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POSITIVE SOLUTIONS FOR FRACTIONAL DIFFERENTIAL
EQUATIONS WITH VARIABLE COEFFICIENTS

YI CHEN, ZHANMEI LV

Abstract. In this article, we study the existence of the positive solutions for a
class of differential equations of fractional order with variable coefficients. The
equation of this type plays an important role in the description and modeling
of control systems, such as PDµ-controller. The differential operator is taken
in the Riemann-Liouville sense. Our analysis relies on the Leggett-Williams
fixed point theorem.

1. Introduction

Fractional calculus is a generalization of the ordinary differentiation and inte-
gration. It plays an important role in science, engineering, economy, and other
fields, see [6, 7, 8, 10, 13, 14, 16, 17]. For example, the book [14] details the use
of fractional calculus in the description and modeling of systems, and in a range
of control design and practical applications. And today there are many papers
dealing with the fractional differential equations due to its various applications, see
[1, 2, 3, 4, 5, 12, 15, 19, 20, 21, 22, 23].

In [14], the authors considered the dynamic model of an immersed plate, which
is modeled by

ABD2
0+y(t) + BBD1.5

0+y(t) + CBy(t) = f(t),

y(0) = y′(0) = 0.

As indicated in [17], a fractional order PDµ-controller can be more suitable for
the control of ”reality” than integer order. For example, the fractional-order PDµ-
controller can be characterized by (see [17, equation (9.33)])

a2D
β
0+y(t) + TdD

µ
0+y(t) + a1D

α
0+y(t) + (a0 + K)y(t) = Kw(t) + TdD

µ
0+w(t), (1.1)

where α < µ < β. And, (1.1) and (1.1) are the particular case of the equation of
type (1.2) in our paper. And for the system of this type, we can find its many other
real applications in [16, 17, 18] and in [14, Chapter 14-18].

Problems of this type, with constant coefficients, have provoked some interest in
recent literature, such as [3, 19, 20, 21] and references therein. In [19], the author
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indicated that: “Some of the earlier results of this type contains errors in the proof
of equivalence of the initial value problems and the corresponding Volterra integral
equations (see survey paper by Kilbas and Trujillo [9])”.

Motivated by these papers, in this paper, we consider the following initial value
problems of fractional differential equations with variable coefficients

Dαn
0+u(t)−

n−1∑
j=1

aj(t)D
αj

0+u(t) = f(t, u(t)), 0 ≤ t ≤ 1,

u(0) = u′(0) = 0,

(1.2)

where 0 < α1 < α2 < · · · < αn−1 < αn − 1 < 1 < αn < 2, n ≥ 2, n ∈ Z,
an ∈ R, f : [0, 1] × [0,+∞) → [0,+∞) is continuous and aj : [0, 1] → (0,+∞)
(j = 1, 2, . . . , n − 1) are continuously differentiable. We will study the problem
(1.2) in the Banach space C[0, 1] equipped with the maximum norm ‖ · ‖.

To the best of our knowledge, the results on the existence of solutions for the
fractional differential equations with variable coefficients are relatively scare. The
variable coefficients cause the problem more complex. The main difficulty in dealing
with such issues is that the classical integration by parts formula is no longer
applicable for the fractional integration. And how to get the equivalent integral
equation of the problem (1.2) differs from the equations with constant coefficients.
In the paper we solve these problems.

This article is organized as follows. In Section 2, we present some results of
fractional calculus theory and auxiliary technical lemmas, which are used in the next
section. Section 3, applying the results of Section 2, we obtain the existence and
multiplicity results of the positive solutions for the problem (1.2) by the Leggett-
Williams fixed point theorem in a cone. Then an example is given in Section 4 to
demonstrate the application of our results.

2. Preliminaries

First of all, we present the necessary definitions and fundamental facts on the
fractional calculus theory. These can be found in [8, 13, 17].

Definition 2.1 ([8, 16, 17]). The Riemann-Liouville fractional integral of order
ν > 0 of a function h : (0,∞) → R is given by

Iν
0+h(t) = D−ν

0+h(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1h(s)ds (2.1)

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 ([8, 16, 17]). The Riemann-Liouville fractional derivative of order
ν > 0 of a continuous function h : (0,∞) → R is given by

Dν
0+h(t) =

1
Γ(n− ν)

( d

dt

)n
∫ t

0

(t− s)n−ν−1h(s)ds, (2.2)

where n = [ν] + 1, provided that the right-hand side is pointwise defined on (0,∞).

