
Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 81, pp. 1–22.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

APPLICATION OF OPTIMAL CONTROL TO THE
EPIDEMIOLOGY OF MALARIA

FOLASHADE B. AGUSTO, NIZAR MARCUS, KAZEEM O. OKOSUN

Abstract. Malaria is a deadly disease transmitted to humans through the
bite of infected female mosquitoes. In this paper a deterministic system of
differential equations is presented and studied for the transmission of malaria.
Then optimal control theory is applied to investigate optimal strategies for
controlling the spread of malaria disease using treatment, insecticide treated
bed nets and spray of mosquito insecticide as the system control variables.
The possible impact of using combinations of the three controls either one at
a time or two at a time on the spread of the disease is also examined.

1. Introduction

Malaria is a common and serious disease. It is reported that the incidence of
malaria in the world may be in the order of 300 million clinical cases each year.
Malaria mortality is estimated at almost 2 million deaths worldwide per year. The
vast numbers of malaria deaths occur among young children in Africa, especially
in remote rural areas. In addition, an estimated over 2 billion people are at risk of
infection, no vaccines are available for the disease [25, 43].

Malaria is transmitted to humans through the bite of an infected female Anophe-
les mosquito, following the successful sporozoite inoculation, plasmodium falci-
parum is usually first detected 7-11 days. This is followed after few days of the
bites, by clinical symptoms such as sweats, shills, pains, and fever. Mosquitoes
on the other hand acquire infection from infected human after a blood meal. Al-
though malaria is life-threatening it is still preventable and curable if the infected
individual seek treatment early. Prevention is usually by the use of insecticide
treated bed nets and spraying of insecticide but according to the World Health Or-
ganization position statement on insecticide treated mosquito nets [44], the insecti-
cide treated bed nets(ITNs), long-lasting insecticide nets (LLINs), indoor residual
spraying (IRS), and the other main method of malaria vector control, may not be
sufficiently effective alone to achieve and maintain interruption of transmission of
malaria, particularly in holo-endemic areas of Africa.
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Many studies have been carried out to quantify the impact of malaria infection
in humans [6, 14, 19, 24, 33, 36]. Many of these studies focuses only on the trans-
mission of the disease in human and the vector populations but recently, Chiyaka
et.al [10] formulated a deterministic system of differential equations with two latent
periods in the non-constant host and vector populations in order to theoretically
assess the potential impact of personal protection, treatment and possible vaccina-
tion strategies on the transmission dynamics of malaria. Blayneh et al [5], used a
time dependent model to study the effects of prevention and treatment on malaria,
similarly Okosun [29] used a time dependent model to study the impact of a possible
vaccination with treatment strategies in controlling the spread of malaria in a model
that includes treatment and vaccination with waning immunity. Thus, following the
WHO position statement [44] it is instructive to carry out modeling studies to de-
termine the impact of various combinations of control strategies on the transmission
dynamics of malaria. In this paper, we use treatment of symptomatic individuals,
personal protection and the straying of insecticide as control measures and then
consider this time dependent control measures using optimal control theory. Time
dependent control strategies have been applied for the studies of HIV/AIDS dis-
ease, Tuberculosis, Influenza and SARS [1, 2, 7, 17, 20, 39, 42, 46]. Optimal control
theory has been applied to models with vector-borne diseases [5, 31, 40, 45].

Our goal is to develop mathematical model for human-vector interactions with
control strategies, with the aim of investigating the role of personal protection,
treatment and spraying of insecticides in malaria transmission, in line with con-
cerns raised WHO [44]; in order to determine optimal control strategies with various
combinations of the control measures for controlling the spread of malaria trans-
mission. The paper is organized as follows: in Section 2, we give the description
of the human-vector model, stating the assumptions and definitions of the vari-
ous parameters of the model. The analysis of the equilibrium points are discussed
in Sections 2.2 and 3. In Section 4, we state the control problem as well as the
objective functional to be minimized, we then apply the Pontryagin’s Maximum
Principle to find the necessary conditions for the optimal control. In Sections 5, we
show the simulation results to illustrate the population dynamics with preventative
measures and treatment as controls.

2. Model formulation

The model sub-divides the total human population at time t, denoted by Nh(t),
into the following sub-populations of susceptible individuals (Sh(t)), those exposed
to malaria parasite (Eh(t)), individuals with malaria symptoms (Ih(t)), partially
immune human (Rh(t)). So that

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t).

The total vector (mosquito) population at time t, denoted by Nv(t), is sub-
divided into susceptible mosquitoes (Sv(t)), mosquitoes exposed to the malaria
parasite (Ev(t)) and infectious mosquitoes(Iv(t)). Thus,

Nv(t) = Sv(t) + Ev(t) + Iv(t).

It is assumed that susceptible humans are recruited into the population at a con-
stant rate Λh. Susceptible individuals acquire malaria infection following contact
with infectious mosquitoes (at a rate βεhφ), where β is the transmission probabil-
ity per bite and εh is the biting rate of mosquitoes, φ is contact rate of vector per
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human per unit time. Susceptible individuals infected with malaria are moved to
the exposed class (Eh) at the rate βεhφ and then progress to the infectious class,
following the development of clinical symptoms (at a rate αh). Individuals with
malaria symptoms are effectively treated (at a rate τ) where (0 ≤ τ ≤ 1). Human
spontaneous recovery rate is given by b, where 0 ≤ b < τ . And individuals infected
with malaria suffer a disease-induced death (at a rate ψ). Infected individual then
progress to the partially immuned group. Upon recovery, the partially immuned
individual losses immunity (at the rate κ) and becomes susceptible again.

