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SOLUTIONS TO OVER-DETERMINED SYSTEMS OF PARTIAL
DIFFERENTIAL EQUATIONS RELATED TO HAMILTONIAN
STATIONARY LAGRANGIAN SURFACES

BANG-YEN CHEN

ABSTRACT. This article concerns the over-determined system of partial differ-
ential equations

(5.t (), =0 %= (), + (), =-em

It was shown in [6, Theorem 8.1] that this system with ¢ = 0 admits traveling
wave solutions as well as non-traveling wave solutions. In this article we solve
completely this system when € # 0. Our main result states that this system
admits only traveling wave solutions, whenever £ # 0.

1. INTRODUCTION

A submanifold M of a Kéhler manifold M is called Lagrangian if the complex
structure J of M interchanges each tangent space T,M with the corresponding
normal space TPLM7 p€ M (cf. [I]).

A vector field X on a Kihler manifold M is called Hamiltonian if £xw = fw for
some function f € C°°(M), where £ is the Lie derivative. Thus, there is a smooth
real-valued function ¢ on M such that X = JV, where V is the gradient in M.
The diffeomorphisms of the flux 1, of X satisfy 1,w = e*w. Thus they transform
Lagrangian submanifolds of M into Lagrangian submanifolds. A normal vector
field € to a Lagrangian immersion ¢ : M — M is called Hamiltonian if £ = JVf,
for some f € C°°(M), where Vf is the gradient of f. A Lagrangian submanifold
of a Kéhler manifold is called Hamiltonian stationary if it is a critical point of the
volume under Hamiltonian deformations.

Related to the classification of Hamiltonian stationary Lagrangian surfaces of
constant curvature ¢ in a Kéhler surface of constant holomorphic sectional curvature
4e via a construction method introduced by Chen, Dillen, Verstraelen and Vrancken
in [@] (see also [2, Bl B]), one has to determine the exact solutions of the following
overdetermined system of PDEs (see [0 [7] for details):

(o), 0 Bt () e ) =
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This over-determined system was solved completely in [6] for the case e = 0.
In particular, it was shown that system with € = 0 admits traveling wave
solutions as well as non-traveling wave solutions. More precisely, we have the
following result from [6, Theorem 8.1].

Theorem 1.1. The solutions {f,k} of the over-determined PDE system
k f _ fy _ kw fy kl’ —
(f>x+(k>y_0’ ko f (k>y+(f)m_0’

are the following:
f(@,y) = £h(z,y) = ae"H); (1.2)
F(@,y) = ame" ™ k(e,y) = ac ™), (13)

a a
f z,y) = ecarctan 7y/:c7 k z,y) =+ g€ arctan 7y/a:’ 1.4
(19) = ey (1,9) = eV (1)
where a, b, c,m are real numbers with a,c,m # 0 and m # +1.

The main purpose of this article is to solve the over-determined system (|1.1))
completely. Our main result states that the over-determined PDFE system (1.1
with € # 0 admits only traveling wave solutions.

2. EXACT SOLUTIONS OF THE OVER-DETERMINED SYSTEM WITH € = 1

Theorem 2.1. The solutions {f,k} of the over-determined PDE system
(7). + (), =0 F=7 (), +(F),=-m ey

are the traveling wave solutions given by

c(m?x +y) c(m?x +y)
f = cmsech <7), k = csech (7), (2.2)
1+ m? V14 m?

where ¢ and m are nonzero real numbers.

Proof. First, let us assume that f = mk for some nonzero real number m. Then
the first equation of system holds identically.

If {f, k} satisfies the second equation of system , then we have k, = m?k,,
which implies that

f=mK(s), k=K(s), s=m’z+y, (2.3)

for some function K. By substituting (2.3)) into the third equation in system (2.1),
we find

(L +m?)(E(s)K" (s) — (K')*(s)) + K'(s) = 0. (2.4)
Since K # 0, (2.4) implies that K is non-constant. Thus (2.4]) gives
K/Q
(1+m?) 7+ K?*=¢* (2.5)

for some positive real number ¢;. After solving (2.5) we conclude that, up to
translations and sign, K is given by
cs
K = csech (7> 2.6
Vi 20
Now, after combining (2.3) and (2.6)) we obtain the traveling wave solutions of the
over-determined PDE system given by ([2.2)).
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Next, let us assume that v = f(x,y)/k(z,y) is a non-constant function. It follows
from the first equation of system (2.1]) that g—; # 0. Therefore, after solving the
first equation of system ([2.1]), we obtain

y=—qv)—a®, f=vk (2.7)
for some function g. Let us consider the new variables (u,v) with u = z and v
being defined by (2.7). Then we have
Ox Or Qy 5 Oy

