Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 82, pp. 1–12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

SOLITARY WAVES FOR THE COUPLED NONLINEAR KLEIN-GORDON AND BORN-INFELD TYPE EQUATIONS

FEIZHI WANG

ABSTRACT. In this article we study the existence of solutions for a nonlinear Klein-Gordon-Maxwell equation coupled with a Born-Infeld equation.

1. INTRODUCTION

It is well known that the gauge potential (ϕ, \mathbf{A}) can be coupled to a complex order parameter ψ through the minimal coupling rule; that is the formal substitution

$$\begin{array}{l} \frac{\partial}{\partial t}\mapsto \frac{\partial}{\partial t}+ie\phi,\\ \nabla\mapsto \nabla-ie\mathbf{A}, \end{array}$$

where e is the electric charge, $\mathbf{A} : \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^3$ is a magnetic vector potential and $\phi : \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$ is an electric potential. Therefore, in a flat Minkowskian space-time with metric $(g_{\mu\nu}) = \text{diag}[1, -1, -1, -1]$, we can define the Klein-Gordon-Maxwell Lagrangian density

$$\mathcal{L}_{KGM} = \frac{1}{2} \left[\left| \frac{\partial \psi}{\partial t} + i e \phi \psi \right|^2 - |\nabla \psi - i e \mathbf{A}|^2 - m^2 |\psi|^2 \right] + \frac{1}{q} |\psi|^q$$

where $m \ge 0$ represents the mass of the charged field. The total action of the system is thus given by

$$S = \iint (\mathcal{L}_{KGM} + \mathcal{L}_{emf}) \, dx \, dt, \qquad (1.1)$$

where \mathcal{L}_{emf} is the Lagrangian density of the electro-magnetic field. In the Born-Infeld theory (see [8]), with a suitable choice of constants, \mathcal{L}_{emf} can be written as

$$\mathcal{L}_{\text{emf}} = \mathcal{L}_{BI} := \frac{b^2}{4\pi} \left(1 - \sqrt{1 - \frac{1}{b^2} (|\mathbf{E}|^2 - |\mathbf{B}|^2)} \right),$$

where b is the so-called Born-Infeld parameter, $b \gg 1$. By the Maxwell equations,

$$\mathbf{E} = -\nabla\phi - \frac{\partial \mathbf{A}}{\partial t}$$

Key words and phrases. Nonlinear Klein-Gordon; Born-Infeld type equation;

²⁰⁰⁰ Mathematics Subject Classification. 35J15.

electrostatic solitary wave; critical points.

^{©2012} Texas State University - San Marcos.

Submitted December 22, 2011. Published May 23, 2012.

Supported by grant ZR2011AL009 from the Shandong Province Natural Science Foundation.

is the electric field, and

$$\mathbf{B}=\nabla\times\mathbf{A}$$

is the magnetic induction field. If, as in [4], we consider the electrostatic solitary wave:

$$\psi(x,t) = u(x)e^{-i\omega t}, \quad \mathbf{A} = 0, \quad \phi = \phi(x),$$

where $u: \mathbb{R}^3 \to \mathbb{R}$ and $\omega \in \mathbb{R}$, then the total action in (1.1) takes the form

F. WANG

$$F_{\rm BI}(u,\phi) = \frac{1}{2} \int_{\mathbb{R}^3} |Du|^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^3} \left(m^2 - (e\phi - \omega)^2 \right) u^2 \, dx - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx - \frac{b^2}{4\pi} \int_{\mathbb{R}^3} \left(1 - \sqrt{1 - \frac{1}{b^2} |\nabla \phi|^2} \right) dx.$$
(1.2)

The critical point (u, ϕ) of F_{BI} satisfies the Euler-Lagrange equations associted to (1.2). By standard calculations, we obtain:

$$-\Delta u + [m^2 - (\phi - \omega)^2]u = |u|^{q-2}u, \quad \text{in } \mathbb{R}^3,$$
$$\nabla \cdot \frac{\nabla \phi}{\sqrt{1 - \frac{1}{b^2} |\nabla \phi|^2}} = 4\pi (\phi - \omega)u^2, \quad \text{in } \mathbb{R}^3,$$
(1.3)

where we have taken e = 1. We can see that the sign ω is not relevant for the existence of solutions for problem (1.3). In fact, if (u, ϕ) is a solution of (1.3) with ω , then $(u, -\phi)$ is also a solution corresponding to $-\omega$. So, without loss of generality, we can assume $\omega > 0$.

As we know, a large number of works have been devoted to the problem like (1.3). In the following we review some assumptions and the corresponding results. In [2, 3, 4, 5, 6, 7, 9, 10, 15], the authors consider the first-order expansion of

the second formula of (1.3) for $b \to +\infty$. Therefore (1.3) becomes

$$-\Delta u + [m^2 - (\phi - \omega)^2]u = |u|^{q-2}u, \quad \text{in } \mathbb{R}^3,$$

$$\Delta \phi = 4\pi(\phi - \omega)u^2, \quad \text{in } \mathbb{R}^3.$$
 (1.4)

About the problem (1.4), the pioneering work is given by Benci and Fortunato [4]. They showed that (1.4) has infinitely many solutions when $q \in (4, 6)$ and $0 < \omega < m$. In [10] d'Aprile and Mugnai proved the existence of nontrivial solutions of (1.4) whenever $q \in (2, 4]$ and

$$\frac{q-2}{2}m^2 > \omega^2.$$

d'Aprile and Mugnai [9] also showed that (1.4) has no nontrivial solutions when $q \ge 6$ and $0 < \omega \le m$ or $q \le 2$. Recently, in [2], under the following conditions:

$$(q-2)(4-q)m^2 > \omega^2, \quad p \in (2,3),$$

 $m > \omega > 0, \quad p \in [3,6),$

Azzollini, Pisani and Pomponio showed that (1.4) admits a nontrivial solution. It is easy to see that (p-2)(4-p) > (p-2)/2 for $p \in (2,3]$.

