)) — a(z, VI(w)) (VI (un) — VI (w))hj(un)dz = 0.
e (3.25)
Assertion(iii):
JIE& nllrrgo a(z, VI (un)) VI (un)(1 — hj(uy))dz = 0. (3.26)
Assertion(iv): "

lim lim A (a(m, VTi(uyn)) — a(x, VTk(u))) (VT (uy) — VT (u))dz = 0. (3.27)

j—00 n—00

The proof of the above proposition is shown in the appendix. Thanks to (3.27)
and lemma [3:2] we have

Ty (upn) — Tx(u) strongly in Wol’p(x)(Q) as n tends to + oo, (3.28)
Vu, — Vu ae. in Q. (3.29)

3.3.3. Passing to the limit.
H,(z,upn, Vu,) — H(x,u,Vu) strongly in L'(€). (3.30)

Let v = uy, + exp(—G(uy)) ffn 9(8)X{s<—nyds. Since v € Wol’p(z)(Q) and v > 1 is
an admissible test function in (3.8)),
0

| ate. V)9 (= exp(=Glun)) [ o(e)xecn) dsda

Un
0

/Hx U, V) (—exp(—G(u ))/ 9(8)X{s<—nyds)dx

Un

/fn exp(—G(u ))/ 9(s)X{s<—ny ds dz.

This implies

/ a(z, Vup)Vu,
Q

0
exp(—G (1)) / 9(8)X (o) d5)dz

Un

g(un)

+/a(x7Vun)Vunexp(—G(un))g(un)x{un<_h}dx
Q
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0

< / (&) exp(~G(un) / 9(5) X oeny ds da

n

0
4 /Q (1) [Vt P exp(— () / 9(8)Xgo<ny ds da

n

0
— [ fuexp(=Glun)) [ o(s)xiecn dsda.
using (3.3) and since ffn 9(8)X{s<—nyds < f__oho g(s)ds, we obtain

/ a(x, Vi) Vg exp(=G (un))g(Un) X {u, <—nydT
Q

ol s
<exp( P ®) [ g)ds o + Iallro)

— 0o

ol | [~
<exp( 2D [ gs)dslzre + 1)

— o0
using again ({3.3)), we obtain

—h
/ 9(n) |V, |P® da < c/ g(s)ds (3.31)
{un<7h} —0o0
and since g € L*(R), we deduce that
lim sup/ 9(tn) |V, [P @ de = 0. (3.32)
h—4oc0 pn {un<—h}

On the other hand, let
+oo
M = exp(lgH(L;(R))/ g(s)ds
0

and h > M + [|¢pT || L (). Consider
0=t~ exp(Glun)) [ g
0

Since v € Wol’p(z)(Q) and v > 1, v is an admissible test function in (3.8]). Then,
similarly to (3.32)), we obtain

lim sup/ 9(un) |V, [P® de = 0. (3.33)
h—+o00 neN {un>h}

Combining (3.28)), (3.32), (3.33) and Vitali’s theorem, we conclude ([3.30). Now,

let p € Ky N L>®(Q) and take v = u,, — Ti(uy, — @) as a test function in (3.8). We

obtain

un€K¢

/ a(x, Vup ) VT (un — p)dx —|—/ H, (z,upn, Vu,)Ti(u, — @)dz
Q Q (3.34)

< / foTk(un — p)dx Vo € Ky N L*(Q), Vk > 0.
Q

Finally, from (3.28) and (3.30]), we can pass to the limit in (3.34]). This completes
the proof of Theorem
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4. APPENDIX

Proof of Proposition[2.1 Assertion (i): Consider the function
v = 1w, — nexp(Guy)) Ty (un — Tj(un)) ™.

