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EXISTENCE OF SOLUTIONS FOR A TWO-POINT
BOUNDARY-VALUE PROBLEM OF A FOURTH-ORDER

STURM-LIOUVILLE TYPE

SHAPOUR HEIDARKHANI

Abstract. In this work, we establish the existence of two intervals for a
parameter λ for which a two-point boundary-value problem of fourth-order
Sturm-Liouville type admits three weak solutions whose norms are uniformly
bounded with respect to λ. Employing two three critical point theorems, ex-
istence of at least three weak solutions is ensured. This approach is based on
variational methods and critical point theory.

1. Introduction

Consider the fourth-order Sturm-Liouville type problem

(p(x)u′′(x))′′ − (q(x)u′(x))′ + r(x)u(x) = λf(x, u) x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.1)

where p, q, r ∈ L∞([0, 1]) with p− := ess infx∈[0,1] p(x) > 0, λ is a positive parameter
and f : [0, 1]× R → R is an L1-Carathéodory function.

Due to the importance of fourth-order two-point boundary value problems in
describing a large class of elastic deflection, many researchers have studied the
existence and multiplicity of solutions for such a problem, we refer the reader to
[1, 4, 9, 10, 14, 20, 26, 27] and references therein. In this article we are interested
in establishing the existence of two intervals for the positive real parameter λ for
which (1.1) admits three weak solutions whose norms are uniformly bounded with
respect to λ belonging to one of the two intervals. A basic tool in our arguments is
a three critical points theorem due to Bonanno [5], which extends previous results
established by Ricceri [24, 25]. The starting point for such properties is the pio-
neering three critical points theorem due to Pucci and Serrin [22, 23] (see also [18]),
which asserts that a function f ∈ C1(E; R) has at least three critical points, pro-
vided that f satisfies the Palais-Smale condition and has two local minima, where
E is a Banach space. Critical point methods of the type appealed to in this paper
originate in the fundamental extension by Leggett and Williams [19] of the multiple
fixed-point technique pioneered by Krasnosell’ski and Stecenko [17].
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For basic notation and definitions, and for a through on the subject, we refer the
reader to [7, 8, 11, 12, 15, 16, 18, 25, 24, 28].

The rest of this article is organized as follows. Section 2 contains our main tools,
that are, some three critical points results and some basic definitions. Whereas,
Section 3 is devoted to the existence of three solutions for the problem (1.1). To
be precise, our main results (Theorems 3.1-3.3), Corollaries 3.4-3.6 and Corollaries
3.7-3.9 which present verifiable criteria for applying our main results, and the proof
of the corollaries are there presented. Again in Section 3, the applicability of our
results is illustrated by an example. Section 4 consists of the proofs of our main
results.

We note that some of the ideas used here were motivated by corresponding ideas
in [10].

2. Preliminaries and basic notation

First we here recall for the reader’s convenience our main tools to prove the
results; in the first one and the second one the coercivity of the functional Φ− λΨ
is required, in the third one a suitable sign hypothesis is assumed. The first result
has been obtained in [5], the second one in [3] and the third one in [2]. We recall
the second and the third as given in [6].

Theorem 2.1 ([5, Theorem 3.1]). Let X be a separable and reflexive real Banach
space, Φ : X → R a nonnegative continuously Gâteaux differentiable and sequen-
tially weakly lower semi-continuous functional whose Gâteaux derivative admits a
continuous inverse on X∗, Ψ : X → R a continuously Gâteaux differentiable func-
tional whose Gâteaux derivative is compact. Assume that there exists x0 ∈ X such
that Φ(x0) = Ψ(x0) = 0 and that

lim
‖x‖→+∞

(Φ(x)− λΨ(x)) = +∞ for all λ ∈ [0,+∞[.

Further, assume that there are r > 0, x1 ∈ X such that r < Φ(x1) and

sup
x∈Φ−1(]−∞,r[)

w
Ψ(x) <

r

r + Φ(x1)
Ψ(x1);

here Φ−1(]−∞, r[)
w

denotes the closure of Φ−1(] − ∞, r[) in the weak topology
(in particular note Ψ(x1) ≥ 0 since x0 ∈ Φ−1(]−∞, r[)

w
(note Ψ(x0) = 0) so

sup
x∈Φ−1(]−∞,r[)

w Ψ(x) ≥ 0). Then, for each

λ ∈ Λ1 =]
Φ(x1)