Susceptible mosquitoes (Sv) are generated at the rate Λv and acquire malaria
infection (following effective contacts with humans infected with malaria) at a rate
λφεv(Ih + ηRh), where λ is the probability of a vector getting infected through the
infectious human and εv is the biting rate of mosquitoes. We assume that humans in
the Rh(t) class can still transmit the disease, thus, the modification parameter η ∈
[0, 1) gives the reduced infectivity of the recovered individuals [11, 32]. Mosquitoes
are assumed to suffer natural death at a rate µv, regardless of their infection status.
Newly-infected mosquitoes are moved into the exposed class (Ev ), and progress to
the class of symptomatic mosquitoes (Iv) following the development of symptoms
(at a rate αv).

Thus, putting the above formulations and assumptions together gives the follow-
ing human-vector model, given by system of ordinary differential equations below
as

dSh

dt
= Λh + κRh − βεhφIvSh − µhSh,

dEh

dt
= βεhφIvSh − (αh + µh)Eh,

dIh
dt

= αhEh − (b+ τ)Ih − (ψ + µh)Ih,

dRh

dt
= (b+ τ)Ih − (κ+ µh)Rh,

dSv

dt
= Λv − λφεv(Ih + ηRh)Sv − µvSv,

dEv

dt
= λφεv(Ih + ηRh)Sv − (αv + µv)Ev,

dIv
dt

= αvEv − µvIv,

(2.1)

The associated model variables and parameters are described in Table 1.

2.1. Basic properties of the malaria model.

2.1.1. Positivity and boundedness of solutions. For the malaria transmission model
(2.1) to be epidemiologically meaningful, it is important to prove that all its state
variables are non-negative for all time. In other words, solutions of the model
system (2.1) with non-negative initial data will remain non-negative for all time
t > 0.

Theorem 2.1. Let the initial data Sh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0,
Sv(0) ≥ 0, Ev(0) ≥ 0, Iv(0) ≥ 0. Then the solutions (Sh, Eh, Ih, Rh, Sv, Ev, Iv) of
the malaria model (2.1) are non-negative for all t > 0. Furthermore

lim sup
t→∞

Nh(t) ≤ Λh

µh
, lim sup

t→∞
Nv(t) ≤ Λv

µv
,
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with Nh = Sh + Eh + Ih +Rh and Nv = Sv + Ev + Iv.

Proof. Let t1 = sup{t > 0 : Sh(t) > 0, Eh(t) > 0, Ih(t) > 0, Rh(t) > 0, Sv(t) >
0, Iv(t) > 0, Ev(t) > 0}. Since Sh(0) > 0, Eh(0) > 0, Ih(0) > 0, Rh(0) > 0, Sv(0) >
0, Ev(0) > 0, Iv(0) > 0, then, t1 > 0. If t1 <∞ , then Sh, Eh, Ih, Rh, Sv, Ev or Iv
is equal to zero at t1. It follows from the first equation of the system (2.1), that

dSh

dt
= Λh − βεhφIvSh − µhSh + κRh

Thus,
d

dt

{
Sh(t) exp[(βεhφIv + µh)t]

}
= (Λh + κRh) exp[(βεhφIv + µh)t]

Hence,

Sh(t1) exp[(βεhφIv + µh)t]− Sh(0) =
∫ t1

0

(Λh + κRh) exp[(βεhφIv + µh)p]dp

so that

Sh(t1) = Sh(0) exp[−(βεhφIv + µh)t1] + exp[−(βεhφIv + µh)t1]

×
∫ t1

0

(Λh + κRh) exp[(βεhφIv + µh)p]dp > 0.

and

Rh(t1) = Rh(0) exp[−(µh + κ)t1] + exp[(µh + κ)t1]
∫ t1

0

(b+ τ)Ih exp[(µh + κ)p]dp

> 0.

It can similarly be shown that Eh > 0, Ih > 0, Sv > 0, Ev > 0 and Iv > 0 for all
t > 0. For the second part of the proof, it should be noted that 0 < Ih(t) ≤ Nh(t)
and 0 < Iv(t) ≤ Nv(t).

Adding the first four equations and the last three equations of the model (2.1)
gives

dNh(t)
dt

= Λh − µhNh(t)− ψIh(t),

dNv(t)
dt

= Λv − µvNv(t).
(2.2)

Thus,

Λh − (µh + ψ)Nh(t) ≤ dNh(t)
dt

≤ Λh − µhNh(t),

Λv − µvNv(t) ≤ dNv(t)
dt

≤ Λv − µvNv(t).

Hence, respectively,
Λh

µh + ψ
≤ lim inf

t→∞
Nh(t) ≤ lim sup

t→∞
Nh(t) ≤ Λh

µh
,

and
Λv

µv
≤ lim inf

t→∞
Nv(t) ≤ lim sup

t→∞
Nv(t) ≤ Λv

µv
,

as required. �
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2.1.2. Invariant regions. The malaria model (2.1) will be analyzed in a biologically-
feasible region as follows. The system (2.1) is split into two parts, namely the human
population (Nh; with Nh = Sh + Eh + Ih + Rh) and the vector population (Nv;
with Nv = Sv + Ev + Iv). Consider the feasible region

D = Dh ∪ Dv ⊂ R4
+ × R3

+,

with

Dh = {(Sh, Eh, Ih, Rh) ∈ R4
+ : Sh + Eh + Ih +Rh ≤

Λh

µh
},

Dv = {(Sv, Ev, Iv) ∈ R3
+ : Sv + Ev + Iv ≤

Λv

µv
}

The following steps are done to establish the positive invariance of D (i.e., solutions
in D remain in D for all t > 0). The rate of change of the humans and mosquitoes
populations is given in equation (2.2), it follows that

dNh(t)
dt

≤ Λh − µhNh(t),

dNv(t)
dt

≤ Λv − µvNv(t).
(2.3)

A standard comparison theorem [21] can then be used to show that Nh(t) ≤
Nh(0)e−µht + Λh

µh
(1 − e−µht) and Nv(t) ≤ Nv(0)e−µvt + Λv

µv
(1 − e−µvt). In par-

ticular, Nh(t) ≤ Λh

µh
and Nv(t) ≤ Λv

µv
if Nh(0) ≤ Λh

µh
and Nv(0) ≤ Λv

µv
respectively.