In [11, 12, 14], the authors consider the second-order expansion of the second formula of (1.3) for $b \to +\infty$. Therefore (1.3) becomes

$$-\Delta u + [m^2 - (\phi - \omega)^2]u = |u|^{q-2}u, \quad \text{in } \mathbb{R}^3,$$

$$\Delta \phi + \beta_2 \Delta_4 \phi = 4\pi(\phi - \omega)u^2, \quad \text{in } \mathbb{R}^3,$$

(1.5)

where $\beta_2 = 1/(2b^2) \to 0$ and $\Delta_4 \phi = D(|D\phi|^2 D\phi)$. In [12], Fortunato, Orsina and Pisani showed the existence of electrostatic solutions with finite energy, while in [11] d'Avenia and Pisani proved that (1.5) has infinitely many solutions, provided that 4 < q < 6 and $0 < \omega < m$. In [14] Mugnai established the same results under the following assumptions: $4 \le q < 6$ and $0 < \omega < m$ or 2 < q < 4 and

$$\frac{q-2}{2}m^2 > \omega^2.$$

Recently, Yu [18] studied the original Born-Infeld equations, i.e. (1.3). He proved the existence of the least-action solitary waves in both bounded smooth domain case and \mathbb{R}^3 case whenever $q \in (2, 6)$ and

$$\frac{q-2}{q}m^2 > \omega^2.$$

In the present paper we consider the nonlinear Klein-Gordon equations coupled with the N-th order expansion of the second formula of (1.3) for $b \to +\infty$:

$$-\Delta u + [m^{2} - (\phi - \omega)^{2}]u = |u|^{q-2}u, \quad \text{in } \mathbb{R}^{3},$$
$$\sum_{k=1}^{N} (\beta_{k} \Delta_{2k} \phi) = 4\pi (\phi - \omega)u^{2}, \quad \text{in } \mathbb{R}^{3},$$
(1.6)

where $\beta_1 = 1$, $\beta_k = \frac{1 \cdot 3 \cdot 5 \dots (2k-3)}{2^{k-1}(k-1)!} \frac{1}{b^{2(k-1)}}$ and $\Delta_{2k}\phi = D(|D\phi|^{2k-2}D\phi)$, for $k = 2, 3, \dots, N$.

It is well-known that $H^1(\mathbb{R}^3)$ is the usual Sobolev space endowed with the norm

$$||u||_{H^1(\mathbb{R}^3)} = \left(\int_{\mathbb{R}^3} [|Du|^2 + u^2] \, dx\right)^{1/2}$$

(see [1], [17, Theorem 1.8]). $D^N(\mathbb{R}^3)$ denotes the completion of $C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ with respect to the norm

$$\|\phi\|_{D^{N}(\mathbb{R}^{3})} = \left(\int_{\mathbb{R}^{3}} |D\phi|^{2} dx\right)^{1/2} + \left(\int_{\mathbb{R}^{3}} |D\phi|^{2N} dx\right)^{1/(2N)}$$

By a solution (u, ϕ) of (1.6), we understand $(u, \phi) \in H^1(\mathbb{R}^3) \times D^N(\mathbb{R}^3)$ satisfying (1.6) in the weak sense. Obviously, $(u, \phi) = (0, 0)$ is a trivial solution of (1.6). We define a functional $F_N : H^1(\mathbb{R}^3) \times D^N(\mathbb{R}^3) \to \mathbb{R}$ by

$$F_N(u,\phi) = \int_{\mathbb{R}^3} \left[\frac{1}{2} |Du|^2 - \frac{1}{4\pi} \sum_{k=1}^N \left(\frac{1}{2k} \beta_k |D\phi|^{2k} \right) + \frac{1}{2} (m^2 - (\phi - \omega)^2) u^2 - \frac{1}{q} |u|^q \right] dx$$

It is easy to see that $F_N \in C^1(H^1(\mathbb{R}^3) \times D^N(\mathbb{R}^3), \mathbb{R})$. Therefore solutions of (1.6) correspond to critical points of the functional F_N . Next we give our main result.

Theorem 1.1. Problem (1.6) has at least a nontrivial solution $(u, \phi) \in H^1(\mathbb{R}^3) \times D^N(\mathbb{R}^3)$, provided one of the following conditions is satisfied

- (i) $q \in (3, 6)$ and $m > \omega > 0$.
- (ii) $q \in (2,3]$ and $(q-2)(4-q)m^2 > \omega^2 > 0$.

Set $|u|_q := \{\int_{\mathbb{R}^3} |u|^q dx\}^{1/q}$ for $1 < q < \infty$. We say that $\{u_n\} \subset H^1(\mathbb{R}^3)$ is a Palais-Smale sequence for $\Phi \in C^1(H^1(\mathbb{R}^3), \mathbb{R})$ at level $c \in \mathbb{R}$ (the $(PS)_c$ -sequence for short), if and only if $\{u_n\}$ satisfies $\Phi(u_n) \to c$ and $\Phi'(u_n) \to 0$ as $n \to \infty$.