Ψ(x1)− sup
x∈Φ−1(]−∞,r[)

w Ψ(x)
,

r

sup
x∈Φ−1(]−∞,r[)

w Ψ(x)
[,

the equation
Φ′(u)− λΨ′(u) = 0 (2.1)

has at least three solutions in X and, moreover, for each h > 1, there exist an open
interval

Λ2 ⊆ [0,
hr

rΨ(x1)
Φ(x1)

− sup
x∈Φ−1(−∞,r[)

w Ψ(x)
]

and a positive real number σ such that, for each λ ∈ Λ2, the equation (2.1) has at
least three solutions in X whose norms are less than σ.
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Theorem 2.2 ([6, Theorem 3.2]). Let X be a reflexive real Banach space, Φ :
X → R be a coercive and continuously Gâteaux differentiable functional whose de-
rivative admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux
differentiable functional whose derivative is compact, such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there is a positive constant r and v ∈ X, with 2r < Φ(v), such that

(a1)
supu∈Φ−1(]−∞,r[) Ψ(u)

r
< 2

3
Ψ(v)
Φ(v) ;

(a2) for all λ ∈
]2Φ(v)
3Ψ(v)

, r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
, the functional Φ−λΨ is coercive.

Then, for each λ ∈
]

3
2

Φ(v)
Ψ(v) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Φ− λΨ has at least

three distinct critical points.

Theorem 2.3 ([6, Theorem 3.3]). Let X be a reflexive real Banach space, Φ :
X → R be a convex, coercive and continuously Gâteaux differentiable functional
whose derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously
Gâteaux differentiable functional whose derivative is compact, such that

(1) infX Φ = Φ(0) = Ψ(0) = 0;
(2) for each λ > 0 and for every u1, u2 which are local minimum for the

functional Φ− λΨ and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are two positive constants r1, r2 and v ∈ X, with 2r1 < Φ(v) <
r2
2 , such that

(b1)
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
< 2Ψ(v)

3Φ(v) ;

(b2)
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
< 1

3
Ψ(v)
Φ(v) .

Then, for each λ ∈
]

3
2

Φ(v)
Ψ(v) , min{ r1

supu∈Φ−1(]−∞,r1[) Ψ(u) ,
r2
2

supu∈Φ−1(]−∞,r2[) Ψ(u)}
[
, the

functional Φ − λΨ has at least three distinct critical points which lie in Φ−1(] −
∞, r2[).

Let us introduce some notation which will be used later. Assume that

min
{q−

π2
,
r−

π4
,
q−

π2
+

r−

π4

}
> −p−, (2.2)

where p− := ess infx∈[0,1] p(x) > 0, q− := ess infx∈[0,1] q(x), r− := ess infx∈[0,1] r(x).
Moreover, set

σ := min
{q−

π2
,
r−

π4
,
q−

π2
+

r−

π4
, 0

}
,

δ :=
√

p− + σ.

Let X := H2([0, 1])∩H1
0 ([0, 1]) be the Sobolev space endowed with the usual norm.

We recall the following Poincaré type inequalities (see, for instance, [21, Lemma
2.3]):

‖u′‖2L2([0,1]) ≤
1
π2
‖u′′‖2L2([0,1]), (2.3)
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‖u‖2L2([0,1]) ≤
1
π4
‖u′′‖2L2([0,1]) (2.4)

for all u ∈ X. Therefore, taking into account (2.2)-(2.4), the norm

‖u‖ = (
∫ 1

0

(p(x)|u′′(x)|2 + q(x)|u′(x)|2 + r(x)|u(x)|2)dx)1/2

is equivalent to the usual norm, and, in particular,

‖u′′‖L2([0,1]) ≤
1
δ
‖u‖. (2.5)

Proposition 2.4. Let u ∈ X. Then

‖u‖∞ ≤ 1
2πδ

‖u‖.