For j large enough and 7 small enough, we can deduce that v > v and since
v E Wol’p(x) (), v is a admissible test function in (3.8)). Then, we obtain

/ a(z, Vun)V(eXp(G(un))ﬂ (up — Tj(un))+>dx

Q

4 / Ho (@, Vitg) exp(Gun)) T (0 — T () *da
Q

< / Fu xD(Cun)) T (1 — Ty () * .
Q
From the growth conditions (3.3) and (3.4), we have

/Qa(x, Vu,) V(T (un, — T (un))+) exp(G(uy,))dx
< [ 2(0) exp(G ) Ti (0 ~ Ty (1)) d (4.1)
Q

+ / fr exp(G )T (1 — T () .
Q

Since f,, converges to f strongly in L'(2) and v € L(Q), by Lebesgue’s theorem,
the right-hand side approaches zero as n,j — oco. Therefore, passing to the limit
first in m, then in j, we obtain from (4.1)

lim lim a(x, Vuy,)Vundr = 0. (4.2)

Imeen=o Jij<un<j+1}
On the other hand, consider the test function v = wu, + exp(—G(u,))T1(un —
T;(up))~ in (3.8). Similarly to (4.2), it is easy to see that

lim lim a(z, Vup)Vupdr =0 (4.3)

J=oe =00 JLj1<u, <—j}

Finally, by and we obtain assertion (i).

Assertion (ii): On one hand, let v = u, —nexp(G(uy))(Tx (wn) — T (u)) T hj(uy)
with h; is defined in (3.23]) and 1 small enough such that v € K, then we take v
as test function in e obtain

/Q a(, V)V (1 exp(Glun)) (Th(un) = Th(w)* by (un) ) da
+ /Q Hoy (@, V) (150G () (T (1) = Te(w)) g (un) ) d

< [ Fanexp(G ) (Ti(un) = Tilw) by )
Q
Similarly, using )and), we deduce

/Qa(x, YV, ) V(T (up) — Tp(u)) ™ exp(G(un))hj(un)dx

< / () exp(G () (Ti (1) — Ti (1)) by (1)l
Q
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+ / (@, Vi) Vit exp(G (1)) (Th () — T () +dar
{j<u,<j+1}

+ / Fo exD(G ) (Ti (1) — Ti (1)) By (1)
Q

In view of (4.2)), the convergence f,, to f in L1(Q) and v € L1(Q), it is easy to see
that

lim lim a(x, Vun )V (Tk(up) — Tp(u)) ™
J=heo n= 00 JUTy (un) ~ T (u) >0} (4.4)
x exp(G(un))hj(u,)dz < 0.
Moreover, (4.4) becomes

lim lim a(x, Vup )V (T (un) — Tk (u))
J=He0 N0 JUTy ()~ Ti (u) 20, |un| <k}

x exp(G(un))hj(u,)dx

— lim lim a(x, Vu,) VT (u)
J=H00 N H00 JUTy ()~ Th (u) >0, |un|>k}

x exp(G(un))hj(u,)dz <0
Since hj(up) = 0 if |u,| > j + 1, we obtain

lim lim a(x, V) VI (u) exp(G(un))hj(un)dx
I koo OO T () =T () 20, [un >k}

= lim lim a(z, VTjt1(un)) VT (w)
J= 00 A0 JUTy ()~ Th (u) 20, |un| >k}

x exp(G (1) ) (1) do

= lim X,;VTi(u) exp(G(u))hj(u)dz =0,
I J{ul>k}

where X is the limit of a(x, VT (u,)) in (LP ®)(Q))N as n goes to infinity and
VT (u)X{ju/>k} = 0 a.e. in . Consequently,

lim (a(a:, VT (un)) — alz, VT (u)))
J,m—=00 {Tk (un)_Tk (U)ZO}

X (VT (un) — VT (u)hj(u,) = 0.

On the other hand, taking v = u, + exp(—G(un))(Th(un) — Ti(w))” hj(un) as test
function in (3.8)) and reasoning as in (4.5)) we have

/Q a(, Vun )V (= exp(=G(un)) (T (un) — Ti(u)) ™ hj(un))dz

(4.5)

+ /Q H, (2, Un, Vi) (—exp(—G(un)) (Tk (un) — T (u)) ™ hj(uy))dz
< — | Fuexp(= G u) Tilie) = Tiw) s ()
Similarly to (4.5), it is easy to see that
lim a(z, Vu,)V (T (un) — T(u)) exp(—=G(un)) b (un)dz = 0.