To find the critical points of the functional $F_N(u, \phi)$ we will overcome two difficulties. The first difficulty is that $F_N(u, \phi)$ is strongly indefinite (unbounded both

from below and from above on infinite dimensional subspaces). To avoid this difficulty, we use the reduction method just like in [12, 11, 14]. The reduction method consists in reducing the study of $F_N(u, \phi)$ to the study of a functional J(u) in the only variable u. The second difficulty is that the embedding of $H^1(\mathbb{R}^3)$ into $L^q(\mathbb{R}^3)$ is not compact, where $2 < q < 2^* (= 6)$. So J(u) does not in general satisfy the Palais-Smale condition. We will study J(u) in $H^1_r(\mathbb{R}^3)$, where

$$H_r^1(\mathbb{R}^3) = \{ u \in H^1(\mathbb{R}^3) : u(x) = u(|x|) \}.$$

By the Principle of symmetric criticality (see [16] or [17, Theorem 1.28]), a critical point $u \in H^1_r(\mathbb{R}^3)$ for J(u) is also a critical point in $H^1(\mathbb{R}^3)$. We construct a bounded $(PS)_c$ -sequence following the methods of Jeanjean [13]. Then there exists a subsequence of $\{u_n\}$ which converges strongly in $H^1_r(\mathbb{R}^3)$.

This paper is organized as follows: in Section 2, we make some preliminaries; in Section 3, we obtain that the solutions of (1.6) must verify some suitable Pohožaev identity; in Section 4, we give the proof of Theorem 1.1.

2. Preliminaries

In the following we give some lemmas, whose similar proofs can be founded in [9, 11, 14].

Lemma 2.1. For every $u \in H^1(\mathbb{R}^3)$ there is a unique $\phi = \Phi(u) \in D^N(\mathbb{R}^3)$ which solves

$$\sum_{k=1}^{N} (\beta_k \Delta_{2k} \phi) = 4\pi (\phi - \omega) u^2.$$
 (2.1)

Lemma 2.2. For any $u \in H^1(\mathbb{R}^3)$, on the set $\{x \in \mathbb{R}^3 : u(x) \neq 0\}$,

$$0 \le \Phi(u) \le \omega.$$

Proof. Set $\Phi^- = \min{\{\Phi, 0\}}$. Multiplying (2.1) by Φ^- , we have

$$-\frac{1}{4\pi}\sum_{k=1}^{N}\left(\beta_{k}\int_{\mathbb{R}^{3}}|D\Phi^{-}|^{2k}\,dx\right) = \int_{\mathbb{R}^{3}}(\Phi^{-})^{2}u^{2}\,dx - \omega\int_{\mathbb{R}^{3}}\Phi^{-}u^{2}\,dx \ge 0.$$

So we obtain $D\Phi^- \equiv 0$. Hence, $\Phi \geq 0$.

When we multiply (2.1) by $(\Phi(u) - \omega)^+ = \max{\{\Phi(u) - \omega, 0\}}$, we obtain

$$\int_{\Phi(u) \ge \omega} (\Phi(u) - \omega)^2 u^2 \, dx = -\frac{1}{4\pi} \sum_{k=1}^N \left(\beta_k \int_{\Phi(u) \ge \omega} |D\Phi(u)|^{2k} \, dx \right) \ge 0,$$

so that $(\Phi(u) - \omega)^+ = 0$ for $u \neq 0$. Hence $\Phi(u) \leq \omega$.

Lemma 2.3. The pair $(u, \phi) \in H^1(\mathbb{R}^3) \times D^N(\mathbb{R}^3)$ is a solution of (1.6) if and only if u is a critical point of

$$J_N(u) := F_N(u, \Phi(u)) = \int_{\mathbb{R}^3} \left[\frac{1}{2} |Du|^2 - \frac{1}{4\pi} \sum_{k=1}^N \left(\frac{1}{2k} \beta_k |D\Phi(u)|^{2k} \right) + \frac{1}{2} (m^2 - (\Phi(u) - \omega)^2) u^2 - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \right] dx$$

and $\phi = \Phi(u)$.

The functional of (1.6) is

$$F_N(u,\phi) = \int_{\mathbb{R}^3} \left[\frac{1}{2} |Du|^2 - \frac{1}{4\pi} \sum_{k=1}^N \left(\frac{1}{2k} \beta_k |D\phi|^{2k} \right) + \frac{1}{2} (m^2 - (\phi - \omega)^2) u^2 - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \right] dx.$$

From Lemma 2.1, for fixed $u \in H^1(\mathbb{R}^3)$, we have

$$-\frac{1}{4\pi}\sum_{k=1}^{N}\left(\beta_{k}\int_{\mathbb{R}^{3}}|D\Phi(u)|^{2k}\,dx\right) = \int_{\mathbb{R}^{3}}\Phi^{2}(u)u^{2}\,dx - \omega\int_{\mathbb{R}^{3}}\Phi(u)u^{2}\,dx,$$

where $\Phi(u)$ appears in Lemma 2.1. Then

$$J_N(u) = F_N(u, \Phi(u))$$

= $\frac{1}{2} \int_{\mathbb{R}^3} |Du|^2 dx + \frac{1}{2} (m^2 - \omega^2) \int_{\mathbb{R}^3} u^2 dx + \frac{\omega}{2} \int_{\mathbb{R}^3} \Phi(u) u^2 dx$
+ $\frac{1}{4\pi} \sum_{k=2}^N \left(\frac{k-1}{2k} \beta_k \int_{\mathbb{R}^3} |D\Phi(u)|^{2k} dx \right) - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q dx.$