Proof. Taking (2.3) and (2.5) into account, the conclusion follows from the well-
known inequality ‖u‖∞ ≤ 1

2‖u
′‖L2([0,1]). �

3. Main results

We say that u is a weak solution of (1.1) if u ∈ X and∫ 1

0

(p(x)u′′(x)v′′(x)+q(x)u′(x)v′(x)+r(x)u(x)v(x))dx−λ

∫ 1

0

f(x, u(x))v(x)dx = 0

for every v ∈ X. If f is continuous in [0, 1] × R, then the weak and the classical
solutions of the problem (1.1) coincide. Put

F (x, t) =
∫ t

0

f(x, ξ)dξ (3.1)

for (x, t) ∈ [0, 1]× R. We state our main results as follows:

Theorem 3.1. Assume that there exists a function w ∈ X and a positive constants
r such that

(A1) ‖w‖2 > 2r;
(A2) for F (x, t) given in (3.1),∫ 1

0

sup
t∈[− 1

δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx < r

∫ 1

0
F (x,w(x))dx

r + ‖w‖2/2
;

(A3) 2
δ2π4 lim sup|t|→+∞

F (x,t)
t2 < Θ1 uniformly with respect to x ∈ [0, 1] where

Θ1 := max
{∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

r
,

2r
‖w‖2

∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

hr

}
with h > 1.

Then, for each

λ ∈ Λ1 =
] 1

2‖w‖
2∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx
,

r∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

[
,
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problem (1.1) admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

Λ2 ⊆
[
0,

hr

2r
R 1
0 F (x,w(x))dx

‖w‖2 −
∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

]
and a positive real number σ such that, for each λ ∈ Λ2, the problem (1.1) admits
at least three weak solutions in X whose norms are less than σ.

Theorem 3.2. Assume that there exist a function w ∈ X and a positive constant
r such that

(B1) ‖w‖2 > 4r;

(B2)

R 1
0 sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x,t)dx

r < 4
3

R 1
0 F (x,w(x))dx

‖w‖2 ;

(B3) 2
δ2π4 lim sup|t|→+∞

F (x,t)
t2 <

R 1
0 sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x,t)dx

r .
Then, for each

λ ∈
]3
4

‖w‖2∫ 1

0
F (x,w(x))dx

,
r∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

[
,

problem (1.1) admits at least three weak solutions.

Theorem 3.3. Suppose that f : [0, 1] × R → R satisfies the condition f(x, t) ≥ 0
for all x ∈ [0, 1] and t ≥ 0. Assume that there exist a function w ∈ X and two
positive constants r1 and r2 with 4r1 < ‖w‖2 < r2 such that

(C1)

R 1
0 sup

t∈[− 1
δπ

√
r1
2 , 1

δπ

√
r1
2 ]

F (x,t)dx

r1
< 4

3

R 1
0 F (x,w(x))dx

‖w‖2 ;

(C2)

R 1
0 sup

t∈[− 1
δπ

√
r2
2 , 1

δπ

√
r2
2 ]

F (x,t)dx

r2
< 2

3

R 1
0 F (x,w(x))dx

‖w‖2 .

Then, for each

λ ∈
]3
4

‖w‖2∫ 1

0
F (x,w(x))dx

, Θ2

[
,

where

Θ2 := min
{ r1∫ 1

0
sup

t∈[− 1
δπ

√
r1
2 , 1

δπ

√
r1
2 ]

F (x, t)dx
,

r2
2∫ 1

0
sup

t∈[− 1
δπ

√
r2
2 , 1

δπ

√
r2
2 ]

F (x, t)dx

}
,

problem (1.1) admits at least three non-negative weak solutions v1, v2, v3 such that

|vj(x)| < 1
δπ

√
r2

2
for each x ∈ [0, 1], j = 1, 2, 3.

Put

k :=
(
‖p‖∞ +

1
π2
‖q‖∞ +

1
π4
‖r‖∞

)1/2

.

It is easy to see that k > 0 and δ < k. Let us give a particular consequence of
Theorems 3.1-3.3 for a fixed test function w.

Corollary 3.4. Assume that there exist two positive constants c and d with c <
32

3
√

3π
d such that
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(A4) F (x, t) ≥ 0 for a.e. x ∈ [0, 3/8] ∪ [5/8, 1] and all t ∈ [0, d];

(A5)
∫ 1

0
supt∈[−c,c] F (x, t)dx < (δπc)2

R 5/8
3/8 F (x,d)dx

(δπc)2+ 1024
27 k2d2 ;

(A6) 2
δ2π4 lim sup|t|→+∞

F (x,t)
t2 < Θ3 uniformly with respect to x ∈ [0, 1] where

Θ3

:= max
{∫ 1

0
supt∈[−c,c] F (x, t)dx

2(δπc)2
,

(δπc)2
R 5/8
3/8 F (x,d)dx

256
27 k2d2 −

∫ 1

0
supt∈[−c,c] F (x, t)dx

2h(δπc)2
}

with h > 1.
Then, for each

λ ∈ Λ′1 =
] 2048

27 k2d2∫ 5/8

3/8
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

,
2(δπc)2∫ 1

0
supt∈[−c,c] F (x, t)dx

[
,

problem (1.1) admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

Λ′2 ⊆
[
0,

2(δπc)2h

(δπc)2
R 5/8
3/8 F (x,d)dx

1024
27 k2d2 −

∫ 1

0
supt∈[−c,c] F (x, t)dx

]
and a positive real number σ such that, for each λ ∈ Λ′2, problem (1.1) admits at
least three weak solutions in X whose norms are less than σ.