390 JUTy (wn ) — T (u) <0}

(4.6)



14 E. AZROUL, H. REDWANE, C. YAZOUGH, EJDE-2012/79
Combing (4.5) and (4.6) we obtain the desired assertion (ii).
Assertion (iii): Let v = u, +exp(—G(uy,))Tk(un) ™ (1 —h;(u,)) as test function

in(3.8]). Then we have

/ al, V)V (= exp(=G(un))Tr(un) ™ (1 = j(un) ) da

Q
+ / oo,y V) (= exp(=G 1)) Ti(un) ™ (1= hy(un)) ) de
Q
<= [ fuexp(-Glu)Tiun) (1= hyun))ds
Q

Using(3.4)) and (3.3]), we deduce that

/{ 4 ) VTi) (=Gl (1 )l
< —/ . ' a(x, Vup)Vu, exp(—G(un)) Tk (un) ~dz
{-1-j<u,<-5}
+ [ @) exp(=G(,) Tulua) (1 = o)

- / fo e5D(— G (1)) Ti(t1n)~ (1 — (1))

In view of (3.24]), the second integral tends to zero as n and j approach infinity.
By Lebesgue’s theorem, it is possible to conclude that the third and the fourth
integrals converge to zero as n and j approach infinity. Then

lim a(z, VT (un))VTx(un) (1 — hj(uy,))dz = 0. (4.7)

Jm—00 J ey, <0}

On the other hand, we take v = u,, — nexp(G(un))Tk(u,}; — ) (1 — hj(uy,)) which
is an admissible test function in (3.8)), we have

/Qa(x, Vun)V(n exp(G(up)) Tho(u — ) (1 — hj(un)))dx
+ /Q Hy (4, Vun)(n exp(G(un))Te(ut — H)(1 = hy (un)))d:c

< [ fu(nesp(Glun)Titut = 5)(1 = by () )da
Which takes, by using and (3.3), the from

/Q o, Vi) VT (uF — o) exp(Glun))(1 — By (un))da
< —/ a(z, V)V, exp(G(up)) Ty (u —¢)de
{i<un <j+1}
—|—/ a(x, V)V, exp(Gun)) T (u)h — 1) de (4.8)
{—=j—1<5un<—j}
+ [ @) explGlu )Tty =01 = b))

+ / fo exp(G () Ti (- — 6 (1 = hy(un))dx = 214, )
Q
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By (3.24) and Lebesgue’s theorem, we conclude that €1(j,n) converges to zero as
n and j appraoch infinity. From (4.8]), we have

/ . a(x, Vu, )V, exp(Gu,)) (1 — hj(uy,))dz
{lud —pF|<k}

< / a(z, Vu,) VT exp(G(uy,) (1 — hj(un)))dz +€1(j,n)
{lud —pt <k}
Thanks to (3.1)) and Young’s inequality, it is possible to conclude that
/ (@, V)V exp(Glun) (1 — by (w,)))da < £a(j,m),
{luik —pt|<k}

where e2(j,n) converges to zero as n and j go to infinity. Since exp(G(uy)) is
bounded,

/{I oyt |<k} a(@, Vun) Vg (1= hy(un)))dz < e5(j,n).

Since {z € Q, |uf|<k}C{zeQ, |uf —¢T|<k+ ¢}, hence
/ a(, Van) Vn (1 — by (un)))da
{lun |<k}

<

/ (2, Vi) Vun (1 — hy (un)))da < £3(j, n)
{luit =+ [<k+]+ ] oo }
Which, for all £ > 0, yields

lim a(x, VT (un)) VT (un)(1 — hj(uy))dz =0, (4.9)

J,n—00 {un>0}

using (4.7) and (4.9), we conclude (3.26) of assertion (iii).