By the definition of $J_N(u)$, we have

$$\begin{split} \langle J'_N(u), u \rangle &= \int_{\mathbb{R}^3} |Du|^2 \, dx + (m^2 - \omega^2) \int_{\mathbb{R}^3} u^2 \, dx - \int_{\mathbb{R}^3} \Phi^2(u) u^2 \, dx \\ &+ 2\omega \int_{\mathbb{R}^3} \Phi(u) u^2 \, dx - \int_{\mathbb{R}^3} |u|^q \, dx. \end{split}$$

From Lemmas 2.1 and 2.3, to obtain a solution of (1.6), we need only to find a critical point of J_N in $H^1(\mathbb{R}^3)$. Note that the functional J_N depends only on u. Set

$$H^1_r(\mathbb{R}^3) = \{ u \in H^1(\mathbb{R}^3) : u(x) = u(|x|) \}.$$

By standard arguments (Principle of symmetric criticality) one sees that a critical point $u \in H^1_r(\mathbb{R}^3)$ for the functional J_N in $H^1_r(\mathbb{R}^3)$ is also a critical point for J_N in $H^1(\mathbb{R}^3)$.

3. The Pohožaev identity

In this section we obtain that the solutions of (1.6) must verify some suitable Pohožaev identity, as was proved in [9], which provides necessary conditions to prove the existence of nontrivial solutions.

Lemma 3.1. Let $u \in H^2_{loc}(\mathbb{R}^n)$, $\phi \in H^{2k}_{loc}(\mathbb{R}^n)$ and $a, b \ge 0$. Then, for any ball $B_R = \{x \in \mathbb{R}^n : |x| \le R > 0\}$, the following equalities hold:

$$\int_{B_R} -\Delta u \langle x, Du \rangle \, dx = \frac{2-n}{2} \int_{B_R} |Du|^2 \, dx - \frac{1}{R} \int_{\partial B_R} \langle x, Du \rangle^2 \, d\sigma + \frac{R}{2} \int_{\partial B_R} |Du|^2 \, d\sigma;$$
(3.1)

$$\begin{split} \int_{B_R} (a+b\phi)\phi u\langle x, Du\rangle \, dx \\ &= -\int_{B_R} \left(\frac{a}{2}+b\phi\right) u^2 \langle x, D\phi\rangle \, dx \qquad (3.2) \\ &- \frac{n}{2} \int_{B_R} (a+b\phi)\phi u^2 \, dx + \frac{R}{2} \int_{\partial B_R} (a+b\phi)\phi u^2 \, d\sigma; \\ &\int_{B_R} g(u)\langle x, Du\rangle \, dx = -n \int_{B_R} G(u) \, dx + R \int_{\partial B_R} G(u) \, d\sigma; \qquad (3.3) \\ \int_{B_R} \Delta_{2k}\phi \, \langle x, D\phi\rangle \, dx = \int_{B_R} D(|D\phi|^{2k-2}D\phi)\langle x, D\phi\rangle \, dx \\ &= \frac{n-2k}{2k} \int_{B_R} |D\phi|^{2k} dx - \frac{R}{2k} \int_{\partial B_R} |D\phi|^{2k} d\sigma \qquad (3.4) \\ &+ \frac{1}{R} \int_{\partial B_R} |D\phi|^{2k-2} \langle x, D\phi\rangle^2 \, d\sigma, \end{split}$$

where $\Delta_{2k}\phi = D(|D\phi|^{2k-2}|D\phi|)$ and $g: \mathbb{R} \to \mathbb{R}$ is a continuous function such that g(0) = 0 and $G(s) = \int_0^s g(t) dt$.

Proof. The proofs of (3.1), (3.2) and (3.3) can be found in [9, Lemma 3.1]. In the following we show (3.4). For fix $i_1, \ldots, i_{k-1}, j, l = 1, 2, \ldots, n$, we see from the integration by parts formula that

$$\begin{split} &\int_{B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 \phi_{x_j x_j} x_l \phi_{x_l} dx \\ &= -\int_{B_R} (\phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 x_l \phi_{x_l})_{x_j} \phi_{x_j} dx + \int_{\partial B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 x_l \phi_{x_l} \phi_{x_j} \frac{x_j}{|x|} d\sigma \\ &= -\int_{B_R} (\phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2)_{x_j} x_l \phi_{x_l} \phi_{x_j} dx - \int_{B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 \phi_{x_l} \phi_{x_j} \delta_{lj} dx \\ &- \int_{B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 x_l \phi_{x_l x_j} \phi_{x_j} dx + \int_{\partial B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 x_l \phi_{x_l} \phi_{x_j} \frac{x_j}{|x|} d\sigma, \end{split}$$

where $d\sigma$ indicates the (n-1)-dimensional area element in ∂B_R and δ_{lj} are the Kroneker symbols. Summing up for $i_1, \ldots, i_{k-1}, j, l = 1, 2, \ldots, n$, we have

$$\begin{split} &\int_{B_R} |D\phi|^{2k-2} \Delta \phi \langle x, D\phi \rangle \, dx \\ &= -\int_{B_R} \langle D|D\phi|^{2k-2}, D\phi \rangle \langle x, D\phi \rangle \, dx - \int_{B_R} |D\phi|^{2k} \, dx \\ &- \int_{B_R} |D\phi|^{2k-2} \langle x, D^2\phi D\phi \rangle \, dx + \frac{1}{R} \int_{\partial B_R} |D\phi|^{2k-2} \langle x, D\phi \rangle^2 \, d\sigma. \end{split}$$
(3.5)