Proof. We claim that all the assumptions of Theorem 3.1 are fulfilled with w given
by

w(x) =


− 64d

9 (x2 − 3
4x) x ∈ [0, 3

8 [,
d x ∈ [ 38 , 5

8 ],
− 64d

9 (x2 − 5
4x + 1

4 ) x ∈] 58 , 1]
(3.2)

and r = 2(δπc)2. It is easy to verify that w ∈ X, and in particular,
4096
27

δ2d2 ≤ ‖w‖2 ≤ 4096
27

k2d2.

Hence, taking into account that c < 32
3
√

3π
d,

‖w‖2 > 2r.

Since, 0 ≤ w(x) ≤ d for each x ∈ [0, 1], the condition (A4) ensures that∫ 3/8

0

F (x,w(x))dx +
∫ 1

5/8

F (x,w(x))dx ≥ 0,

so from (A5), ∫ 1

0

sup
t∈[−c,c]

F (x, t)dx < (δπc)2
∫ 5/8

3/8
F (x, d)dx

(δπc)2 + 1024
27 k2d2

= 2(δπc)2
∫ 5/8

3/8
F (x, d)dx

2(δπc)2 + 2048
27 k2d2

≤ 2(δπc)2
∫ 1

0
F (x,w(x))dx

2(δπc)2 + 2048
27 k2d2
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≤ r

∫ 1

0
F (x,w(x))dx

r + 1
2‖w‖2

,

so (A2) holds (note c2 = r/(δπ)2). Next notice that

1
2‖w‖

2∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

≤
2048
27 k2d2∫ 5/8

3/8
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

and
r∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx
=

2(δπc)2∫ 1

0
supt∈[−c,c] F (x, t)dx

.

In addition note
2048
27 k2d2∫ 5/8

3/8
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

<
2048
27 k2d2( 2(δπc)2+ 2048

27 k2d2

2(δπc)2 − 1
) ∫ b

a
supt∈[−c,c] F (x, t)dx

=
2(δπc)2∫ 1

0
supt∈[−c,c] F (x, t)dx

.

Finally note that

hr

2r
R 1
0 F (x,w(x))dx

‖w‖2 −
∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

≤ 2(δπc)2h

2(δπc)2
R 5/8
3/8 F (x,d)dx

4096
27 k2d2 −

∫ 1

0
supt∈[−c,c] F (x, t)dx

,

and taking into account that Λ′1 ⊆ Λ1 and Λ2 ⊆ Λ′2 we have the desired conclusion
directly from Theorem 3.1. �

Corollary 3.5. Assume that there exist two positive constants c and d with c <
16
√

2
3
√

3π
d such that the assumption (A4) in Corollary 3.4 holds. Furthermore, suppose

that

(B4)
R 1
0 supt∈[−c,c] F (x,t)dx

2(δπc)2 < 4
3

R 5/8
3/8 F (x,d)dx

4096
27 k2d2 ;

(B5) 2
δ2π4 lim sup|t|→+∞

F (x,t)
t2 <

R 1
0 supt∈[−c,c] F (x,t)dx

2(δπc)2 .

Then, for each

λ ∈
]3
4

4096
27 k2d2∫ 5/8

3/8
F (x, d)dx

,
2(δπc)2∫ 1

0
supt∈[−c,c] F (x, t)dx

[
,

problem (1.1) admits at least three weak solutions.
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Proof. All the assumptions of Theorem 3.2 are fulfilled by choosing w as given in
(3.2) and r = 2(δπc)2. Indeed, bearing in mind that

4096
27

δ2d2 ≤ ‖w‖2 ≤ 4096
27

k2d2

and recalling ∫ 3/8

0

F (x,w(x))dx +
∫ 1

5/8

F (x,w(x))dx ≥ 0,

we clearly observe that our hypotheses guarantee that all assumptions of Theorem
3.2 are satisfied. Hence, by applying Theorem 3.2 we have the conclusion. �

Corollary 3.6. Suppose that f : [0, 1] × R → R satisfies the condition f(x, t) ≥ 0
for all x ∈ [0, 1] and t ≥ 0. Assume that there exist three positive constants c1, c2

and d with c1 < 32
3
√

3π
d and 64

3
√

3π
kd
δ < c2 such that

(C3)
R 1
0 supt∈[−c1,c1] F (x,t)dx

2(δπc1)2
< 4

3

R 5/8
3/8 F (x,d)dx

4096
27 k2d2 ;

(C4)
R 1
0 supt∈[−c2,c2] F (x,t)dx

2(δπc2)2
< 2

3

R 5/8
3/8 F (x,d)dx

4096
27 k2d2 .

Then, for each

λ ∈
]3
4

4096
27 k2d2∫ 5/8

3/8
F (x, d)dx

, Θ4

[
,

where Θ4 := min
{

2(δπc1)
2R 1

0 supt∈[−c1,c1] F (x,t)dx
, (δπc2)

2R 1
0 supt∈[−c2,c2] F (x,t)dx

}
, problem (1.1) ad-

mits at least three non-negative weak solutions v1, v2, v3 such that

|vj(x)| < c2 for each x ∈ [0, 1], j = 1, 2, 3.

Proof. Following the same way as in the proof of Corollary 3.5, we achieve the
stated assertion by applying Theorem 3.3 with w as given in (3.2), r1 = 2(δπc1)2

and r2 = 2(δπc2)2. �

The following results give the existence of at least three classical solutions in X
to problem (1.1) in the autonomous case. Let f : R → R be a continuous function,
and put F (t) =

∫ t

0
f(ξ)dξ for all t ∈ R. We have the following results as direct

consequences of Corollaries 3.4-3.6, respectively.

Corollary 3.7. Assume that there exist two positive constants c and d with c <
32

3
√

3π
d such that

(A7) f(t) ≥ 0 for all t ∈ [0, d];
(A8) maxt∈[−c,c] F (t) < (δπc)2

1
4 F (d)

(δπc)2+ 1024
27 k2d2 ;

(A9) 2
δ2π4 lim sup|t|→+∞

F (t)
t2 < Θ5 where

Θ5 := max
{maxt∈[−c,c] F (t)

2(δπc)2
,

(δπc)2
1
4 F (d)

256
27 k2d2 −maxt∈[−c,c] F (t)

2h(δπc)2
}

with h > 1.
Then, for each

λ ∈ Λ′1 =
] 2048

27 k2d2

1
4F (d)−maxt∈[−c,c] F (t)

,
2(δπc)2

maxt∈[−c,c] F (t)

[
,
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the problem

(p(x)u′′(x))′′ − (q(x)u′(x))′ + r(x)u(x) = λf(u) x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(3.3)

admits at least three classical solutions in X and, moreover, for each h > 1, there
exist an open interval

Λ′′2 ⊆
[
0,

2(δπc)2h

(δπc)2 F (d)
256
27 k2d2 −maxt∈[−c,c] F (t)

]
and a positive real number σ such that, for each λ ∈ Λ′′2 , problem (3.3) admits at
least three classical solutions in X whose norms are less than σ.

Corollary 3.8. Assume that there exist two positive constants c and d with c <
16
√

2
3
√

3π
d such that the assumption (A7) in Corollary 3.7 holds. Furthermore, suppose

that
(B6) max t∈[−c,c]F (t)

2(δπc)2 < 1
3

F (d)
4096
27 k2d2 ;

(B7) 2
δ2π4 lim sup|t|→+∞

F (t)
t2 <

maxt∈[−c,c] F (t)

2(δπc)2 .

Then, for each

λ ∈
]
3

4096
27 k2d2

F (d)
,

2(δπc)2

maxt∈[−c,c] F (t)

[
problem (3.3) admits at least three weak solutions.

Corollary 3.9. Suppose that f : R → R satisfies the condition f(t) ≥ 0 for all
t ≥ 0. Assume that there exist three positive constants c1, c2 and d with c1 < 32

3
√

3π
d

and 64
3
√

3π
kd
δ < c2 such that

(C5) maxt∈[−c1,c1] F (t)

2(δπc1)2
< 1

3
F (d)

4096
27 k2d2 ;

(C6) maxt∈[−c2,c2] F (t)

2(δπc2)2
< 1

6
F (d)

4096
27 k2d2 .

