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SOLITARY WAVES FOR THE COUPLED NONLINEAR
KLEIN-GORDON AND BORN-INFELD TYPE EQUATIONS

FEIZHI WANG

ABSTRACT. In this article we study the existence of solutions for a nonlinear
Klein-Gordon-Maxwell equation coupled with a Born-Infeld equation.

1. INTRODUCTION

It is well known that the gauge potential (¢, A) can be coupled to a complex order
parameter ¥ through the minimal coupling rule; that is the formal substitution

QHQJF'@S
at ot Y
V —V —ieA,

where e is the electric charge, A : R? x R — R? is a magnetic vector potential and
¢ : R3 xR — R is an electric potential. Therefore, in a flat Minkowskian space-time
with metric (g,,) = diag[l, —1,—1, —1], we can define the Klein-Gordon-Maxwell
Lagrangian density
1,0 ) ) 1
Lrom = 3 “871? +iegp|? — |V —ieA|* — m2|¢|2] + a|¢|q,

where m > 0 represents the mass of the charged field. The total action of the
system is thus given by

S= //(ﬁKGM + Lomt) dx dt, (1.1)

where Lons is the Lagrangian density of the electro-magnetic field. In the Born-
Infeld theory (see [8]), with a suitable choice of constants, Lems can be written
as

B Y )
emf — ~BI -— Ar b2 y
where b is the so-called Born-Infeld parameter, b > 1. By the Maxwell equations,

O0A
BE=-Vo—
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is the electric field, and

B=VxA
is the magnetic induction field. If, as in [4], we consider the electrostatic solitary
wave:

Y(x,t) =u(x)e”™, A=0, ¢=q¢x),
where u : R* — R and w € R, then the total action in (I.1)) takes the form

Fyi(u, ) = %/R‘o‘ | Dul|? da + % /]R3 (m? — (e¢ — w)?) v’ dz

1 b? 1
_Z aqy — 2 1= 2
7 s |u|? dx gy /R3 (1 1 b2W¢| )d:c.

The critical point (u, ) of Fpy satisfies the Euler-Lagrange equations associted to
(1.2). By standard calculations, we obtain:

~Au+[m? — (¢ — w)?u = |u|??u, in R3,
Vo

V1-5=lVel?

where we have taken e = 1. We can see that the sign w is not relevant for the
existence of solutions for problem . In fact, if (u,¢) is a solution of
with w, then (u,—¢) is also a solution corresponding to —w. So, without loss of
generality, we can assume w > 0.

As we know, a large number of works have been devoted to the problem like
. In the following we review some assumptions and the corresponding results.

In [2, B, 4 B 6] [7, O 0] [15], the authors consider the first-order expansion of
the second formula of for b — +o00. Therefore becomes

—Au+[m? — (¢ —w)?|u = |u/T"%u, in R3
A¢p = 4m(p — w)u?, in R3,

About the problem , the pioneering work is given by Benci and Fortunato
[4]. They showed that has infinitely many solutions when ¢ € (4,6) and
0 < w < m. In [10] d’Aprile and Mugnai proved the existence of nontrivial solutions
of whenever ¢ € (2,4] and

(1.2)

V- =A4n(¢p —w)u?, inR3, (1.3)

(1.4)

-2 9 2
— > w”.
5 m w

d’Aprile and Mugnai [9] also showed that (1.4) has no nontrivial solutions when
g>6and 0 <w <mor q<2. Recently, in [2], under the following conditions:
(q_2)(4_Q)m2>w27 p€(273)7
m>w>0, pé€]l3,6),

Azzollini, Pisani and Pomponio showed that (1.4) admits a nontrivial solution. It
is easy to see that (p —2)(4 —p) > (p—2)/2 for p € (2,3].