Similarly, for fix $i_1, \ldots, i_{k-1}, j, l = 1, 2, \ldots, n$, we see from the integration by parts formula that

$$2\int_{B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 x_l \phi_{x_l x_j} \phi_{x_j} dx = \int_{B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 x_l (\phi_{x_j}^2)_{x_l} dx$$
$$= -\int_{B_R} (\phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 x_l)_{x_l} \phi_{x_j}^2 dx + \int_{\partial B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 \phi_{x_j}^2 \frac{x_l^2}{|x|} d\sigma$$

F. WANG

$$= -\int_{B_R} (\phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2)_{x_l} x_l \phi_{x_j}^2 dx - \int_{B_R} (\phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2)_{x_l} \phi_{x_j}^2 dx + \int_{\partial B_R} \phi_{x_{i_1}}^2 \dots \phi_{x_{i_{k-1}}}^2 \phi_{x_j}^2 \frac{x_l^2}{|x|} d\sigma.$$

Summing up for $i_1, \ldots, i_{k-1}, j, l = 1, 2, \ldots, n$, we have

$$\begin{split} & 2\int_{B_R} |D\phi|^{2k-2} \langle x, D^2 \phi D\phi \rangle dx \\ & = -\int_{B_R} \langle x, D(|D\phi|^{2k-2}) \rangle |D\phi|^2 dx - n \int_{B_R} |D\phi|^{2k} dx + R \int_{\partial B_R} |D\phi|^{2k} d\sigma \\ & = -2(k-1) \int_{B_R} |D\phi|^{2k-2} \langle x, D^2 \phi D\phi \rangle dx - n \int_{B_R} |D\phi|^{2k} dx + R \int_{\partial B_R} |D\phi|^{2k} d\sigma. \end{split}$$

Then

$$\int_{B_R} |D\phi|^{2k-2} \langle x, D^2 \phi D\phi \rangle dx = -\frac{n}{2k} \int_{B_R} |D\phi|^{2k} dx + \frac{R}{2k} \int_{\partial B_R} |D\phi|^{2k} d\sigma.$$
(3.6)

Using (3.5) and (3.6), we obtain

$$\begin{split} &\int_{B_R} \Delta_{2k} \phi \left\langle x, D\phi \right\rangle dx \\ &= \int_{B_R} D(|D\phi|^{2k-2} D\phi) \left\langle x, D\phi \right\rangle dx \\ &= \int_{B_R} |D\phi|^{2k-2} \Delta \phi \left\langle x, D\phi \right\rangle dx + \int_{B_R} \left\langle D|D\phi|^{2k-2}, D\phi \right\rangle \left\langle x, D\phi \right\rangle dx \\ &= -\int_{B_R} |D\phi|^{2k} dx - \int_{B_R} |D\phi|^{2k-2} \left\langle x, D^2 \phi D\phi \right\rangle dx + \frac{1}{R} \int_{\partial B_R} |D\phi|^{2k-2} \left\langle x, D\phi \right\rangle^2 d\sigma \\ &= \frac{n-2k}{2k} \int_{B_R} |D\phi|^{2k} dx - \frac{R}{2k} \int_{\partial B_R} |D\phi|^{2k} d\sigma + \frac{1}{R} \int_{\partial B_R} |D\phi|^{2k-2} \left\langle x, D\phi \right\rangle^2 d\sigma. \end{split}$$

Set $\Omega = m^2 - w^2$. From the above Lemma we have the following result.

Lemma 3.2. If (u, ϕ) is a solution of the system (1.6), then (u, ϕ) satisfies the Pohožaev type identity:

$$\int_{\mathbb{R}^3} |Du|^2 dx + 3 \int_{\mathbb{R}^3} u^2 dx + \frac{1}{4\pi} \sum_{k=2}^N \left(\beta_k \frac{3(k-1)}{k} \int_{\mathbb{R}^3} |D\phi|^{2k} dx \right) - 2 \int_{\mathbb{R}^3} \phi^2 u^2 dx + 5 \int_{\mathbb{R}^3} \omega \phi u^2 dx - \frac{6}{q} \int_{\mathbb{R}^3} |u|^q dx = 0.$$
(3.7)

Proof. Multiplying the first formula of (1.6) by $\langle x, Du \rangle$, integrating on B_R and using the above Lemma, we conclude that

$$-\frac{1}{2}\int_{B_R}|Du|^2\,dx - \frac{3}{2}\Omega\int_{B_R}u^2\,dx$$

$$+\int_{B_R}(\phi-\omega)u^2\langle x, D\phi\rangle\,dx + \frac{3}{2}\int_{B_R}(\phi-2\omega)\phi u^2\,dx + \frac{3}{q}\int_{B_R}|u|^q\,dx$$

$$=\frac{1}{R}\int_{\partial B_R}\langle x, Du\rangle^2d\sigma - \frac{R}{2}\int_{\partial B_R}|Du|^2d\sigma$$

$$-\frac{\Omega R}{2}\int_{\partial B_R}u^2d\sigma + \frac{R}{2}\int_{B_R}(\phi-2\omega)\phi u^2\,d\sigma + \frac{R}{q}\int_{\partial B_R}|u|^q\,dx.$$
(3.8)

Multiplying the second formula of (1.6) by $\langle x, D\phi \rangle$, integrating on B_R and using the above Lemma, we obtain

$$4\pi \int_{B_R} (\phi - \omega) u^2 \langle x, D\phi \rangle \, dx$$

$$= \int_{B_R} \sum_{k=1}^N (\beta_k \Delta_{2k} \phi) \langle x, D\phi \rangle \, dx$$

$$= \sum_{k=1}^N \beta_k \int_{B_R} \Delta_{2k} \phi \langle x, D\phi \rangle \, dx$$

$$= \sum_{k=1}^N \beta_k \Big(\frac{3-2k}{2k} \int_{B_R} |D\phi|^{2k} dx - \frac{R}{2k} \int_{\partial B_R} |D\phi|^{2k} d\sigma$$

$$+ \frac{1}{R} \int_{\partial B_R} |D\phi|^{2k-2} \langle x, D\phi \rangle^2 \, d\sigma \Big).$$