Then, for each

λ ∈
]
3

4096
27 k2d2

F (d)
, Θ6

[
,

where Θ6 := min
{ 2(δπc1)

2

maxt∈[−c1,c1] F (t) ,
(δπc2)

2

maxt∈[−c2,c2] F (t)

}
, problem (3.3) admits at least

three non-negative weak solutions v1, v2, v3 such that

|vj(x)| < c2 for each x ∈ [0, 1], j = 1, 2, 3.

We conclude this section by presenting an example to illustrate our results ap-
plying by Corollary 3.7.

Example 3.10. Put p(x) = 3ex, q(x) = x − π2 and r(x) = x2 − π4 for every
x ∈ [0, 1], and f(t) = e−tt9(10 − t) for each t ∈ R. It is easy to verify that
with c = 1 and d = 5, taking into account that δ = 1 and k =

√
3e + 2, since

lim sup|t|→+∞
F (t)
t2 = 0, all assumptions of Corollary 3.7 are satisfied. Then, for

each

λ ∈ Λ′′′1 =
] 51200

27 (3e + 2)
1
4 (e−5510)− e

,
2π2

e

[
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problem (3.3) admits at least three classical solutions in X and, moreover, for each
h > 1, there exist an open interval

λ ∈ Λ′′′2 ⊆ [0,
2π2h

π2 e−5510
25600

27 (3e+2)
− e

]

and a positive real number σ such that, for each λ ∈ Λ′′′2 , problem (3.3) admits at
least three classical solutions in X whose norms are less than σ.

Remark 3.11. The weak solutions of problem (1.1) where f is a continuous func-
tion, by using standard methods, are classical solutions. Namely, the classical and
the weak solutions of problem (1.1) coincide.

4. Proofs the main results

Proof of Theorem 3.1. With the purpose of applying Theorem 2.1, arguing as in
[16], we begin by setting

Φ(u) =
1
2
‖u‖2, Ψ(u) =

∫ b

a

F (x, u(x))dx

for u ∈ X. It is well known that Ψ is a Gâteaux differentiable functional whose
Gâteaux derivative at the point u ∈ X is the functional Ψ′(u) ∈ X∗, given by

Ψ′(u)(v) =
∫ b

a

f(x, u(x))v(x)dx

for every v ∈ X, and that Ψ′ : X → X∗ is a continuous and compact operator.
Moreover, Φ is a continuously Gâteaux differentiable and sequentially weakly lower
semi continuous functional whose Gâteaux derivative at the point u ∈ X is the
functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫ 1

0

(p(x)u′′(x)v′′(x) + q(x)u′(x)v′(x) + r(x)u(x)v(x))dx

for v ∈ X. Moreover, Φ′ admits a continuous inverse on X∗. Furthermore from
(A3) there exist two constants γ, τ ∈ R with γ < Θ1 such that

2
δ2π4

F (x, t) ≤ γt2 + τ for all x ∈ (0, 1) and all t ∈ R.

Fix u ∈ X. Then

F (x, u(x)) ≤ δ2π4

2
(γ|u(x)|2 + τ) for all x ∈ (0, 1). (4.1)

Now, to prove the coercivity of the functional Φ− λΨ, first we assume that γ > 0.
So, for any fixed λ ∈]0, 1

Θ1
], since ‖u‖L2([0,1]) ≤ 1

δπ2 ‖u‖ (see [5, pg 1168]), using
(4.1), we have

Φ(u)− λΨ(u) =
‖u‖2

2
− λ

∫ 1

0

F (x, u(x))dx

≥ 1
2
‖u‖2 − δ2π4

2Θ1
(γ

∫ 1

0

|u(x)|2dx + τ)

≥ 1
2
(1− γ

Θ1
)‖u‖2 − δ2π4

2Θ1
τ,
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and so
lim

||u||→+∞
(Φ(u)− λΨ(u)) = +∞.

On the other hand, if γ ≤ 0, Clearly, we obtaain lim‖u‖→+∞(Φ(u)−λΨ(u)) = +∞.
Both cases lead to the coercivity of functional Φ− λΨ. Also according to (A1) we
achieve Φ(w) > r. Note ‖u‖∞ ≤ 1

2πδ‖u‖ for each u ∈ X, from the definition of Φ
we observe

Φ−1(]−∞, r[) = {u ∈ X; Φ(u) < r}

⊆ {u ∈ X; ‖u‖ <
√

2r}

⊆ {u ∈ X; |u(x)| ≤ 1
2πδ

√
2r, for all x ∈ [0, 1]}

= {u ∈ X : |u(x)| < 1
δπ

√
r

2
for all x ∈ [0, 1]},

so, we have

sup
u∈Φ−1(]−∞,r[)

w
Ψ(u) ≤

∫ 1

0

sup
t∈[− 1

δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx.