Thus, the region D is positively-invariant. Hence, it is sufficient to consider the
dynamics of the flow generated by (2.1) in D. In this region, the model can be
considered as been epidemiologically and mathematically well-posed [15]. Thus,
every solution of the basic model (2.1) with initial conditions in D remains in D for
all t > 0. Therefore, the ω-limit sets of the system (2.1) are contained in D. This
result is summarized below.

Lemma 2.2. The region D = Dh ∪ Dv ⊂ R4
+ × R3

+ is positively-invariant for the
basic model (2.1) with non-negative initial conditions in R7

+

2.2. Stability of the disease-free equilibrium (DFE). The malaria model
(2.1) has a DFE, obtained by setting the right-hand sides of the equations in the
model to zero, given by

E0 = (S∗h, E
∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v ) =

(Λh

µh
, 0, 0, 0,

Λv

µv
, 0, 0

)
.

The linear stability of E0 can be established using the next generation operator
method [42] on the system (2.1), the matrices F and V, for the new infection terms
and the remaining transfer terms, are, respectively, given by

F =


0 0 0 0 βεhφS

∗
h

0 0 0 0 0
0 0 0 0 0
0 λεvφS

∗
v λεvφηS

∗
v 0 0

0 0 0 0 0

 ,
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V =


k1 0 0 0 0
−α1 k2 0 0 0

0 −(b+ τ) k3 0 0
0 0 0 k4 0
0 0 0 −α2 µv

 ,

where k1 = αh + µh, k2 = b+ τ + ψ + µh, k3 = κ+ µh, k4 = αv + µv.
It follows that the reproduction number of the malaria system (2.1), denoted by

R0, is

R0 =

√
α1α2λβ[k3 + η(b+ τ)]φ2εhεvS∗hS

∗
v

k3k4k2k1µv
, (2.4)

Further, using [42, Theorem 2], the following result is established.

Theorem 2.3. The DFE of the model (2.1), given by R0, is locally asymptotically
stable (LAS) if R0 < 1, and unstable if R0 > 1.

3. Existence of endemic equilibrium point (EEP)

Next conditions for the existence of endemic equilibria for the model (2.1) is
explored. Let

E1 =
(
S∗∗h , E∗∗h , I∗∗h , R∗∗h , S∗∗v , E∗∗v , I∗∗v

)
,

be the arbitrary endemic equilibrium of model (2.1), in which at least one of the
infected components of the model is non-zero. Let

λ∗∗h = βφεhIv, (3.1)

λ∗∗v = λφεv(Ih + ηRh) (3.2)

be the force of infection in humans and in the vector. Setting the right-hand sides
of the equations in (2.1) to zero gives the following expressions (in terms of λ∗∗h and
λ∗∗v )

S∗∗h =
Λ∗∗h k1k2k3

(λh + µh)k1k2k3 − κλ∗∗h αh(b+ τ)
,

E∗∗h =
k2λ

∗∗
h Λhk3

(λh + µh)k1k2k3 − κλ∗∗h αh(b+ τ)
,

I∗∗h =
λ∗∗h Λhk3α1

(λh + µh)k1k2k3 − κλ∗∗h αh(b+ τ)
,

R∗∗h =
(b+ τ)λ∗∗h Λhα1

(λh + µh)k1k2k3 − κλ∗∗h αh(b+ τ)
,

S∗∗v =
Λv

(λ∗∗v + µv)
, E∗∗v =

λ∗∗v Λv

k4(λ∗∗v + µv)
, I∗∗v =

αvλ
∗∗
v Λv

k4µv(λ∗∗v + µv)

(3.3)

Substituting (3.3) and (3.2) into (3.1), gives a0λ
∗∗
h + b0 = 0, where

a0 = k4µv{λφεvΛhαh[k3 + η(b+ τ)] + µv[k3k1k2 − καh(b+ τ)]}
b0 = µhµ

2
vk4k3k1k2(1−R2

0).

The coefficient a0 is always positive, the coefficient b0 is positive (negative) if R0

is less than (greater than) unity. Furthermore, there is no positive endemic equi-
librium if b0 ≥ 0. If b0 < 0, then there is a unique endemic equilibrium (given by
λh = b0/a0). This result is summarized below.
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Lemma 3.1. The model (2.1) has a unique positive endemic equilibrium whenever
R0 > 1, and no positive endemic equilibrium otherwise.

3.1. Global stability of endemic equilibrium for a special case. In this
section, we investigate the global stability of the endemic equilibrium of model
(2.1), for the special case when κ = 0, that there is no lost of immunity. Using the
approach in the proof of Lemma 2.2, it can be shown that the region

D̃ = D̃h ∪ D̃v ⊂ R4
+ × R3

+,

where

D̃h =
{
(Sh, Eh, Ih, Rh) ⊂ Dh : Sh ≤ S∗h

}
,

D̃v =
{
(Sv, Ev, Iv) ⊂ Dv : Sv ≤ S∗v

}
.

is positively-invariant for the special case of the model (2.1) described above. It is
convenient to define

D̃ =
{
(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ D : Eh = Ih = Rh = Ev = Iv = 0

}
.