Lemma 2.3 ([5]). Assume that h(t) ∈ C(0, 1)∩L(0, 1) with a fractional derivative
of order ν > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iν
0+Dν

0+h(t) = h(t) + C1t
ν−1 + C2t

ν−2 + · · ·+ CN tν−N , (2.3)

for some Ci ∈ R, i = 1, 2, . . . , N , where N is the smallest integer such that N ≥ ν.
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Lemma 2.4 ([8, 16, 17]). If ν1, ν2, ν > 0, t ∈ [0, 1] and h(t) ∈ L[0, 1], then

Iν1
0+Iν2

0+h(t) = Iν1+ν2
0+ h(t), Dν

0+Iν
0+h(t) = h(t). (2.4)

Lemma 2.5 ([12, 17]). If h(t) ∈ C[0, 1] and ν > 0, then we have[
Iν
0+h(t)

]
t=0

= 0, or lim
t→0

1
Γ(ν)

∫ t

0

(t− s)ν−1h(s)ds = 0. (2.5)

Let

gj(t, s) = (αn − 1)aj(s)− (t− s)a′j(s), (t, s) ∈ [0, 1]× [0, 1], (2.6)

hj(t, τ) =
∫ 1

0

ξ−αj (1− ξ)αn−2gj(t, τ + ξ(t− τ))dξ, (t, τ) ∈ [0, 1]× [0, 1], (2.7)

where j = 1, 2, . . . , n−1. It is obvious that gj(t, s), hj(t, τ) are continuous and that
for 0 < s < t,

d

ds

(
(t− s)αn−1aj(s)

)
= −(αn − 1)(t− s)αn−2aj(s) + (t− s)αn−1a′j(s)

= −(t− s)αn−2gj(t, s), j = 1, 2, . . . , n− 1.

Set
bj(t) = ln aj(t), j = 1, 2, . . . , n− 1, (2.8)

then it is clear that bj(t) (j = 1, 2, . . . , n− 1) is continuously differentiable.

Lemma 2.6. Let aj : [0, 1] → (0,+∞) (j = 1, 2, . . . , n − 1) are continuously
differentiable. Assume that the condition

(H1) |bj
′(t)| < αn − 1, j = 1, 2, . . . , n− 1.

Then gj(t, s) > 0, for j = 1, 2, . . . , n− 1.

Proof. In view of (2.8), we have

aj(t) = ebj(t), aj
′(t) = bj

′(t)ebj(t), j = 1, 2, . . . , n− 1.

Then, by (H1), we deduce that

gj(t, s) = (αn − 1)aj(s)− (t− s)a′j(s)

= (αn − 1)ebj(t) − (t− s)b′j(t)e
bj(t)

= ebj(t)
(
(αn − 1)− (t− s)b′j(t)

)
> 0.

The proof is complete. �

For convenience, denote

Mj = max
0≤t≤1, 0≤s≤1

gj(t, s), mj = min
0≤t≤1, 0≤s≤1

gj(t, s), j = 1, 2, . . . , n− 1;

P1 =
n−1∑
j=1

MjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

=
n−1∑
j=1

Mj

(αn − 1)Γ(αn − αj + 1)
;

P2 =
n−1∑
j=1

mjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

=
n−1∑
j=1

mj

(αn − 1)Γ(αn − αj + 1)
;

We can easily show that Mj ≥ mj > 0 and P1 ≥ P2 > 0. Then we have the
following lemma.
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Lemma 2.7. Let f : [0, 1] × [0,+∞) → [0,+∞) is continuous and aj : [0, 1] →
(0,+∞) (j = 1, 2, . . . , n− 1) are continuously differentiable, then

mjB(1−αj , αn − 1) ≤ hj(t, τ) ≤ MjB(1−αj , αn − 1), j = 1, 2, . . . , n− 1, (2.9)

where B(·, ·) is the Beta function.

Proof. According to (2.7), for each j = 1, 2, . . . , n− 1, we have

hj(t, τ) ≤ Mj

∫ 1

0

ξ−αj (1− ξ)αn−2dξ = MjB(1−αj , αn− 1), (t, τ) ∈ [0, 1]× [0, 1].

Analogously,

hj(t, τ) ≥ mjB(1− αj , αn − 1), (t, τ) ∈ [0, 1]× [0, 1].