Therefore, from (A2) we have

sup
u∈Φ−1(]−∞,r[)

w
Ψ(u) ≤

∫ 1

0

sup
t∈[− 1

δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

<
r

r + 1
2‖w‖2

∫ 1

0

F (x,w(x))dx

=
r

r + Φ(w)
Ψ(w).

Now, we can apply Theorem 2.1. Note for each x ∈ [0, 1],

Φ(w)
Ψ(w)− sup

u∈Φ−1(]−∞,r[)
w Ψ(u)

≤
1
2‖w‖

2∫ b

a
F (x,w(x))dx−

∫ b

a
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

and
r

sup
u∈Φ−1(]−∞,r[)

w Ψ(u)
≥ r∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx
.

Note also that (A2) implies
1
2‖w‖

2∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

<
1
2‖w‖

2

( r+ 1
2‖w‖2
r − 1)

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

=
r∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx
.
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Also
hr

rΨ(w)
Φ(w) − sup

u∈Φ−1(−∞,r[)
w Ψ(u)

≤ hr

2r
R 1
0 F (x,w(x))dx

‖w‖2 −
∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx
= ρ.

Note from (A2) that

2r

∫ 1

0
F (x,w(x))dx

‖w‖2
−

∫ 1

0

sup
t∈[− 1

δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

>
( 2r

‖w‖2
− r

r + 1
2‖w‖2

) ∫ 1

0

F (x,w(x))dx

≥
( 2r

‖w‖2
− 2r

‖w‖2
) ∫ 1

0

F (x,w(x))dx = 0,

since
∫ 1

0
F (x,w(x))dx ≥ 0 (note F (x, 0) = 0 so

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx ≥
0 and now apply (A2)). Now with x0 = 0, x1 = w from Theorem 2.1 (note Ψ(0) = 0
) it follows that, for each λ ∈ Λ1, problem (1.1) admits at least three weak solutions
and there exist an open interval Λ2 ⊆ [0, ρ] and a real positive number σ such that,
for each λ ∈ Λ2, problem (1.1) admits at least three weak solutions whose norms
in X are less than σ. �

Proof of Theorem 3.2. To apply Theorem 2.2 to our problem, we take the func-
tionals Φ,Ψ : X → R as given in the proof of Theorem 3.1. Let us prove that the
functionals Φ and Ψ satisfy the conditions required in Theorem 2.2. The regularity
assumptions on Φ and Ψ, as requested in Theorem 2.2 hold. According to (B1) we
deduce Φ(w) > 2r. Note that ‖u‖∞ ≤ 1

2πδ‖u‖ for each u ∈ X, we observe

Φ−1(]−∞, r[) = {u ∈ X : |u(x)| < 1
δπ

√
r

2
for all x ∈ [0, 1]},

and it follows that

sup
(u)∈Φ−1(]−∞,r[)

Ψ(u) = sup
(u1,...,un)∈Φ−1(]−∞,r[)

∫ 1

0

F (x, u)dx

≤
∫ 1

0

sup
t∈[− 1

δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx.

Therefore, due to assumption (B2), we have

supu∈Φ−1(]−∞,r[) Ψ(u)
r

=
sup(u1,...,un)∈Φ−1(]−∞,r[)

∫ 1

0
F (x, u(x))dx

r

≤

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

r

<
4
3

∫ b

a
F (x,w(x))dx

‖w‖2
=

2Ψ(w)
3Φ(w)

.
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Furthermore, from (B3) there exist two constants η, ϑ ∈ R with

η <

∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

r

such that
2

δ2π4
F (x, t) ≤ ηt2 + ϑ for all x ∈ [0, 1] and for all t ∈ R.