(3.9)

By (3.8), (3.9) and the proof of [9, Theorem 1.1, pp. 316-317], we deduce the equality

$$-\frac{1}{2}\int_{\mathbb{R}^3} |Du|^2 \, dx - \frac{3}{2}\Omega \int_{\mathbb{R}^3} u^2 \, dx + \frac{1}{4\pi} \sum_{k=1}^N \left(\beta_k \frac{3-2k}{2k} \int_{\mathbb{R}^3} |D\phi|^{2k} \, dx\right) \\ + \frac{3}{2}\int_{\mathbb{R}^3} (\phi - 2\omega)\phi u^2 \, dx + \frac{3}{q} \int_{\mathbb{R}^3} |u|^q \, dx = 0.$$

Then, noting (1.6), we have

$$\int_{\mathbb{R}^3} |Du|^2 \, dx + 3\Omega \int_{\mathbb{R}^3} u^2 \, dx + \frac{1}{2\pi} \sum_{k=2}^N \left(\beta_k \frac{3(k-1)}{2k} \int_{\mathbb{R}^3} |D\phi|^{2k} \, dx \right) \\ - 2 \int_{\mathbb{R}^3} \phi^2 u^2 \, dx + 5\omega \int_{\mathbb{R}^3} \phi u^2 \, dx - \frac{6}{q} \int_{\mathbb{R}^3} |u|^q \, dx = 0.$$

4. Proof of the main theorem

First, we give a abstract result which is due to Jeanjean [13].

Proposition 4.1. Let $(X, \|\cdot\|)$ be a Banach space and let $I \subset \mathbb{R}^+$ be an interval. Consider the family of C^1 functionals on X

$$\Psi_{\lambda}(u) = A(u) - \lambda B(u), \quad \forall \lambda \in I,$$

with B(u) nonnegative and either $A(u) \to +\infty$ or $B(u) \to +\infty$, as $||u|| \to \infty$ and such that $\Psi_{\lambda}(0) = 0$. For any $\lambda \in I$ we set

$$\Gamma_{\lambda} = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \Psi_{\lambda}(\gamma(1)) \le 0 \}.$$

If for every $\lambda \in I$ the set Γ_{λ} is nonempty and

$$c_{\lambda} := \inf_{\gamma \in \Gamma_{\lambda}} \max_{t \in [0,1]} \Psi_{\lambda}(\gamma(t)) > 0,$$

then for almost every $\lambda \in I$ there is a sequence $\{(u_{\lambda})_n\} \subset X$ such that

- (i) $\{(u_{\lambda})_n\}$ is bounded in X;
- (ii) $\Psi_{\lambda}((u_{\lambda})_n) \to c_{\lambda};$
- (iii) $\Psi'_{\lambda}((u_{\lambda})_n) \to 0$ in the dual X^* of X.

Proof Theorem 1.1. Denote

$$M(\phi) := \frac{1}{4\pi} \sum_{k=2}^{N} \left(\beta_k \frac{k-1}{k} \int_{\mathbb{R}^3} |D\phi|^{2k} \right) dx.$$

Then, noting the definition of $\Phi(u)$ we can write (3.7) and J(u) by:

$$\int_{\mathbb{R}^3} |Du|^2 \, dx + 3\Omega \int_{\mathbb{R}^3} u^2 \, dx + 3M(\Phi(u)) - 2 \int_{\mathbb{R}^3} \Phi^2(u) u^2 \, dx + 5\omega \int_{\mathbb{R}^3} \Phi(u) u^2 \, dx - \frac{6}{q} \int_{\mathbb{R}^3} |u|^q \, dx = 0$$

and

$$\begin{aligned} J_N(u) &= \frac{1}{2} \int_{\mathbb{R}^3} |Du|^2 \, dx + \frac{1}{2} \Omega \int_{\mathbb{R}^3} u^2 \, dx + \frac{\omega}{2} \int_{\mathbb{R}^3} \Phi(u) u^2 \, dx \\ &+ \frac{1}{2} M(\Phi(u)) - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx, \end{aligned}$$

respectively.

For $\lambda \in [\frac{1}{2}, 1]$, we define the family of functionals $J_{N,\lambda} : H^1_r(\mathbb{R}^3) \to \mathbb{R}$ by

$$J_{N,\lambda}(u) = \frac{1}{2} \int_{\mathbb{R}^3} |Du|^2 \, dx + \frac{1}{2} \Omega \int_{\mathbb{R}^3} u^2 \, dx + \frac{\omega}{2} \int_{\mathbb{R}^3} \Phi(u) u^2 \, dx \\ + \frac{1}{2} M(\Phi(u)) - \frac{\lambda}{q} \int_{\mathbb{R}^3} |u|^q \, dx$$

Using a slightly modified version of [2, Lemmas 2.3 and 2.4], it can be proved that: for every $\lambda \in [\frac{1}{2}, 1]$, there exist $\alpha_{\lambda}, \rho_{\lambda} > 0$ and $\nu_{\lambda} \in H^{1}_{r}(\mathbb{R}^{3})$ such that

(i) $\inf_{\|u\|=\rho_{\lambda}} J_{N,\lambda}(u) > \alpha_{\lambda}.$

(ii) $\|\nu_{\lambda}\| > \rho_{\lambda}$ and $J_{N,\lambda}(\nu_{\lambda}) < 0$.