ou T O " Ou Y B ¢ (v) = 2uv, (28)
2
- 1
@:17 @:07 @:71’7 @:77 (2.9)
Oox Oy or  ¢(v)+2uw’ 9y ¢ )+ 2uw
It follows from (2.7)), (2.8) and (2.9) that
k + vk, v?ky
_ e , 2.1
Ty q (v) + 2uv’ ka = b q (v) + 2uv (2.10)
By substituting (2.7, and (2.10) into the second equation of (2.1) we obtain
v
K —— |k =0. 2.11
+(q’(v)+2uv) 0 (2.11)
After solving this equation we obtain
A A
f= ”7(“), pe AW (2.12)
2uv + ¢'(v) 2uv + ¢'(v)
Now, by applying (2.9) and -, we find
I = v A(v )(’Uq (v) — 6uv — 4q'(v)) — 20> A'(v)(2uv + ¢'(v))
"= 22u + ¢/(0))5/2 ’
I = A(v)(vq” (v) = 2uv — 2¢'(v)) — 20A’(v)(2uv + ¢’ (v))
o 2(2uv + ¢'(v))?/2 ’ (2.13)
= VAWR)(vg" () = 2uv — 2¢'(v)) — 207 A"(v) (2uv + ¢'(v)) '

22w + 4 ()7 ’
A(0)(2u + ¢"(v)) = 24"(v) Quv + ¢'(v))
2(2uv + ¢/ (v))5/2 '

After substituting (2.13)) into the last equation in (2.1) and by applying (2.8]) and
(2.9), we obtain a polynomial equation of degree 3 in u:

ky =

A*(w)u® + B(v)u? + C(v)u + D(v) = 0, (2.14)
where B, C and D are functions in v. Consequently, we must have A(v) = 0 which
is a contradiction according to (2.14)). Therefore this case cannot happen. (]

3. EXACT SOLUTIONS OF THE OVER-DETERMINED SYSTEM WITH ¢ = —1

Theorem 3.1. The solutions {f,k} of the over-determined PDE system

BY (Y o ke (R ey
<f>x+<k>y_0’ E o f’ (k)y+(f)w_fk’ (3.1)
are the following traveling wave solutions:
B c(m?x +y) B c(m?z +vy) _
f = emcsch (W)’ k = ccsch (W), (32)
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2 2
f =cmsec (W), k = csec (W), (3.3)
pomvlim o, Vidm? (3.4)

m2z +y m2r+y’
where ¢ and m are nonzero real numbers.

Proof. First, let us assume that f = mk for some nonzero real number m. Then
the first equation of system ({3.1) holds identically. As in the previous section, we
obtain from the second equation of system ([3.1) that

f=mK(s), k=K(s), s=m’z+y, (3.5)

for some function K. By substituting (2.3) into the third equation in system ([3.1)),
we find

(1+m?)(K(s)K"(s) — K'?(s)) = K*(s). (3.6)
Since K # 0, (3.6]) implies that K is non-constant. Thus (2.4) gives
K/Q
(1+m?) T K?=¢ (3.7)

for some real number ¢;.
If ¢; > 0, we put ¢; = ¢ with ¢ # 0. Then (3.7) becomes
KIQ

(L+m?) =

After solving (3.8]) we conclude that, up to translations and sign, K is given by

—K*=cA (3.8)

K = ccsch (\/%) (3.9)

Now, after combining ([3.5) and (3.9) we obtain the traveling wave solutions (3.2)).
If ¢; <0, we put ¢; = —c? with ¢ # 0. Then (3.7) becomes
(K')
K2
After solving (3.10)) we conclude that, up to translations and sign, K is given by

(1+m?) - K*= - (3.10)

cs
K =csec (——). 3.11
( 1+ mz) (8.11)
By combining (3.5) and (3.11)) we obtain the traveling wave solutions of the over-
determined PDE system given by ([3.3)).
If ¢4 =0, (3.7) becomes
(1+m?)K'? = K*. (3.12)

After solving (3.12)) we conclude that, up to translations and sign, K is given by

V1+m3
K=—FF— (3.13)
mex +y
which yields solutions (3.4]).
Finally, by applying a argument similar to the one given in section 2, we conclude
that the remaining case is impossible. O
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4. APPLICATIONS TO HAMILTONIAN-STATIONARY LAGRANGIAN SURFACES

Let (Mj,g;),j = 1,...,m, be Riemannian manifolds, f; a positive function on
My X -+ x My, and w; : My X --- X M,, — M, the i-th canonical projection for
i=1,...,m. The twisted product