In [I11, 12} 14], the authors consider the second-order expansion of the second
formula of (1.3)) for b — +o0. Therefore ([1.3)) becomes

—Au+ [m? — (¢ —w)?u = |[u|?%u, in R3,

A+ B2y = Am(¢p — w)u®, in R?, (15)
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where 32 = 1/(2b%) — 0 and A4 = D(|D$|>?D¢). In [12], Fortunato, Orsina and
Pisani showed the existence of electrostatic solutions with finite energy, while in
[11] d’Avenia and Pisani proved that has infinitely many solutions, provided
that 4 < ¢ < 6 and 0 < w < m. In [I4] Mugnai established the same results under
the following assumptions: 4 < ¢ <6 and 0 <w <mor 2 < g <4 and

-2 5 2

Tk > w”.

Recently, Yu [18] studied the original Born-Infeld equations, i.e. (1.3]). He proved

the existence of the least-action solitary waves in both bounded smooth domain case
and R? case whenever ¢ € (2,6) and

= Em? > w?,
q
In the present paper we consider the nonlinear Klein-Gordon equations coupled

with the N-th order expansion of the second formula of (1.3)) for b — +oo:
—Au+ [m? — (¢ —w)?ju = [u|?%u, in R,

N
Z(ﬂkAqub) = 47T(¢ — (U)’U,Q, in R3, (16)

k=1

where B = 1, B = 52550 by and Agkg = D(|Dg[**~2Dg), for k =
2,3,...,N.

It is well-known that H'(R?) is the usual Sobolev space endowed with the norm

1/2
[l 1 ey = (/3[|Du|2 +u’] dx)
R

(see [1], [I7, Theorem 1.8]). DY (R?) denotes the completion of C§°(R3,R) with
respect to the norm

1/2 1/(2N)
9l o~ @sy = (/ |Do|? dz) + (/ |Do|?N d:c) )
R3 R3

By a solution (u,®) of (L.6), we understand (u,¢) € H*(R?) x DV (R?) satisfying

(1.6)) in the weak sense. Obviously, (u,¢) = (0,0) is a trivial solution of (1.6]). We

define a functional Fy : H*(R?) x DV (R?) — R by

P,0) = [ (51D~ 5 (LD + Sm7 — (0= - L]
’ R3S 2 4m Pt 2k 2 q '

It is easy to see that Fy € C'(H*(R®) x DV (R?),R). Therefore solutions of (T.6)
correspond to critical points of the functional Fiy. Next we give our main result.

Theorem 1.1. Problem has at least a nontrivial solution (u,¢) € H'(R?) x
DN (R3), provided one of the following conditions is satisfied

(i) ¢ € (3,6) and m > w > 0.

(i) ¢ € (2,3] and (¢ — 2)(4 — ¢)m? > w? > 0.

Set |ulq == { s [u|%da}/9 for 1 < ¢ < co. We say that {u,} C H*(R?) is a
Palais-Smale sequence for ® € C*(H'(R?),R) at level ¢ € R (the (PS).-sequence
for short), if and only if {u,} satisfies ®(u,) — ¢ and ®'(u,,) — 0 as n — oo.

To find the critical points of the functional Fy (u, ¢) we will overcome two diffi-
culties. The first difficulty is that Fi(u, ¢) is strongly indefinite (unbounded both
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from below and from above on infinite dimensional subspaces). To avoid this diffi-
culty, we use the reduction method just like in [I2] 1T}, [14]. The reduction method
consists in reducing the study of Fin(u, ¢) to the study of a functional J(u) in the
only variable u. The second difficulty is that the embedding of H!(R?) into L?(R?)
is not compact, where 2 < ¢ < 2*(= 6). So J(u) does not in general satisfy the
Palais-Smale condition. We will study J(u) in H}!(R?), where

HY(®®) = {u e H'(®Y) : u(z) = u(fz])}.

By the Principle of symmetric criticality (see [16] or [I7, Theorem 1.28]), a critical
point v € HY(R3) for J(u) is also a critical point in H'(R3). We construct a
bounded (PS).-sequence following the methods of Jeanjean [13]. Then there exists
a subsequence of {u,,} which converges strongly in H!(R3).

This paper is organized as follows: in Section 2, we make some preliminaries; in
Section 3, we obtain that the solutions of must verify some suitable Pohozaev
identity; in Section 4, we give the proof of Theorem

2. PRELIMINARIES

In the following we give some lemmas, whose similar proofs can be founded in
[9, [T, [14].