Thus $J_{N,\lambda}$ has the mountain pass geometry. So we can define the Mountain Pass level c_{λ} by

$$c_{\lambda} := \inf_{\gamma \in \Gamma_{\lambda}} \max_{0 \le t \le 1} J_{N,\lambda}(\gamma(t)),$$

where

$$\Gamma_{\lambda} = \{ \gamma \in C([0,1], H^1_r(\mathbb{R}^3)) : \gamma(0) = 0, \gamma(1) = \nu_{\lambda} \}.$$

Set $X = H_r^1(\mathbb{R}^3), I = [\frac{1}{2}, 1], \Psi_{\lambda} = J_{N,\lambda},$

$$A(u) = \frac{1}{2} \int_{\mathbb{R}^3} |Du|^2 \, dx + \frac{1}{2} \Omega \int_{\mathbb{R}^3} u^2 \, dx + \frac{\omega}{2} \int_{\mathbb{R}^3} \Phi(u) u^2 \, dx + \frac{1}{2} M(\Phi(u))$$

and

$$B(u) = \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx.$$

It is easy to see that $B(u) \ge 0$ for all $u \in H^1_r(\mathbb{R}^3)$ and $A(u) \to +\infty$ as $||u|| \to \infty$. Thus, by Proposition 4.1, for almost every $\lambda \in I$ there is a sequence $\{(u_{\lambda})_n\} \subset X$ such that

(i) $\{(u_{\lambda})_n\}$ is bounded in $H^1_r(\mathbb{R}^3)$;

(ii)
$$J_{N,\lambda}((u_{\lambda})_n) \to c_{\lambda}$$

(ii) $J_{N,\lambda}((u_{\lambda})_n) \to c_{\lambda};$ (iii) $J'_{N,\lambda}((u_{\lambda})_n) \to 0$ in the dual $(H^1_r(\mathbb{R}^3))^*$ of $H^1_r(\mathbb{R}^3).$

There exists $u_{\lambda} \in H^1_r(\mathbb{R}^3)$ such that

$$J'_{\lambda}(u_{\lambda}) = 0, \quad J_{\lambda}(u_{\lambda}) = c_{\lambda},$$

for almost every $\lambda \in I$. Now we can choose a suitable $\lambda_n \to 1$ and u_{λ_n} such that

$$J'_{\lambda_n}(u_{\lambda_n}) = 0, \quad J_{\lambda_n}(u_{\lambda_n}) = c_{\lambda_n} \to c_1,$$

For simplicity we denoted u_{λ_n} by u_n . Since $J'_{\lambda_n}(u_n) = 0$, u_n satisfies the Pohožaev equality

$$\int_{\mathbb{R}^3} |Du_n|^2 dx + 3\Omega \int_{\mathbb{R}^3} u_n^2 dx + 3M(\Phi(u_n)) - 2 \int_{\mathbb{R}^3} \Phi^2(u_n) u_n^2 dx + 5\omega \int_{\mathbb{R}^3} \Phi(u_n) u_n^2 dx - \frac{6\lambda_n}{q} \int_{\mathbb{R}^3} |u_n|^q dx = 0.$$
(4.1)

By $J'_{\lambda_n}(u_n) = 0$ and $J_{\lambda_n}(u_n) = c_{\lambda_n} \to c_1$, we have

$$\int_{\mathbb{R}^3} |\nabla u_n|^2 dx + \Omega \int_{\mathbb{R}^3} u_n^2 dx + 2\omega \int_{\mathbb{R}^3} \Phi(u_n) u_n^2 dx$$

$$- \int_{\mathbb{R}^3} \Phi^2(u_n) u_n^2 dx - \lambda_n \int_{\mathbb{R}^3} |u_n|^q dx = 0$$
(4.2)

and, for n large enough,

$$\frac{1}{2} \int_{\mathbb{R}^3} |\nabla u_n|^2 \, dx + \frac{1}{2} \Omega \int_{\mathbb{R}^3} u_n^2 \, dx + \frac{1}{2} M(\Phi(u_n)) \\ + \frac{\omega}{2} \int_{\mathbb{R}^3} \Phi(u_n) u_n^2 \, dx - \frac{\lambda_n}{q} \int_{\mathbb{R}^3} |u_n|^q \, dx \le c_1 + 1.$$

Set α and β two real number (which we will estimate later). Then from $\alpha \times (4.1) +$ $\beta \times (4.2)$, we obtain

$$\begin{split} &\frac{\lambda_n}{q} \int_{\mathbb{R}^3} |u_n|^q \, dx \\ &= \frac{1}{6\alpha + q\beta} \Big\{ (\alpha + \beta) \int_{\mathbb{R}^3} |\nabla u_n|^2 \, dx + (3\alpha + \beta) \Omega \int_{\mathbb{R}^3} u_n^2 \, dx + 3\alpha M(\Phi(u_n)) \\ &+ (5\alpha + 2\beta) \int_{\mathbb{R}^3} \omega \Phi_{u_n} u_n^2 \, dx - (2\alpha + \beta) \int_{\mathbb{R}^3} \Phi_{u_n}^2 u_n^2 \, dx \Big\}. \end{split}$$