Theorem 3.2. The unique endemic equilibrium, Ẽ1, of the model (2.1) is GAS in
D̃\D̃0 whenever R̃0|κ=0 > 1.

Proof. Let R̃0 > 1, so that the unique endemic equilibrium (Ẽ1) exists. Consider
the non-linear Lyapunov function

F = S∗∗h

( Sh

S∗∗h

− ln
Sh

S∗∗h

)
+ E∗∗h

( Eh

E∗∗h

− ln
Eh

E∗∗h

)
+
k1

αh
I∗∗h

( Ih
I∗∗h

− ln
Ih
I∗∗h

)
+
k2k1

αhγ
R∗∗h

( Rh

R∗∗h
− ln

Rh

R∗∗h

)
+ S∗∗v

( Sv

S∗∗v

− ln
Sv

S∗∗v

)
+ E∗∗v

( Ev

E∗∗v

− ln
Ev

E∗∗v

)
+
k4

αv
I∗∗v

( Iv
I∗∗v

− ln
Iv
I∗∗v

)
,

where γ = b+ τ and the Lyapunov derivative is

Ḟ =
(
1− S∗∗h

Sh

)
Ṡh +

(
1− E∗∗h

Eh

)
Ėh +

k1

αh

(
1− I∗∗h

Ih

)
İh +

k2k1

αhγ

(
1− R∗∗h

Rh

)
Ṙh

+
(
1− S∗∗v

Sv

)
Ṡv +

(
1− E∗∗v

Ev

)
Ėv +

k4

αv

(
1− I∗∗v

Iv

)
İv.

Substituting the expressions for the derivatives in Ḟ (from (2.1) with κ = 0) gives

Ḟ = Λh − λhSh − µhSh −
S∗∗h

Sh

(
Λh − λhSh − µhSh

)
+ λhSh − k1Eh −

E∗∗h

Eh

(
λhSh − k1Eh

)
+
k1

αh

(
αhEh − k2Ih

)
− k1

αh

I∗∗h

Ih

(
αhEh − k2Ih

)
+
k2k1

αhγ

(
γIh − k3Rh

)
− k2k1

αhγ

R∗∗h
Rh

(
γIh − k3Rh

)
+ Λv − λvSv − µvSv −

S∗∗v

Sv

(
Λv − λvSv − µvSv

)
+ λvSv − k4Ev +

E∗∗v

Ev

(
λvSv − k4Ev

)
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+
k4

αv

(
αvEv − µvIv

)
+
k4

αv

I∗∗v

Iv

(
αvEv − µvIv

)
.

so that

Ḟ = λhS
∗∗
h

(
1− S∗∗h

Sh

)
+ µhS

∗∗
h

(
2− Sh

S∗∗h

− S∗∗h

Sh

)
+ λhS

∗∗
h − E∗∗h

Eh
λhSh

+ k1E
∗∗
h − k1

I∗∗h

Ih
Eh +

k2k1

αh
I∗∗h − k2k1

αh

R∗∗h
Rh

Ih +
k3k2k1

αhγ
Rh −

k3k2k1

αhγ
Rh

+ λvS
∗∗
v

(
1− S∗∗v

Sv

)
+ µvS

∗∗
v

(
2− Sv

S∗∗v

− S∗∗v

Sv

)
+ λvS

∗∗
v

− E∗∗v

Ev
λvSv + k4E

∗∗
v − k4

I∗∗v

Iv
Ev +

k4µv

αv
I∗∗v − k4µv

αv
Iv

(3.4)

Finally, equation (3.4) can be further simplified to give

Ḟ = µhS
∗∗
h

(
2− S∗∗h

Sh
− Sh

S∗∗h

)
+ k1E

∗∗
h

(
5− S∗∗h

Sh
− E∗∗h

Eh
− Eh

E∗∗h

I∗∗h

Ih

− Ih
I∗∗h

R∗∗h
Rh

− Rh

R∗∗h

)
+ µvS

∗∗
v

(
2− S∗∗v

Sv
− Sv

S∗∗v

)
+ k4E

∗∗
v

(
4− S∗∗v

Sv
− E∗∗v

Ev
− Ev

E∗∗v

I∗∗v

Iv
− Iv
I∗∗v

)
.

(3.5)

Since the arithmetic mean exceeds the geometric mean, it follows that

2− S∗∗h

Sh
− Sh

S∗∗h

≤ 0, 2− S∗∗v

Sv
− Sv

S∗∗v

≤ 0,

4− S∗∗v

Sv
− E∗∗v

Ev
− Ev

E∗∗v

I∗∗v

Iv
− Iv
I∗∗v

≤ 0,

5− S∗∗h

Sh
− E∗∗h

Eh
− Eh

E∗∗h

I∗∗h

Ih
− Ih
I∗∗h

R∗∗h
Rh

− Rh

R∗∗h
≤ 0

Since all the model parameters are non-negative, it follows that Ḟ ≤ 0 for R̃0|κ=0 >
1. Thus, it follows from the LaSalle’s Invariance Principle, that every solution to
the equations in the model (2.1) (with initial conditions in D̃\D̃0) approaches the
EEP (Ẽ1) as t→∞ whenever R̃0|κ=0 > 1. �

4. Analysis of optimal control

We introduce into the model (2.1), time dependent preventive (u1, u3) and treat-
ment (u2) efforts as controls to curtail the spread of malaria. The malaria model
(2.1) becomes

dSh

dt
= Λh + κRh − (1− u1)βεhφIvSh − µhSh,

dEh

dt
= (1− u1)βεhφIvSh − (αh + µh)Eh,

dIh
dt

= αhEh − (b+ u2)Ih − (ψ + µh)Ih,

dRh

dt
= (b+ u2)Ih − (κ+ µh)Rh,



EJDE-2012/81 APPLICATION OF OPTIMAL CONTROL 9

dSv

dt
= Λv − (1− u1)λεvφ(Ih + ηRh)Sv − u3(1− p)Sv − µvSv, (4.1)

dEv

dt
= (1− u1)λεvφ(Ih + ηRh)Sv − u3(1− p)Ev − (αv + µv)Ev,

dIv
dt

= αvEv − u3(1− p)Iv − µvIv.