Lemma 2.1. For every u € H'(R3) there is a unique ¢ = ®(u) € DN (R3) which
solves

N
> (BrAarg) = 4n(d — w)u’. (2.1)
k=1
Lemma 2.2. For any u € H'(R3), on the set {x € R® : u(x) # 0},

0<P(u) <w
Proof. Set ®~ = min{®,0}. Multiplying (2.1) by &, we have
LN
- Z (ﬁk/ | DD~ |2 dm) = / (®7)2u? do — w/ O u?dr > 0.
47 R3 R3 R3
k=1

So we obtain D®~ = 0. Hence, & > 0.
When we multiply (2.1)) by (®(u) — w)+ = max{®(u) — w, 0}, we obtain

1
[ @ -wreds = (ﬂk [ o) = o
P(u)>w Am =1 P(u)>w
so that (®(u) —w)™ =0 for u # 0. Hence ®(u) < w. O

Lemma 2.3. The pair (u,$) € H(R?) x DN (R?) is a solution of (1.6) if and only
if u is a critical point of

N
In(u) == Fn(u, ®(u)) = /R [%|Du\2 - 4i Z ﬂk|D<I> )*F)

+mt = (@ =0l =2 [ Jult]da

and ¢ = O(u).
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The functional of (|1.6) is
1 1 on 1
F _ |:7 D 2_ = - D 2k
vwe) = [ 5100 CLALT
Lo 9 2y, 2 1/ q
Z(m? — (¢ — - d.
+am? =@t~ Jult] de
From Lemma [2.1] for fixed u € H'(R®), we have
L
——Z(ﬂk/ |D(I>(u)|2kdx) :/ <I>2(u)u2dx—w/ ®(u)u? de,
4 1 R3 R3 R3
where ®(u) appears in Lemma [2.1] Then
In(u) = Fn(u, ®(u))
1 1
- | Dul? da:+f(m2fw2)/ u2d:c+g/ ®(u)u? dzx
2 Jgs 2 Rs 2 Ju

R3
N

1 k—1 1

— D (u)|?* _7/ 4.

+4uzz(2k 5 [ Dot ar) - < [ s

3

By the definition of Jy(u), we have
(Jy(u),u) = |Dul|? dz + (m? — w2)/ u? dx — / ®? (u)u? dx
RS RS RS

—|—2w/ ®(u)u? do — |u|? de.
R3 R3

From Lemmas and to obtain a solution of (1.6), we need only to find
a critical point of Jy in H!(R?). Note that the functional Jy depends only on w.
Set

H, (R?) = {u € H'(R®) : u(w) = u(lz])}-
By standard arguments (Principle of symmetric criticality) one sees that a critical

point u € H}(R?) for the functional Jy in H}(R?) is also a critical point for Jy in
HY(R3).

3. THE POHOZAEV IDENTITY

In this section we obtain that the solutions of (1.6 must verify some suitable
Pohozaev identity, as was proved in [9], which provides necessary conditions to
prove the existence of nontrivial solutions.

Lemma 3.1. Let u € HE (R"), ¢ € H*(R™) and a,b > 0. Then, for any ball

Br ={z € R": |z| < R > 0}, the following equalities hold:

/ —Au(z, Du) dx
Br

(3.1)

2 — 1 R

= n/ |Du|2dx——/ (w,Du)Zda—i——/ |Dul? do;
2 JBg R Jopy, 2 JoBg
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/ (a + bd)du(x, Du) dx
Br

- _/ (% +bp)u? (z, Do) da (3:2)
Br
- g /B (a + bp)pu? dx + g /83 (a + bp)pu? do;
/ g(u){z, Du) dx = —n G(u)dx + R G(u)do; (3.3)
Br Br dBg
Aoy (z,D@)dz = | D(|D¢|**"2D¢)(x, Do) dx
Br Br
-2k i
- wm%ﬂwiwfw
R Jopy,

where Nqp¢p = D(|D¢|2k 2|D(J5D and g : R — R is a continuous function such that
9(0) =0 and G(s) = [; g(