Then we obtain (2.9). �

Definition 2.8. u(t) ∈ C[0, 1] is called a solution of the problem (1.2) if u′(t) exists
in [0, 1] and u(t) satisfied the equation and the initial conditions in (1.2).

Lemma 2.9. Let f : [0, 1] × [0,+∞) → [0,+∞) is continuous and aj : [0, 1] →
(0,+∞) (j = 1, 2, . . . , n− 1) are continuously differentiable, then u(t) is a solution
of the equation (1.2) if and only if u(t) ∈ C[0, 1] is the solution of the integral
equation

u(t) =
n−1∑
j=1

1
Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)hj(t, τ)dτ

+
1

Γ(αn)

∫ t

0

(t− τ)αn−1f(τ, u(τ))dτ

(2.10)

Proof. “Necessity”. Applying Lemma 2.3 and the initial conditions, we have

u(t) = λ1

n−1∑
j=1

Iαn
0+

(
aj(t)D

αj

0+u(t)
)

+ λ2I
αn
0+f(t, u(t)). (2.11)

Combining Definition 2.2 and Lemma 2.5, we have

Iαn
0+

(
aj(t)D

αj

0+u(t)
)

=
1

Γ(αn)

∫ t

0

(t− s)αn−1aj(s)
( d

ds

1
Γ(1− αj)

∫ s

0

(s− τ)−αj u(τ)dτ
)
ds

=
1

Γ(αn)Γ(1− αj)

(
(t− s)αn−1aj(s)

∫ s

0

(s− τ)−αj u(τ)dτ
)∣∣∣s=t

s=0

− 1
Γ(αn)Γ(1− αj)

∫ t

0

∫ s

0

d

ds

(
(t− s)αn−1aj(s)

)
(s− τ)−αj u(τ)dτds

=
1

Γ(αn)Γ(1− αj)

∫ t

0

∫ s

0

(t− s)αn−2gj(t, s)(s− τ)−αj u(τ)dτds

=
1

Γ(αn)Γ(1− αj)

∫ t

0

∫ t

τ

(t− s)αn−2gj(t, s)(s− τ)−αj u(τ)ds dτ

=
1

Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)
∫ 1

0

ξ−αj (1− ξ)αn−2

× gj(t, τ + ξ(t− τ))dξdτ
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=
1

Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)hj(t, τ)dτ,

where j = 1, 2, . . . , n− 1. Thus, in view of (2.11), we derive (2.10).
“Sufficiency”. Suppose that u(t) ∈ C[0, 1] is the solution of (2.10). Then we

canshow that u′(t) exists in [0, 1] by (2.10). Also by exploiting Lemma 2.4 and
Lemma 2.5, we can deduce the equation (1.2) easily and prove that the initial
conditions are satisfied. This completes the proof. �

Theorem 2.10 ([11]). Let (E, ‖ · ‖) be a Banach space, P ⊂ E be a cone of E and
c > 0 be a constant. Suppose that there exists a concave nonnegative continuous
functional ω on P with ω(x) ≤ ‖x‖ for all x ∈ P c. Let B : P c → P c be a completely
continuous operator. Assume there are numbers a, b and d with 0 < d < a < b ≤ c
such that

(1) {x ∈ P (ω, a, b) : ω(x) > a} 6= ∅ and ω(Bx) > a for all x ∈ P (ω, a, b);
(2) ‖Bx‖ < d for all x ∈ P d;
(3) ω(Bx) > a for all x ∈ P (ω, a, c) with ‖Bx‖ > b.

Then B has at least three fixed points x1, x2 and x3 in P c. Furthermore, x1 ∈ Pd,
x2 ∈ {x ∈ P (ω, a, c) : ω(x) > a}; x3 ∈ P c\(P (ω, a, c) ∪ P d).

3. Existence and multiplicity of positive solutions

Let
K =

{
x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1], min

t∈[0,l1]
x(t) ≥ L‖x‖

}
,

where 0 < l1 < 1 and 0 < L < 1. Evidently, K is a cone of the Banach space
C[0, 1]. In the following we will assume that d/a < L < 1 (the constant d and a
are defined in Theorem 3.4). Define ω : K → [0,+∞) by

ω(u) = min
t∈[l1, l2]

u(t), 0 < l1 < l2 ≤ 1.

It is easy to check that ω(u) is a concave nonnegative continuous functional on K,
and satisfies ω(u) ≤ ‖u‖ for all u ∈ K.