Fix u ∈ X. Then

F (x, u(x)) ≤ δ2π4

2
(η|u(x)|2 + ϑ) for all x ∈ [0, 1]. (4.2)

Now, to prove the coercivity of the functional Φ−λΨ, first we assume that η > 0.
So, for any fixed

λ ∈
]3
4

‖w‖2∫ b

a
F (x,w(x))dx

,
r∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

[
,

since ‖u‖L2([0,1]) ≤ 1
δπ2 ‖u‖ (see [5, pg 1168]), using (4.2), we have

Φ(u)− λΨ(u) =
‖u‖2

2
− λ

∫ 1

0

F (x, u(x))dx

≥ 1
2
‖u‖2 − λδ2π4

2
(γ

∫ 1

0

|u(x)|2dx + τ)

≥ 1
2

(
1− γ

r∫ 1

0
sup

t∈[− 1
δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx

)
‖u‖2 − λδ2π4

2
τ,

and thus
lim

‖u‖→+∞
(Φ(u)− λΨ(u)) = +∞.

On the other hand, if η ≤ 0, Clearly, we obtain lim‖u‖→+∞(Φ(u)− λΨ(u)) = +∞.
Both cases lead to the coercivity of functional Φ− λΨ.

So, the assumptions (a1) and (a2) in Theorem 2.2 are satisfied. Hence, by using
Theorem 2.2, taking into account that the weak solutions of the problem (1.1) are
exactly the solutions of the equation Φ′(u)−λΨ′(u) = 0, then problem (1.1) admits
at least three distinct weak solutions in X. �

Proof of Theorem 3.3. Let Φ and Ψ be as in the proof of Theorem 3.1. Let us
employ Theorem 2.3 to our functionals. Obviously, Φ and Ψ satisfy the condition
1 of Theorem 2.3.

Now, we show that the functional Φ−λΨ satisfies the assumption 2 of Theorem
2.3. Let u∗ and u?? be two local minima for Φ − λΨ. Then u∗ and u?? are
critical points for Φ− λΨ, and so, they are weak solutions for problem (1.1). Since
f(x, t) ≥ 0 for all (x, t) ∈ [0, 1]×(R+∪{0}), from the Weak Maximum Principle (see
for instance [13] ) we deduce u?(x) ≥ 0 and u??(x) ≥ 0 for every x ∈ [0, 1]. So, it
follows that su? +(1−s)u?? ≥ 0 for all s ∈ [0, 1], and that f(su? +(1−s)u??, t) ≥ 0,
and consequently, Ψ(su? + (1 − s)u??) ≥ 0 for all s ∈ [0, 1]. Moreover, from the
condition 4r1 < ‖w‖2 < r2, we observe 2r1 < Φ(w) < r2

2 . Note that ‖u‖∞ ≤ 1
2πδ‖u‖

for each u ∈ X, we observe

Φ−1(]−∞, r1[) =
{
u ∈ X : |u(x)| < 1

δπ

√
r1

2
for all x ∈ [0, 1]

}
,
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and it follows that

sup
(u1,...,un)∈Φ−1(]−∞,r1[)

Ψ(u) = sup
(u∈Φ−1(]−∞,r1[)

∫ 1

0

F (x, u(x))dx

≤
∫ 1

0

sup
t∈[− 1

δπ

√
r
2 , 1

δπ

√
r
2 ]

F (x, t)dx.

Therefore, due to assumption (C1), we infer that

supu∈Φ−1(]−∞,r1[) Ψ(u)
r1

=
supu∈Φ−1(]−∞,r1[)

∫ 1

0
F (x, u(x))dx

r1

≤

∫ 1

0
sup

t∈[− 1
δπ

√
r1
2 , 1

δπ

√
r1
2 ]

F (x, t)dx

r1

<
4
3

∫ 1

0
F (x,w(x))dx

‖w‖2
=

2
3

Ψ(w)
Φ(w)

.

As above, bearing assumption (C2) in mind, we deduce that

supu∈Φ−1(]−∞,r2[) Ψ(u)
r2

=
sup(u1,...,un)∈Φ−1(]−∞,r2[)

∫ 1

0
F (x, u(x))dx

r2

≤

∫ 1

0
sup

t∈[− 1
δπ

√
r2
2 , 1

δπ

√
r2
2 ]

F (x, t)dx

r2

<
2
3

∫ 1

0
F (x,w(x))dx

‖w‖2
=

2
3

Ψ(w)
Φ(w)

.

So, the assumptions (b1) and (b2) in Theorem 2.3 are satisfied. Hence, by using
Theorem 2.3, taking into account that the weak solutions of problem (1.1) are
exactly the solutions of the equation Φ′(u)− λΨ′(u) = 0, problem (1.1) admits at
least three distinct weak solutions in X. This completes the proof. �
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