Proof. The proofs of (3.1]), ( and ( . can be found in [9 Lemma 3.1]. In
the following we show (3.4]). For fix 41,...,1k-1, J,0 = 1,2,...,n, we see from the
integration by parts formula that

(bszg Ty, dT

%k 1

2
(l)m1 ..
Br

N
=—/<&,.% C1ba)e,budrt | R B D1bnde, Ldo
Br 1 k—1 1 k—1 |:U|

OBRr

¢wz¢wJ 6l]dx

Tig_1

::'_l/;3(¢ii1" 02, )a, W10, O, —-/f 92

— | @i 8k e buydr 62, ... 47
Br

OBRr

lquz(bxj | |

Tig_1 Tig_q

where do indicates the (n — 1)-dimensional area element in 0Bpr and dy; are the
Kroneker symbols. Summing up for i1,...,9x_1, j,I = 1,2,...,n, we have

/‘|D¢F”QA¢@nD¢NM
Br

=—/’wwm%%0@@D@M—/‘wm%m (3.5)
Br Br
—/ WW“%Mﬂw@m+l/ DSPH(z, De)? do
Br R OBRr

Similarly, for fix 41,...,ix—1, 7,0 = 1,2,...,n, we see from the integration by parts
formula that

2 d)x” : xlk l(rbfﬂ]qs%dz */ ¢T@1 .- x,k lxl( ij)-’fld‘r
2 2 2 2 3712
=—Ls%wn%mymWMM+8R@m.%%yjmw
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2 2 2 2 2 2
:—/B ( 2 ...¢zik71)xl$l¢xjdx—/ ( i "'¢xi,€,1)xl zjdx
R

Br
22
2 2 2 1
+ ¢zi1 cee (bzik—l d)a:j —do
9Br ' ||
Summing up for iy, ...,ix—1, 5,0 =1,2,...,n, we have

> / DSPA (2, D?6 D) da
Br

- / (z, D(ID[?*2))| De[2dz — n / D6 dr + R / D[ do
Br

BR 8BR

= —2(k—1)/B |D¢|2k’2<x,D2¢D¢>dx—n/B |D¢\2kdx+R/aB |Do|**do.

Then

n

/ |D¢|*=2(x, D?¢D¢)dx = — — \D¢|2kdm+£/ |Do|**do. (3.6)
BR 2]{; BR zk 6BR

Using (3.5) and (3.6, we obtain

A2k¢ <x7 D¢> dx

Br

= | D(|D¢|***D¢)(x, Do) du
Br

:/ |D¢|2’f—2A¢<x,D¢>dx+/ (D|D¢|**=2 D) (x, Do) da
Br B

R

1
_ / D" dir / DO 2z, D2Déydz + ~ [ |Dé[*2(x, D6)? do
Bgr Br R OBRr
n — 2k R 1
= D%df—/ Do|?*d 7/ Do 2(x, D&)? do.
i [, poin— o [ potao g [ Do, Dot do

Set Q = m? — w?. From the above Lemma we have the following result.

Lemma 3.2. If (u,¢) is a solution of the system (1.6), then (u, ) satisfies the
PohozZaev type identity:

N

1 3(k— 1)
2 2 2k
/R$|Du| d:c+3/R$u d:r+47TE (ﬂk ? /Rs|D¢| dx)

k=2

72/ ¢2u2dx+5/ wqﬁudefg/ |u|! dz = 0.
R3 R8 q Jgrs

(3.7)
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Proof. Multiplying the first formula of (1.6) by (z, Du), integrating on Br and
using the above Lemma, we conclude that

1 3
—7/ |Du|2dx—fﬂ/ u? dx
2 /B, 2 JBn

_op? 3 _ow)eutda + > q
+/BR(¢ w)u (:C,ng)das—i—z/B (¢ — 2w)du dx—i—q/ |ul? dx

! " " Br (3.8)
=— (x, Du)?do — — | Dul?do
R Jopy 2 JoBg
Q
_ 2R u?do + R (¢ — 2w)pu® do + R |u|? de.
2 JoBg 2 JBg 4 JoBr