Assertion(iv): First we have

/Q(a(gc, VT (un)) — a(z, VI (W) (VT (un) — VI (u))dz
= /Q(a(:lc7 VT (un)) — a(z, VIi(w))) (VT (un) — VIk(w))h;(uy,)d

+ /Q(a(ac7 VT (un)) — a(z, VT (w))) (VT (un) — VT (w))(1 — hj(uy))dz

Thanks to (3.25]), the first integral of the right hand side converges to zero as n and
j tend to infinity. For the second term, we have

/Qa(ac, VT (un)) — alz, VI (w)) (VT (un) — VI (w)(1 — hj(uy))dz
= /Qa(x, VT (un)) VT (un) (1 — hj(uy)) de
- /Qa(:mVTk(un))VTk(u)(l () da

- /Qa(x,VTk(u))(VTk(un) VT (1 hy(un)) da

By (3.26)), the first integral of the right-hand side approaches zero as n and j tend to
infinity, and since a(x, Vi (u,)) in (LP ®)(Q))N and VT (u)(1—h;(u,)) converges
to zero, hence the second integral converges to zero. For the third integral, it
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converges to zero because VT (u,) — VT (u) weakly in (LP(®)(Q))N. Finally we
conclude that,

n—oo

lim (a(x, VTi(un)) — alz, VTk(u)))(VTk(un) — VTi(u))dz = 0.
Q
The proof of Proposition is complete. |

Proof of Lemma[3.3 Take at first the case of FF € C'(R) and F’ € L>(R). Let

u € Wol’p(x)(Q). Since C’go(Q)lep(m)(Q) = Wg’p(w)(Q), there exists u, € C§°(Q)
such that u, — u in Wol’p(m)(Q), then u, — u a.e, in Q and Vu, — Vu a.e.
in Q, then F(u,) — F(u) a.e. in Q. In the the other hand, we have |F(u,)| =
[F(un) = F(0)] < [[F'[|oc|unl, then

IF( PO < ([F[loo + 1)PH un[P),

‘p(x)
8:51 ’

where M = (||F'||co + 1)P*+. Then F(u,) is bounded in Wol’p(x)(Q) and we obtain
F(up) = v in Wol’p(z)(Q)7 then F(u,) — v strongly in LY®)(Q) with 1 < ¢(z) <
p*(x) and p*(z) = Iffvf;f(wm)). Since F(up) — v a.e. in Q, we obtain v = F(u) €
Wy ().

Let F: R — R a uniformly Lipschitz function, then F,, = F x¢,, — F uniformly
on each compact, where ¢, is a regularizing sequence, then F,, € C'(R) and F!, €

L (R), and from the first part, we have F,(u) € Wol’p(w)(Q) and F,(u) — F(u)
a.e. in Q. Since (Fj,(u)), is bounded in Wol’p(x)(Q), then F,(u) — 7 weakly in
Wol’p(z)(Q) a.e. in Q, then ¥ = F(u) € Wol’p(m)(Q). The following Lemma is a
direct deduction of the Lemma d

Definition 4.1. Let Y be a separable reflexive Banach space. The operator B
from Y to its dual Y* is called of the calculus of variations type, if B is bounded
and is of the form

B(u) = B(u,u) (4.10)

where (u,v) — B(u,v) is an operator from Y x Y into Y* satisfying the following
properties:

Yu € Y, v +— B(u,v) is bounded hemicontinuous from Y to Y™

4.11
and (B(u,u) — B(u,v),u —v) > 0. (4.11)
Yv €Y, u+— B(u,v) is bounded hemicontinuous from Y to Y*, (4.12)
if u, — u weakly in Y and if (B(un,un) — B(tn, u), 4, —u) — 0 113
then (B(up,v),un) — B(u,v) weakly in Y*, Vo € Y. (4.13)

if u, — u weakly in Y and if B(u,,,v) — 1 weakly in Y*
y (tn,v) =9 y (4.14)

then <B(U7uv)aun> - <¢,U>

Lemma 4.2. The operator B is of the calculus of variations type.
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Proof. We put
bl(v,ﬁ)):/a(:r,Vv)Vu?dx, bg(um?):/HE(x,u,Vu)u?dx,
Q Q

where
H(x,s,§)

1+ ¢|H(x,s,&)|
The function @ — by (v, W) 4 be(u, W) is continuous in W) P z)(Q) Then
b1 (v, W) + bg(u,w) = b(u,v,w) = (B:(u,v),w)
and B.(u,v) € W17 @)(Q). We have B.( = B.u and B is bounded. Then,
it is sufﬁment to check 4 11 (4.14]).
Next we show that (4.11)) and (4.12)) are true. By (3.3)), we have

(Be(u,u) — Be(u,v),u — vy = by (u,u —v) — by (v,u — v)

H.(z,s,§) =

= /Q(a(x, Vu) — a(z, Vv))(Vu — Vo)dz > 0.