The function 0 ≤ u1 ≤ 1 represent the control on the use of mosquitoes treated
bed nets for personal protection, and 0 ≤ u2 ≤ a2, the control on treatment, where
a2 is the drug efficacy use for treatment. The insecticides used for treating bed
nets is lethal to the mosquitoes and other insects and also repels the mosquitoes,
thus, reducing the number that attempt to feed on people in the sleeping areas
with the nets [8, 44]. However, the mosquitoes can still feed on humans outside
this protective areas, and so we have included the spraying of insecticide. Thus,
each mosquitoes group is reduced (at the rate u3 (1 − p)), where (1 − p) is the
fraction of vector population reduced and 0 ≤ u3 ≤ a3, is the control function
representing spray of insecticide aimed at reducing the mosquitoes sub-populations
and a3 represent the insecticide efficacy at reducing the mosquitoes population.
This is different from what was implemented in [5], where only two control measures
of personal protection and treatment were used.

With the given objective function

J(u1, u2, u3) =
∫ tf

0

[mIh + nu2
1 + cu2

2 + du2
3]dt (4.2)

where tf is the final time and the coefficients m,n, c, d are positive weights to
balance the factors. Our goal is to minimize the number of infected humans Ih(t),
while minimizing the cost of control u1(t), u2(t), u3(t). Thus, we seek an optimal
control u∗1, u

∗
2, u

∗
3 such that

J(u∗1, u
∗
2, u

∗
3) = min

u1,u2,u3
{J(u1, u2, u3)|u1, u2, u3 ∈ U} (4.3)

where the control set

U = {(u1, u2, u3) | ui : [0, tf ] → [0, 1], Lebesgue measurable i = 1, 2, 3}.

The term mIh is the cost of infection while nu2
1, cu

2
2 and du2

3 are the costs of use
of bed nets, treatment efforts and use of insecticides respectively. The necessary
conditions that an optimal control must satisfy come from the Pontryagin’s Maxi-
mum Principle [30]. This principle converts (4.1)-(4.2) into a problem of minimizing
pointwise a Hamiltonian H, with respect to (u1, u2, u3)

H = mIh + nu2
1 + cu2

2 + du2
3 + λSh

{Λh + κRh − (1− u1)βεhφIvSh − µhSh}
+ λEh

{(1− u1)βεhφIvSh − (αh + µh)Eh}
+ λIh

{αhEh − (b+ u2)Ih − (ψ + µh)Ih}
+ λRh

{(b+ u2)Ih − (κ+ µh)Rh}
+ λSv{Λv − (1− u1)λεvφ(Ih + ηRh)Sv − u3(1− p)Sv − µvSv}
+ λEv{(1− u1)λεvφ(Ih + ηRh)Sv − u3(1− p)Ev − (αv + µv)Ev}
+ λIv{αv2Ev − u3(1− p)Iv − µvIv}

(4.4)

where the λSh
, λEh

, λIh
, λRh

, λSv
, λEv

, λIv
are the adjoint variables or co-state

variables. [13, Corollary 4.1] gives the existence of optimal control due to the
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convexity of the integrand of J with respect to u1, u2 and u3, a priori boundedness
of the state solutions, and the Lipschitz property of the state system with respect
to the state variables. Applying Pontryagin’s Maximum Principle [30] and the
existence result for the optimal control from [13], we obtain the following theorem.

Theorem 4.1. Given an optimal control u∗1, u
∗
2, u

∗
3 and solutions S∗h, E∗h, I∗h, R∗h,

S∗v , E∗v , I∗v of the corresponding state system (4.1) that minimizes J(u1, u2, u3) over
U . Then there exists adjoint variables λSh

, λEh
, λIh

, λRh
, λSv , λEv , λIv satisfying

−dλSh

dt
= −[(1− u1)βεhφIv + µh]λSh

+ (1− u1)βεhφIvλEh

−dλEh

dt
= −(µh + αh)λEh

+ αhλIh

−dλIh

dt
= m− [(b+ u2) + (µh + ψ)]λIh

+ (b+ u2)λRh

+ (1− u1)λεvφSv(λEv
− λSv

)

−dλRh

dt
= κλSh

− (µh + κ)λRh
+ (1− u1)λεvφηSv(λSv − λEv )

−dλSv

dt
= −[(1− u1)λεvφ(Ih + ηRh) + u3(1− p) + µv]λSv

+ (1− u1)λεvφ(Ih + ηRh)λEv

−dλEv

dt
= −[u3(1− p) + αv + µv]λEv

+ αvλIv

−dλIv

dt
= −(1− u1)βεhφShλSh

+ (1− u1)βεhφShλEh
− [u3(1− p) + µv]λIv

(4.5)
and with transversality conditions

λSh
(tf ) = λEh

(tf ) = λIh
(tf ) = λRh

(tf ) = λSv (tf ) = λEv (tf ) = λIv (tf ) = 0 (4.6)

and the controls u∗1, u
∗
2 and u∗3 satisfy the optimality condition

u∗1 = max
{

0,min
(
1,
βεhφI

∗
v (λEh

− λSh
)S∗h + λεvφ(I∗h + ηR∗h)(λEv − λSv )S∗v

2n

)}
,

u∗2 = max
{

0,min
(
1,

(λIh
− λRh

)I∗h
2c

)}
u∗3 = max

{
0,min

(
1,

(1− p)(S∗vλSv + E∗vλEv + I∗vλIv )
2d

)}
(4.7)