Multiplying the second formula of (1.6) by (x, D¢), integrating on Br and using
the above Lemma, we obtain

*WU2IZ7 X
47r/BR<¢ y?(z, D) d

N
= Z(ﬁkAqu’)) (x, Do) dx

Br p—1
N
= Bk | Auo(z,Do)dx (3.9)
k=1 Br
:fjﬂk(g‘%/ Dode — 2 [ |Dg*do
— 2k Jg, 2k Jop,
1
- D¢ ~2(x, D)2 do ).
+ 3 ), [P, Do) do)

By (3.8)), (3.9) and the proof of [0 Theorem 1.1, pp. 316-317], we deduce the
equality

N
1 3 1 3— 2k
—— | |Du*dz - ZQ 2de + — / Do¢|**d
3 Jpo Pl A =5 /Rs“ x+4ﬁ;<ﬁ’“ ST x)
3 ) 3
+ = (¢—2w)pu“dx + — |u|?dz = 0.
2 Jgs q JRr3

Then, noting (1.6)), we have

N

1 3(k—1)
2 2 2k
R3|Du| dx—|—3Q/Rsu dx + 5 E (ﬁk T /}R3 |D¢| dx)

k=2

-2 ¢2u2dx+5w/ qﬁquxfg/ |u|? dz = 0.
R3 R3 q Jrs

4. PROOF OF THE MAIN THEOREM

First, we give a abstract result which is due to Jeanjean [13].
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Proposition 4.1. Let (X, |- |) be a Banach space and let I C R™ be an interval.
Consider the family of C' functionals on X

Uy(u) = A(u) — AB(u), VAel,

with B(u) nonnegative and either A(u) — 400 or B(u) — +00, as ||u|| — oo and
such that U5(0) = 0. For any A € I we set

Iy ={y€C([0,1], X) : 7(0) = 0, ¥a(v(1)) < 0}.
If for every \ € I the set I'y is nonempty and

ex = inf Jnax Ua((t) >0,

then for almost every X € I there is a sequence {(ux)n} C X such that
(i) {(ux)n} is bounded in X;

(11) \I/)\((U)\)n) — C),
(iii) ¥4\ ((ur)n) — 0 in the dual X* of X.

Proof Theorem [I.1l Denote

M($) = jﬁkXNj (55 [ 1Dof ).

=2
Then, noting the definition of ®(u) we can write (3.7)) and J(u) by:

/ |Du|2d£c+3§2/ uzdx+3M(¢>(u))—2/ 2 (u)u? dx
R3 R3 R3

+ 5w/ ®(u)u? de — 6 lulfdxr =0
R3 R3

q
and
1 2 1 2 w 2
JIn(u) =< |Dul*dx 4+ =Q [ v dx+ - b (u)u® do
2 R3 2 R3 2 R3
1 1
+-M(®(u) - - |ul? dz,
2 q JRrs3
respectively.

For A € [£,1], we define the family of functionals Jy,y : H}(R®) — R by

1 1
Ina(u) == |Duf*dz + =Q [ w?dx+ ﬂ/ ®(u)u? dx
2 R3 2 R3 2 R3

1 A
+ §M(‘I>(u)) 3 /]RS |u|? dx

Using a slightly modified version of [2] Lemmas 2.3 and 2.4], it can be proved that:
for every A € [1,1], there exist ax, px > 0 and vy € H}(R®) such that

(1) ianuH:pA JN,)\(’LL) > Q.