Denote C+[0, 1] =
{
x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]

}
. Then let us define three

operators A,B, T : C+[0, 1] → C+[0, 1] as follows

(Au)(t) =
n−1∑
j=1

1
Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)hj(t, τ)dτ,

(Bv)(t) =
1

Γ(αn)

∫ t

0

(t− τ)αn−1f(τ, v(τ))dτ,

(Tϕ)(t) = (Aϕ)(t) + (Bϕ)(t),

where u, v, ϕ ∈ C+[0, 1].

Lemma 3.1. The operator A : C+[0, 1] → C+[0, 1] is continuous and compact.

Proof. Obviously, A is continuous. So we only need to prove that A is compact.
Let U ⊂ C+[0, 1] be bounded; i.e., there exists a positive constant r such that
‖u‖ ≤ r, ∀u ∈ U , for each u ∈ U , via Lemma 2.7, we have

|(Au)(t)| =
∣∣∣ n−1∑

j=1

1
Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)hj(t, τ)dτ
∣∣∣



6 Y. CHEN EJDE-2012/80

≤
n−1∑
j=1

MjB(1− αj , αn − 1)
Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)dτ

≤
n−1∑
j=1

rMjB(1− αj , αn − 1)
Γ(αn)Γ(1− αj)

tαn−αj

αn − αj

≤
n−1∑
j=1

rMjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

= P1r.

Thus ‖Au‖ ≤ P1r. Hence A(U) is bounded.
Next, let

γ1 = 2P1r, γ2 =
n−1∑
j=1

r

(αn − αj)Γ(αn)Γ(1− αj)
.

Since hj(t, τ) (j = 1, 2, . . . , n− 1) is uniformly continuous on [0, 1]× [0, 1], ∀ε > 0,
there exists a δj > 0 (δj < 1) such that

|hj(t1, τ1)− hj(t2, τ2)| ≤
ε

3γ2
, (3.1)

for all (t1, τ1), (t2, τ2) ∈ [0, 1] × [0, 1] with |t1 − t2| ≤ δj and |τ1 − τ2| ≤ δj , j =
1, 2, . . . , n− 1.

Next prove that A(U) is equicontinuous. For the given ε > 0, there exists
ρj > 0(1 ≤ j ≤ n−1) such that |t2αn−αj − t1

αn−αj | < ε/(3γ1), where |t2− t1| < ρj .
Let

δ = min
{
δ1, δ2, . . . , δn−1, ρ1, ρ2, . . . , ρn−1, (

ε

3
)1/(αn−αn−1)

}
.

For each u ∈ U , t1, t2 ∈ [0, 1] with |t1 − t2| ≤ δ(t1 < t2), we have

|(Au)(t1)− (Au)(t2)|

=
∣∣∣ n−1∑

j=1

1
Γ(αn)Γ(1− αj)

∫ t1

0

(t1 − τ)αn−αj−1u(τ)hj(t1, τ)dτ

−
n−1∑
j=1

1
Γ(αn)Γ(1− αj)

∫ t2

0

(t2 − τ)αn−αj−1u(τ)hj(t2, τ)dτ
∣∣∣

≤
∣∣∣ n−1∑

j=1

1
Γ(αn)Γ(1− αj)

∫ t1

0

[(t1 − τ)αn−αj−1 − (t2 − τ)αn−αj−1]u(τ)hj(t1, τ)dτ
∣∣∣

+
∣∣∣ n−1∑

j=1

1
Γ(αn)Γ(1− αj)

∫ t1

0

(t2 − τ)αn−αj−1u(τ)[hj(t1, τ)− hj(t2, τ)]dτ
∣∣∣

+
∣∣∣ n−1∑

j=1

1
Γ(αn)Γ(1− αj)

∫ t2

t1

(t2 − τ)αn−αj−1u(τ)hj(t2, τ)dτ
∣∣∣

≤
n−1∑
j=1

rMjB(1− αj , αn − 1)
Γ(αn)Γ(1− αj)

∫ t1

0

[(t2 − τ)αn−αj−1 − (t1 − τ)αn−αj−1]dτ

+
( ε

3γ2

) n−1∑
j=1

r

Γ(αn)Γ(1− αj)

∫ t1

0

(t2 − τ)αn−αj−1dτ
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+
n−1∑
j=1

rMjB(1− αj , αn − 1)
Γ(αn)Γ(1− αj)