Proof. The differential equations governing the adjoint variables are obtained by
differentiation of the Hamiltonian function, evaluated at the optimal control. Then
the adjoint system can be written as

−dλSh

dt
=
∂H

∂Sh
= −[(1− u1)βεhφIv + µh]λSh

+ (1− u1)βεhφIvλEh

−dλEh

dt
=

∂H

∂Eh
= −(µh + αh)λEh

+ αhλIh

−dλIh

dt
=
∂H

∂Ih
= m− [(b+ u2) + (µh + ψ)]λIh

+ (b+ u2)λRh

+ (1− u1)λεvφSv(λEv
− λSv

)
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−dλRh

dt
=

∂H

∂Rh
= κλSh

− (µh + κ)λRh
+ (1− u1)λεvφηSv(λSv

− λEv
)

−dλSv

dt
=
∂H

∂Sv
= −[(1− u1)λεvφ(Ih + ηRh) + u3(1− p) + µv]λSv

+ (1− u1)λεvφ(Ih + ηRh)λEv

−dλEv

dt
=

∂H

∂Ev
= −[u3(1− p) + αv + µv]λEv

+ αvλIv

−dλIv

dt
=
∂H

∂Iv
= −(1− u1)βεhφShλSh

+ (1− u1)βεhφShλEh

− [u3(1− p) + µv]λIv

with transversality conditions

λSh
(tf ) = λEh

(tf ) = λIh
(tf ) = λRh

(tf ) = λSv
(tf ) = λEv

(tf ) = λIv
(tf ) = 0 (4.8)

On the interior of the control set, where 0 < ui < 1, for i = 1, 2, 3, we have

0 =
∂H

∂u1
= 2nu∗1 + βεhφI

∗
v (λSh

− λEh
)S∗h + λεvφ(I∗h + ηR∗h)(λSv − λEv )S∗v ,

0 =
∂H

∂u2
= 2cu∗2 − (λIh

− λRh
)I∗h,

0 =
∂H

∂u3
= 2du∗3 − (1− p)(S∗vλSv + E∗vλEv + I∗vλIv ).

(4.9)

Hence, we obtain (see [23])

u∗1 =
βεhφI

∗
v (λEh

− λSh
)S∗h + λεvφ(I∗h + ηR∗h)(λEv − λSv )S∗v

2n
,

u∗2 =
(λIh

− λRh
)I∗h

2c
,

u∗3 =
(1− p)(S∗vλSv + E∗vλEv + I∗vλIv )

2d
.

and

u∗1 = max
{

0,min
(
1,
βεhφI

∗
v (λEh

− λSh
)S∗h + λεvφ(I∗h + ηR∗h)(λEv − λSv )S∗v

2n

)}
,

u∗2 = max
{

0,min
(
1,

(λIh
− λRh

)I∗h
2c

)}
u∗3 = max

{
0,min

(
1,

(1− p)(S∗vλSv + E∗vλEv + I∗vλIv )
2d

)}
.

�

Due to the a priori boundedness of the state and adjoint functions and the
resulting Lipschitz structure of the ODE’s, we can obtain the uniqueness of the
optimal control for small tf , following techniques from [30]. The uniqueness of
the optimal control follows from the uniqueness of the optimality system, which
consists of (4.1) and (4.5), (4.6) with characterization (4.7). There is a restriction
on the length of time interval in order to guarantee the uniqueness of the optimality
system. This smallness restriction of the length on the time is due to the opposite
time orientations of the optimality system; the state problem has initial values and
the adjoint problem has final values. This restriction is very common in control
problems (see [16, 20, 22]).
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Next we discuss the numerical solutions of the optimality system and the cor-
responding optimal control pairs, the parameter choices, and the interpretations
from various cases.

5. Numerical results

In this section, we study numerically an optimal transmission parameter control
for the malaria model. The optimal control is obtained by solving the optimality
system, consisting of 7 ODE’s from the state and adjoint equations. An iterative
scheme is used for solving the optimality system. We start to solve the state
equations with a guess for the controls over the simulated time using fourth order
Runge-Kutta scheme. Because of the transversality conditions (4.6), the adjoint
equations are solved by a backward fourth order Runge-Kutta scheme using the
current iterations solutions of the state equation. Then the controls are updated
by using a convex combination of the previous controls and the value from the
characterizations (4.7). This process is repeated and iterations are stopped if the
values of the unknowns at the previous iterations are very close to the ones at the
present iterations [23].

We explore a simple model with preventive and treatment as control measures
to study the effects of control practices and the transmission of malaria. Using
various combinations of the three controls, one control at a time and two controls
at a time, we investigate and compare numerical results from simulations with the
following scenarios

i. using personal protection (u1) without insecticide spraying (u3 = 0) and
no treatment of the symptomatic humans (u2 = 0)

ii. treating the symptomatic humans (u2) without using insecticide spraying
(u3 = 0) and no personal protection (u1 = 0),

iii. using insecticide spraying (u3) without personal protection (u1 = 0) and
no treatment of the symptomatic humans (u2 = 0),

iv. treating the symptomatic humans (u2) and using insecticide spraying (u3)
with no personal protection (u1 = 0),

v. using personal protection (u1) and insecticide spraying (u3) with no treat-
ment of the symptomatic humans (u2 = 0),

vi using treatment (u2) and personal protection (u1) with no insecticide spray-
ing (u3 = 0), finally

vii. using all three control measures (u1, u2 and u3).