(ii) HVXH > py and JN,A(V)\) < 0.
Thus Jy,» has the mountain pass geometry. So we can define the Mountain Pass
level ¢y by

CA = ,ylellrfk Oréltag}{l ']N,)\(’Y(t))’

where
Ty ={y € C([0,1], H; (R?)) : 7(0) = 0,7(1) = m\}.
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Set X = HY(R3),I =[3,1], Uy = Jn »,
1 1
Alu) = = | Du|? dx + fQ/ w?da + = / ®(u)u? dz + = M(®(u))
R3 2 R3 2 R3 2

and

1
B(u) = 7/ |u|? d.
R3

q
It is easy to see that B(u) > 0 for all u € H}(R?) and A(u) — 400 as |jul| — oco.
Thus, by Proposition for almost every A € I there is a sequence {(uy)n} C X
such that

(i) {(ux)n} is bounded in H}!(R3);

(i) Jna((ur)n) = €x;
(it)) Jy \((ua)n) — 0 in the dual (H}(R?))* of H}(R?).

There exists uy € H!(R?) such that
J\(ux) =0,  Jx(un) = ey,
for almost every A € I. Now we can choose a suitable \,, — 1 and uy, such that
Jy (ua,) =0, Jx,(ur,) =cr, = c,

For simplicity we denoted uy,, by u,. Since J} (u,) =0, uy, satisfies the Pohozaev
equality

/ |Dun|2dx+3Q/ uidm+3M(<I>(un))—2/ 2 (up, )u dx
R3

R (4.1)
+5w/ D (up)u dx——/ |t |? da = 0.
R3

By J), (un) =0 and Jy, (un) = cx, — c1, we have

/ |Vun\2dz+ﬂ/ uidaj+2w/ ®(uy, )u? dx
R3 R3 R3
7/ CI)Z(un)ufldxf)\n/ [un|Tdx =0

R3 R3

and, for n large enough,

1/ |Vun|2dm+lﬂ/ uidm—l—lM((I)(un))
2 R3 2 R3 2

An
+f/ @(un)ufbdaj——'/ |un|?de < cp + 1.
2 Jrs q Jgrs

Set « and 3 two real number (which we will estimate later). Then from « x (4.1]) +

B x ([4.2)), we obtain

—/ |t |? dx

{asm [ VuPdo+@as o) [ ubdossadae,)

R3

6cv +4qp
+ (ba + 25)/ w®, u?dr — (20 + 5)/ 2 ul dx}.
R3

R3
Thus

a+l> JAn (un)
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1 1
= f/ |Vun|2dm+fQ/ u? dx
2 R3 2 R3

1 1 An
+ —M(P(uyn)) + f/ Wy, uZ dr — —/ |un|? dz
2 2 R3 " q Jrs

1 OZ+,6 2 1 30[4—,8 / 2
= (- 277 WPde+ (= - 22T d
(2 6a+qﬁ) /RJV“ | x+(2 6a+qﬁ) ks m ¥

1 5a+28 , 1 3a
+ (5 " 6a+ qﬁ) [, WOuntin d (5 " ba +q5)M(q’(“"))

200+ 3
60t+q/8 R3

+
1 T+1 9
= - — n d
(2 67+q) /Rz [Veun|” da
_|_

1 37 27 +1 9 9
- — M(D [0}
(2 67 + q) (©(un)) + 67 +¢q /R3 (un ), de

1 3 1 1 5 2
(f _ort )Q/ u? dr + (7 _ort ) / w®(uy )u? dr,
2 67 4+ ¢q R3 2 67 +¢q R3

O? (up )u? drx

+

where 7 = % Under one of the following conditions:
(i) g€ (4,6), 7€ ((2—¢)/4,—-1/2) and m > w > 0;
(i) ¢ € (3,4, 7€ ((2—q)/4,(¢ — 4)/4) and m > w > 0;
(i) g € (2,3], 7 € ((2—q)/4, +00) and my/(q —2)(4 —q) > w > 0,

we conclude that
1 T+ 1 1 3T

— >0, - ——— >
2 674+¢q 2 674+¢q
and

2 6r+gq

27+1t2 (1 5T+2> . (1 31 +1
= — w

67 +q 2 67+¢q
So we obtain that [gs |Vu,|?dz is bounded for all n. Then, as in [2, Proof of

Teorem 1.1, pp. 9] we have {u,} is bounded in H}(R3). Thus {u, } is a bounded
(PS)¢,-sequence for Jy. So Jy has a nontrivial critical point uy.

)Q >0, forte|0,w].
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