My XXy My,

is the product manifold M7 x --- x M, equipped with the twisted product metric
g defined by

g(X,Y) = fl2 g1 (L X, Y ) e+ anfL G (T X T Y. (4.1)

Let N"~¢(¢) be an (n — ¢)-dimensional real space form of constant curvature ¢. For
¢ < n —1 we consider the following twisted product:

i X xp, Ip < N"74(e) (4.2)
with twisted product metric given by

g = fidet + -+ fidei + go. (4.3)
where gq is the canonical metric of N"~*(¢) and I, ..., I; are open intervals. When

¢ =n — 1, we shall replace N"~!(g) by an open interval. If the twisted product is
a real-space-form M™(e), it is called a twisted product decomposition of M™(e) (cf.
[4]). We denote such a decomposition by 7P, (€).

We recall the following result from [6, Theorem 3.2] (see also [7]).

Theorem 4.1. Let f, k be a pair of positive functions satisfying PDE system (2.1)).
Then, up to rigid motions of M?(4e), there is a unique H-stationary Lagrangian
1sometric immersion:

Ly : TPhaya(e) — M?(4e) (4.4)

whose second fundamental form satisfies

h(ﬁ,ﬁ) _ 9 h(i,i) — 0, h(i,i) 72 s
81'1 8:61 81’1 8151 &rg 8:52 6902 8x2

If the two twistor functions f2 and k2 are equal and if they satisfy PDE system
, then the corresponding Hamiltonian-stationary adapted Lagrangian immer-
sion of TP?'zkz (¢) is said to be of type L If the two twistor functions f? and k2
are unequal, then the corresponding Hamiltonian-stationary adapted Lagrangian
immersion is said to be of type II.

By applying Theorem and results of [0, Section 5], we can determine all type
IT adapted Hamiltonian stationary Lagrangian surfaces in the complex projective

plane C'P?(4) of constant holomorphic sectional curvature 4. In fact, by combining
Theorem [2.1] and [6] Section 5] we have the following.

Corollary 4.2. A type II adapted Hamiltonian-stationary Lagrangian surface in
CP2%(4) is congruent to 7o L, where w : S°(1) — CP?(4) is the Hopf fibration and
L is given by
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—i(1 —mQ)WSin (M(x—y))},

2v1 +m?
1 2m2x + 2y miz +y
—/1+ cosh (————— (1—i\/1+m2tanh<7))
ﬂ\/ (\/1—|—m2) v1+m?2

for some positive number m # 1.

Similarly, by applying Theorem [3.1]and results of [6, Section 7] we can determine
all type II adapted Hamiltonian-stationary Lagrangian surfaces in the complex
hyperbolic plane C H?(—4) of constant holomorphic sectional curvature —4. More
precisely, we have the following result.

Corollary 4.3. A type II adapted Hamiltonian-stationary Lagrangian surface in
CH?(—4) is congruent to mo L, where w : HY(—1) — CH?(—4) denotes the Hopf
fibration and L(z,y) is given by one of the following five immersions:

(a)
L_<1_i(1+m2) m\/l—i—m?em \/1+m26iy>_
N m2x+y’  mPfr+y O miPz+y ’

(b)

z+3y\/r—y+4i 9 T—Y ; 9 . z + 3y
L:sech( )( ellety)/2 22 i(ety)/2 \/§+22tan( ))’
2V/3 2 2 2V3
(c)

I <\/mcosh(a(ac —y)) +i(m? — 1) sinh(a(z — y)) soc ( m2x +y )

myv/3m?2 — le—i(@+y)/2 Vi+m2/’

2me! T sec ( MLty ) sinh(a(z —y)) i + I+ m? tan ( mir 4y ))
3m? -1 2 'm V1+m?

b

1+m m

(d)
I_ (\/mcos(ﬁ(a: —y)) +i(1 —m?)sin(B(x — y)) soc (mzx +y )
- my/T — 3mZe=i(s+v)/2 irm2/)

2T e (Y iz — ), + I g (),
V1 —3m2 V1+m?2 m m V14 m?
(e)
1 m2z+y ( m2z+y miz+y
L=———csch (7) sinh <7> —iv/1 +m?2 cosh (7),
V2 + m?2 1+ m?2 V1+m?2 1+ m?2

2
ei(x+y)/2{ T+ m2 cos (2\/1 + 5m2 (z— y))

1+m
i(m? —1) . 1+ 5m?
D) (SR )
1+ 5m? 2v1+m?
2m\/ 2 —|— m2 i(ac+y)/2 . V 1 + 5m2
—e sin (7(95 — y)) ,
V14 5m? 2V/1 4+ m?

where o and 3 are constants given by

V3m?2 —1 V1 —3m?2

o= =
2v/1 +m? b 2v1+m?
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