For the figures presented here, we assume that the weight factor c associated
with control u2 is greater than n and d which are associated with controls u1

and u3. This assumption is based on the facts that the cost associated with u1

and u3 will include the cost of insecticide and insecticide treated bed nets, and
the cost associated with u2 will include the cost of antimalarial drugs, medical
examinations and hospitalization. For the numerical simulation we have used the
following weight factors, m = 92, n = 20, c = 65, and d = 10, initial state variables
Sh(0) = 700, Eh(0) = 100, Ih(0) = 0, Rh(0) = 0, Sv(0) = 5000, Ev(0) = 500,
Iv(0) = 30 and parameter values Λv = 0.071, Λh = 0.00011, β = 0.030, εh = 0.01,
εh = 0.01, λ = 0.05, µh = 0.0000457, µv = 0.0667, κ = 0.0014, α1 = 0.058,
α2 = 0.0556, σ = 0.025, b = 0.5, φ = 0.502, ψ = 0.02, τ = 0.5, p = 0.85, for
which the reproduction number R0 = 4.3845, to illustrate the effect of different
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Table 1. Description of Variables and Parameters of the Malaria
Model (4.1)

Var. Description

Sh Susceptible human
Eh Exposed human
Ih Infected human
Rh Recovered human
Sv Susceptible vector
Ev Exposed vector
Iv Infected vector

Par. Description Est. val. References

εh biting rate of humans 0.2-0.5 [4, 18]
εv biting rate of mosquitoes 0.3 [18, 26, 38]
β probability of human getting infected 0.03 [12, 36]
λ probability of a mosquito getting infected 0.09 [12, 36]
µh Natural death rate in humans 0.0004 [47]
µv Natural death rate in mosquitoes 0.04 [10]
κ rate of loss of immunity 1/(2×365) [3, 12, 34]
α1 rate of progression from exposed to infected human 1/17 [3, 28]
α2 rate of progression from exposed to infected mosquito 1/18 [35, 38, 27]
Λh human birth rate 0.00011 [41]
Λv mosquitoes birth rate 0.071 [3, 12]
ψ disease induced death 0.05 [37]
φ contact rate of vector per human per unit time 0.6 [9]
b spontaneous recovery 0.005 [10]
η modification parameter 0.01 assumed

optimal control strategies on the spread of malaria in a population. Thus, we have
considered the spread of malaria in an endemic population.

Optimal personal protection. Only the control (u1) on personal protection is
used to optimize the objective function J , while the control on treatment (u2) and
the control on insecticide spray (u3) are set to zero. In Figure 1, the results show a
significant difference in the Ih and Iv with optimal strategy compared to Ih and Iv
without control. Specifically, we observed in Figure 1(a) that the control strategies
lead to a decrease in the number of symptomatic human (Ih) as against an increases
in the uncontrolled case. Similarly, in Figure 1(b), the uncontrolled case resulted
in increased number of infected mosquitoes (Iv), while the control strategy lead to
a decrease in the number infected. The control profile is shown in Figure 1(c), here
we see that the optimal personal protection control u1 is at the upper bound till
the time tf = 100 days, before dropping to the lower bound.

Optimal treatment. With this strategy, only the control (u2) on treatment is
used to optimize the objective function J , while the control on personal protection
(u1) and the control on insecticide spray (u3) are set to zero. In Figure 2, the results
show a significant difference in the Ih and Iv with optimal strategy compared to Ih
and Iv without control. But this strategy shows that effective treatment only has a
significant impact in reducing the disease incidence among human population. The
control profile is shown in Figure 2(c), we see that the optimal treatment control
u2 rises to and stabilizes at the upper bound for tf = 70 days, before dropping to
the lower bound.
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Figure 1. Simulations showing the effect of personal protection
only on infected human and mosquitoes populations

Optimal insecticide spraying. With this strategy, only the control on insecticide
spraying (u3) is used to optimize the objective function J , while the control on
treatment (u2) and the control on personal protection (u1) are set to zero. The
results in Figure 3 show a significant difference in the Ih and Iv with optimal
strategy compared to Ih and Iv without control. We see in Figure 3(a) that the
control strategies resulted in a decrease in the number of symptomatic human
(Ih) as against an increase in the uncontrolled case. Also in Figure 3(b), the
uncontrolled case resulted in increased number of infected mosquitoes (Iv), while
the control strategy lead to a drastic decrease in the number of infected mosquitoes.
The control profile is shown in Figure 3(c), here we see that the optimal insecticide
spray control u3 is at the upper bound till the time tf = 90 days, it then reduces
gradually to the lower bound.

Optimal treatment and insecticide spray. With this strategy, the control (u2)
on treatment and the control on (u3) insecticide spraying are both used to optimize
the objective function J , while the control on personal protection (u1) is set to zero.
In Figure 4, the result shows a significant difference in the Ih and Iv with optimal
control strategy compared to Ih and Iv without control. We observed in Figure
4(a) that the control strategies resulted in a decrease in the number of symptomatic
humans (Ih) as against increases in the uncontrolled case. Similarly in Figure 4(b),
the uncontrolled case resulted in increased number of infected mosquitoes (Iv),
while the control strategy lead to a decrease in the number of infected mosquitoes.
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Figure 2. Simulations showing the effect of treatment only on
infected human and mosquitoes populations

The control profile is shown in Figure 4(c), here we see that the optimal treatment
control u2 is at the upper bound till time tf = 50, while the optimal insecticide
spray u3 is at the upper bound for 90 days before reducing gradually to the lower
bound.