∫ t2

t1

(t2 − τ)αn−αj−1dτ

=
n−1∑
j=1

rMjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

[tαn−αj

2 − t
αn−αj

1 − (t2 − t1)αn−αj ]

+
( ε

3γ2

) n−1∑
j=1

r

(αn − αj)Γ(αn)Γ(1− αj)
[tαn−αj

2 − (t2 − t1)αn−αj ]

+
n−1∑
j=1

rMjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

(t2 − t1)αn−αj

≤ r

n−1∑
j=1

MjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

[tαn−αj

2 − t
αn−αj

1 ] +
( ε

3γ2

)
γ2

+ r

n−1∑
j=1

MjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

(t2 − t1)αn−αj

≤ rP1

( ε

3γ1

)
+ (rP1)

( ε

3γ1

)
+

ε

3
≤ ε

6
+

ε

6
+

ε

3
< ε.

Therefore, A(U) is equicontinuous. And the Arzela-Ascoli theorem implies that
A(U) is relatively compact. Thus, the operator A : C+[0, 1] → C+[0, 1] is compact.

�

Lemma 3.2. The operator B : C+[0, 1] → C+[0, 1] is continuous and compact.

Proof. It is obvious that the operator B : C+[0, 1] → C+[0, 1] is continuous. Similar
to the proof of Lemma 3.1, by the Arzela-Ascoli theorem, we can conclude that the
operator B : C+[0, 1] → C+[0, 1] is compact. Here we omit the proof. �

Lemma 3.3. The operator T : C+[0, 1] → C+[0, 1] is continuous and compact.

The above lemma is obtained from Lemmas 3.1 and 3.2. Now we present the
main result of this article.

Theorem 3.4. Let f : [0, 1] × [0,+∞) → [0,+∞) is continuous and aj : [0, 1] →
(0,+∞) (j = 1, 2, . . . , n − 1) are continuously differentiable. Assume that (H1)
holds and there exist three positive constants 0 < d < a < b such that the following
conditions are satisfied.

(H2) P1 < 1 and f(t, u) ≤ Γ(αn + 1)(1− P1)b, for all (t, u) ∈ [0, 1]× [0, b];
(H3) C1P2L < 1, and f(t, u) ≥ C2 a, for all (t, u) ∈ [0, l1]× [La, b], where

C1 = min
{

min
t∈[l1, l2]

[tαn−αj − (t− l1)αn−αj ], j = 1, 2, . . . , n− 1
}
,

C2 >
Γ(αn + 1)(1− C1P2L)

lαn
1

;

(H4) P1 < 1 and f(t, u) < Γ(αn + 1)(1− P1)d, for all (t, u) ∈ [0, 1]× [0, d].

Then problem (1.2) has at least three positive solutions u1, u2 and u3 in Kb. Fur-
thermore, u1 ∈ Kd; u2 ∈ {u ∈ K(ω, a, b) : ω(u) > a}; u3 ∈ Kb\(K(ω, a, b) ∪Kd).
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Proof. From Section 2, we know that Kd = {u ∈ K : ‖u‖ < d}, Kd = {u ∈ K :
‖u‖ ≤ d}, Kb = {u ∈ K : ‖u‖ ≤ b} and K(ω, a, b) = {u ∈ K : ω(u) ≥ a, ‖u‖ ≤ b}.
We prove the results by three steps.

Step 1: T : Kb → Kb is a completely continuous operator. For any u ∈ Kb,
from (H2) and Lemma 2.7, we have

(Tu)(t) =
n−1∑
j=1

1
Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)hj(t, τ)dτ

+
1

Γ(αn)

∫ t

0

(t− τ)αn−1f(τ, u(τ))dτ

≤
n−1∑
j=1

MjB(1− αj , αn − 1)
Γ(αn)Γ(1− αj)

b

∫ t

0

(t− τ)αn−αj−1dτ

+
Γ(αn + 1)(1− P1)b

Γ(αn)

∫ t

0

(t− τ)αn−1dτ

=
n−1∑
j=1

MjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

btαn−αj + (1− P1)btαn

≤ P1b + (1− P1)b = b.

Thus, ‖Tu‖ ≤ b, that is, T : Kb → Kb. Also, T is a completely continuous operator
via Lemma 3.3.