The operator v — B.(u,v) is bounded hemi-continuous. We have: a(z, V(v1 +
Avg)) — a(x, Vo) strongly in Lpl(m)(ﬂ) as A — 0. On the other hand, (H.(x,u; +
Mg, V(u1 4 Aug)))a is bounded in LP' ) (Q) and H.(z,u; + Aug, V(u1 + Aug)) —
H.(x,u1,Vuy) a.e. in  hence Lemma gives

H.(z,uy + Aug, V(up + Aug)) — He(z,u1, Vuy)  weakly in LP ®)(Q) as A — 0.
It is easy to see that b(u,vq + Ave, W) converges to b(u,v1,w) as A tends to 0, for
all u,v,w € Wol’p(f)(Q) and b(uy + Aug, v, W) converges to b(ui,v,w) as A tends to
0, for all w,v,w € Wol’p(w)(Q), then we deduce ([4.12)).

Now we prove (4.13). Assume u, — u weakly in Wol’p(z)(Q) and (B(un, un) —
B(up,u),u, —u) — 0. Then

(B(tn,un) — Blun,u), un, —u) = /Q(a(m, Vuy,) — a(z, Vu))V(u, — u)dz — 0

then, by Lemmawe have, u,, — u strongly in Wl’p(m)(Q) which gives b(uy,, v, W)
converges to b(u,v,w) Yw € Wol’p(w)( Q) and then B.(un,v) converges to B.(u,v)
weakly to W_1>p/(””)(Q) It remains to prove , we assume that, u, converges
to u weakly in W’ p(z)(Q) and that

Blup,v) = ¢ weakly in W™ (Q). (4.15)
Thanks to (3.1)), we obtain a(z, Vv) € (LP @) (Q))N then,
b1 (v, upn) — b1 (v, u). (4.16)

On other hand, by Holder inequality,

/ v
b2 (up, un — v)| < Tp(/ [ He (@, tn, Vug)[P (z)dx> [[un — u“L”(”)(Q)
Q
< Cellun — ullprer ) — 0 asn — 0.

Then
ba(tn, uy, —v) — 0 as n — oo. (4.17)
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In view of and (4.16]), we obtain
ba 1ty 1) = (B (tin, 0), ) — b (1, 0,10) = (6 — w) — by (u, 0, )
and from we obtain by (un, u,) — (¢ —u) — by (v, u), then
(Be(tn, v),tun) = b1(v,upn) + ba(upn, un) — (¥, u).

Thus, the proof is complete. O

Remark 4.3. Our approach can be applied for a function p(z) satisfying the log-
continuity

Va, ye Qle—yl <1 = Ip()-p)| < w(lz-yl), (4.18)
where w : (0,00) — R is a nondecreasing function with lim, o+ w(e) In(3) < occ.

Remark 4.4. Note that in general there is no uniqueness of the entropy solution
of (1.1)), but if we assume that the condition

(H(x,s,§)—H(x,r,n))(s—r) >0

holds for almost all x € Q, for r, s > 0, and for £ # 7, then we are able to prove the
following result.

Proposition 4.5. Let u and v be two entropy solutions of (1.1)), where f € L*(Q)
and f >0, then one has

lim k/ [H(xz,u, Du) — H(z,v, Dv)]sign(u — v) de <0,
oo Hlu—vl2k}

and the condition

lim k/ [H(z,u, Du) — H(z,v, Dv)]sign(u — v)dz >0
Fotee Jlu—vi2k)

implies u = v.

For a proof of the above propositions, see [I0, Proposition 2.2] for p(.) = p
constant.

The existence result of an entropy solution (similar to those of the present paper)
for a class of nonlinear parabolic unilateral of the type

u>1 ae. inQx(0,7),
0b(u)
ot

—div(a(z, Du)) + H(z,u,Du) = f in Q x (0,7T),
u=0 ondQx(0,T),
b(u)(t =0) =b(up) in Q,

(4.19)

(where b is a strictly increasing function of w) will be treated by the authors in a
forthcoming paper.
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