Optimal personal protection and insecticide spray. Here, the control on
personal protection (u1) and the spray of insecticide (u3) are used to optimize the
objective function J while setting the control on treatment u2 = 0. For this strat-
egy, shown in Figure 5, we observed that the number of symptomatic human (Ih)
and mosquitoes (Iv) differs considerably from the uncontrolled case. Figure 5(a),
reveals that symptomatic humans (Ih) is lower in comparison with the case without
control. While Figure 5(b), reveals a similar result of decreased number of infected
mosquitoes (Iv) for the controlled strategy as compared with the strategy without
control. The control profile in Figure 5(c) shows that the control on personal pro-
tection (u1) is at upper bound for 60 days, while insecticide spray (u3) is at upper
bound for t = 100 days before reducing to the lower bound.

Optimal personal protection and treatment. With this strategy, the control
on personal protection (u1) and the treatment (u2) are used to optimize the objec-
tive function J while setting the control on spray of insecticide u3 to zero. For this
strategy, shown in Figure 6, there is a significant difference in the Ih and Iv with
optimal strategy compared to Ih and Iv without control. We observed in Figure
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Figure 3. Simulations showing the effect of insecticide spraying
only on infected human and mosquitoes populations

6(a) that due to the control strategies, the number of symptomatic humans (Ih)
decreases as against the increase in the uncontrolled case. A similar decrease is
observed in Figure 6(b) for infected mosquitoes (Iv) in the control strategy, while
an increased number is observed for the uncontrolled case resulted. In Figure 6(c),
the control profile, the control u1 is at the upper bound for 118 (days) and drops
gradually until reaching the lower bound, while control on treatment u2 starts and
remain at upper bound for 12 days before dropping gradually to the lower bound.
The result here shows that with a personal protection coverage of 100% for 118
days and treatment coverage of 100% for 12 (days), the disease incidence will be
greatly reduced.

Optimal personal protection, treatment and insecticide spray. Here, all
three controls (u1, u2 and u3) are used to optimize the objective function J , with
weight factors m = 92, n = 20, c = 65, d = 10. For this strategy in Figure 7, we
observed in Figure 7(a) and 7(b) that the control strategies resulted in a decrease
in the number of symptomatic humans (Ih) and infected mosquitoes (Iv) as against
the increased number of symptomatic humans (Ih) and infected mosquitoes in the
uncontrolled case. The control profile shown in Figure 7(c), shows that the control
u1 is at upper bound for tf = 60 days, while control u2, starts high at about 77%
and reduces to the lower bound gradually over time. The control u3 on the other
hand is at upper bound for about 100 days before reducing to the lower bound.
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Figure 4. Simulations showing the effect of treatment and spray
of insecticide on infected human and mosquitoes populations

A comparison of all four control strategies in Figures 8(a) and 8(b) shows that
while all four strategies lead to a decrease in the number of infected, both in human
and in mosquitoes. The control strategy without treatment resulted in a higher
number of infected humans, followed by the strategy without personal protection.
The strategy without the spray of insecticide even though, it gave a better result in
reducing the infection in human, gave a poorer result in reducing the mosquitoes
population. This result shows that with individuals total adherence to effective use
of personal protection and spray of insecticide in the population, little treatment
efforts will then be required by the community in the control of the spread of the
disease.

Spray of insecticide. A scenario with reducing different fraction of vector pop-
ulation is simulated, the result shows that the value of p = 0.2 gave the lowest
number of susceptible (Sv) vectors while p = 0.85 gave the least value of infected
(Iv) vectors, this is followed by p = 0.6, p = 0.85 and lastly by p = 1 (a case
corresponding to no use or ineffective insecticide) as expected. This has the resul-
tant effect (not depicted here) on total number of vectors susceptible to malaria
Sv. When p = 0.85, the total number of vectors susceptible to malaria, Sv is 4900,
when p = 0.6, Sv = 2000, and lastly when p = 0.2, the total number of susceptible
vectors to malaria, Sv = 1000.
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Figure 5. Simulations showing the effect of optimal personal pro-
tection and spray of insecticide on infected human and mosquitoes
populations

5.1. Concluding remarks. In this paper, we presented a malaria model using
a deterministic system of differential equations and established that the model is
locally asymptotically stable when the associated reproduction number is less than
unity. In the optimal control problem considered, we use one control at a time and
the combination of two controls at a time, while setting the other(s) to zero to inves-
tigate and compare the effects of the control strategies on malaria eradication. This
is different from what was investigated in [5] where only two control measures of
personal protection and treatment were used while varying the vector-host contact
rate. Our numerical results shows that the combination of the three (3) controls,
personal protection, treatment and insecticides spray, has the highest impact on
the control of the disease. This is followed by the combination of treatment and
personal protection among the human population; and lastly by the combination
involving the use of personal protection and insecticide use. In communities where
resources are scarce, we suggest that the combination of treatment and personal
protection should be adopted, having observed from the comparison of all four
control strategies in Figure 8, that there is no significant difference between this
strategy and the combination of the three (3) controls. Although, our recommenda-
tion agrees with the result obtained by Blayneh et al[5], our result however shows
two possible control strategies, each with two combinations of control measures
that are sufficient to effectively achieve and maintain interruption of transmission
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Figure 6. Simulations showing the effect of optimal personal pro-
tection and treatment on infected human and mosquitoes popula-
tions

of malaria. A result which addresses the WHO [44] concern about the insufficiency
of only one control measure to achieve and maintain interruption of transmission
of malaria.
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