Step 2: {u ∈ K(ω, a, b) : ω(u) > a} 6= ∅ and ω(Tu) > a for all u ∈ K(ω, a, b).
Take u0(t) = (a + b)/2, then ω(u0) = mint∈[l1, l2] u0(t) = (a + b)/2 > a and
‖u0‖ = (a + b)/2 < b. Thus, u0(t) ∈ {u ∈ K(ω, a, b) : ω(u) > a} 6= ∅. For each
u ∈ K(ω, a, b), applying condition (H3), the definition of K and Lemma 2.7, we
can show

ω(Tu) = min
t∈[l1, l2]

( n−1∑
j=1

1
Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)hj(t, τ)dτ

+
1

Γ(αn)

∫ t

0

(t− τ)αn−1f(τ, u(τ))dτ
)

≥ min
t∈[l1, l2]

( n−1∑
j=1

1
Γ(αn)Γ(1− αj)

∫ t

0

(t− τ)αn−αj−1u(τ)hj(t, τ)dτ
)

+ min
t∈[l1, l2]

( 1
Γ(αn)

∫ t

0

(t− τ)αn−1f(τ, u(τ))dτ
)

≥ min
t∈[l1, l2]

( n−1∑
j=1

mjB(1− αj , αn − 1)
Γ(αn)Γ(1− αj)

∫ l1

0

(t− τ)αn−αj−1u(τ)dτ
)

+
1

Γ(αn)

∫ l1

0

(l1 − τ)αn−1f(τ, u(τ))dτ

≥ min
t∈[l1, l2]

( n−1∑
j=1

mjB(1− αj , αn − 1)
(αn − αj)Γ(αn)Γ(1− αj)

La[tαn−αj − (t− l1)αn−αj ]
)
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+
1

Γ(αn)

∫ l1

0

(l1 − τ)αn−1C2adτ

≥ C1P2La +
C2a

Γ(αn + 1)
lαn
1

> C1P2La + (1− C1P2L)a = a,

which implies ω(Tu) > a.
Step 3: ‖Tx‖ < d for all u ∈ Kd. Proceeding as step 1, we can obtain the result

easily by making use of the condition (H4) and Lemma 2.7.
Then we obtain the conclusion of the theorem by employing Theorem 2.10. �

Corollary 3.5. If the conditions (H2) and (H3) in Theorem 3.4 are replaced by

(H2’) P1 < 1 and lim supu→+∞maxt∈[0,1]
f(t,u)

u < Γ(αn + 1)(1− P1);
(H3’) C1P2L < 1, and f(t, u) ≥ C2a, for all (t, u) ∈ [0, 1]× [La, +∞).

Then the conclusion of Theorem 3.4 holds.

Proof. Since (H2’) holds, there exists 0 < σ < Γ(αn + 1)(1− P1) and r1 > 0, such
that f(t, u) ≤ σu, for all u ≥ r1. Let β = max0≤t≤r1 u(t), then

0 ≤ f(t, u) ≤ σu + β, 0 ≤ u < +∞.

Let b > max{β/
(
Γ(αn + 1)(1−P1)−σ

)
, a}. Combining this with condition (H3’),

we obtain the conditions (H2) and (H3). Therefore, the conclusion of Theorem 3.4
holds. �

Corollary 3.6. If the condition (H4) in Theorem 3.4 is replaced by

(H4’) P1 < 1 and lim supu→0+ maxt∈[0,1]
f(t,u)

u < Γ(αn + 1)(1− P1).

Then the conclusion of Theorem 3.4 holds.

4. Examples

To illustrate our main results, we present an example:

D1.5
0+u(t)− a3(t)D0.3

0+u(t)− a2(t)D0.2
0+u(t)− a1(t)D0.1

0+u(t) = f(t, u(t)),

u(0) = u′(0) = 0, 0 ≤ t ≤ 1,
(4.1)

where

a1(t) = ln(t2 + 4), a2(t) =
1
8
(sin t + 1), a3(t) =

1
12

( t2

t2 + 1
+ 1

)
,

f(t, u) = (t2 + 1)u + β, β > 0.

Note that

0 ≤ b1
′(t) <

1
2 ln 4

< 0.5, 0 ≤ b2
′(t) < 0.5, 0 ≤ b3

′(t) ≤ 1
6

< 0.5.

A simple computation shows that P1 ≈ 0.5146. Let l1 = 0.98, L = 0.95, d = 2β,
a = 20β/9, b = 4β, C1 < 1, and C2 = 1.4. It is easy to check that all the hypotheses
in Theorem 3.4 are satisfied. Thus, we conclude that problem (4.1) has at least
three positive solutions.
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