Thus

$$c_1 + 1 \ge J_{\lambda_n}(u_n)$$

EJDE-2012/82

$$\begin{split} &= \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u_n|^2 \, dx + \frac{1}{2} \Omega \int_{\mathbb{R}^3} u_n^2 \, dx \\ &+ \frac{1}{2} M(\Phi(u_n)) + \frac{1}{2} \int_{\mathbb{R}^3} \omega \phi_{u_n} u_n^2 \, dx - \frac{\lambda_n}{q} \int_{\mathbb{R}^3} |u_n|^q \, dx \\ &= \left(\frac{1}{2} - \frac{\alpha + \beta}{6\alpha + q\beta}\right) \int_{\mathbb{R}^3} |\nabla u_n|^2 \, dx + \left(\frac{1}{2} - \frac{3\alpha + \beta}{6\alpha + q\beta}\right) \Omega \int_{\mathbb{R}^3} u_n^2 \, dx \\ &+ \left(\frac{1}{2} - \frac{5\alpha + 2\beta}{6\alpha + q\beta}\right) \int_{\mathbb{R}^3} \omega \phi_{u_n} u_n^2 \, dx + \left(\frac{1}{2} - \frac{3\alpha}{6\alpha + q\beta}\right) M(\Phi(u_n)) \\ &+ \frac{2\alpha + \beta}{6\alpha + q\beta} \int_{\mathbb{R}^3} \Phi^2(u_n) u_n^2 \, dx \\ &= \left(\frac{1}{2} - \frac{\tau + 1}{6\tau + q}\right) \int_{\mathbb{R}^3} |\nabla u_n|^2 \, dx \\ &+ \left(\frac{1}{2} - \frac{3\tau}{6\tau + q}\right) M(\Phi(u_n)) + \frac{2\tau + 1}{6\tau + q} \int_{\mathbb{R}^3} \Phi^2(u_n) u_n^2 \, dx \\ &+ \left(\frac{1}{2} - \frac{3\tau + 1}{6\tau + q}\right) \Omega \int_{\mathbb{R}^3} u_n^2 \, dx + \left(\frac{1}{2} - \frac{5\tau + 2}{6\tau + q}\right) \int_{\mathbb{R}^3} \omega \Phi(u_n) u_n^2 \, dx, \end{split}$$

where $\tau = \frac{\alpha}{\beta}$. Under one of the following conditions:

(i) $q \in (4, 6), \tau \in ((2 - q)/4, -1/2)$ and $m > \omega > 0$; (ii) $q \in (3, 4], \tau \in ((2 - q)/4, (q - 4)/4)$ and $m > \omega > 0$; (iii) $q \in (2, 3], \tau \in ((2 - q)/4, +\infty)$ and $m\sqrt{(q - 2)(4 - q)} > \omega > 0$,

we conclude that

$$\frac{1}{2} - \frac{\tau + 1}{6\tau + q} > 0, \quad \frac{1}{2} - \frac{3\tau}{6\tau + q} > 0$$

and

$$\frac{2\tau+1}{6\tau+q}t^2 + \left(\frac{1}{2} - \frac{5\tau+2}{6\tau+q}\right)\omega t + \left(\frac{1}{2} - \frac{3\tau+1}{6\tau+q}\right)\Omega \ge 0, \quad \text{for } t \in [0,\omega].$$

So we obtain that $\int_{\mathbb{R}^3} |\nabla u_n|^2 dx$ is bounded for all n. Then, as in [2, Proof of Teorem 1.1, pp. 9] we have $\{u_n\}$ is bounded in $H^1_r(\mathbb{R}^3)$. Thus $\{u_n\}$ is a bounded $(PS)_{c_1}$ -sequence for J_N . So J_N has a nontrivial critical point u_N .

References

- [1] R. A. Adams; Sobolev spaces, Academic Press, New York, 1975.
- [2] A. Azzollini, L. Pisani, A. Pomponio; Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 141(2011), 449–463.
- [3] A. Azzollini, A. Pomponio; Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal. 35(2010) 33–42.
- [4] V. Benci, D. Fortunato; Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14(2002), 409–420.
- [5] Benci, Fortunato; Existence of hylomorphic solitary waves in Klein-Gordon and in Klein-Gordon-Maxwell equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 20 (2009) 243–279.
- [6] Benci, Fortunato; Three-dimensional vortices in abelian gauge theories, Nonlinear Anal. 70 (2009) 4402–4421.
- [7] Benci, Fortunato; Spinning Q-balls for the Klein-Gordon-Maxwell equations, Comm. Math. Phys. 295 (2010) 639–668.
- [8] M. Born, L. Infeld; Foundation of the new field theory, Proc. Roy. Soc. A 144(1934) 425-451.

- T. d'Aprile, D. Mugnai; Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud. 4(2004) 307–322.
- [10] T. d'Aprile, D. Mugnai; Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger -Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 893–906.
- [11] P. d'Avenia, L. Pisani; Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations, Elect. J. Diff. Eqns. 26 (2002) 1–13.
- [12] D. Fortunato, L. Orsina, L. Pisani; Born-Infeld type equations for electrostatic fields, J. of Math. Phys. 43(11)(2002) 5698–5706.
- [13] L. Jeanjean; On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on R^N, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787–809.
- [14] D. Mugnai; Coupled Klein-Gordon and Born-Infeld type equations: Looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004) 1519–1528.
- [15] Feizhi Wang; Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system, Nonlinear Analysis 74(2011) 4796–4803.
- [16] R. S. Palais; The principle of symmetric criticality, Comm. Math, Phys. 69(1979) 19–30.
- [17] M. Willem; Minimax Theorems. Birkhäuser, Boston, 1996.
- [18] Y. Yu; Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory, Ann. I. H. Poincaré–AN 27 (2010) 351–376.

Feizhi Wang

SCHOOL OF MATHEMATICS, YANTAI UNIVERSITY, YANTAI, SHANDONG, CHINA *E-mail address:* wangfz@ytu.edu.cn