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EXISTENCE AND CONCENTRATION OF SEMICLASSICAL
STATES FOR NONLINEAR SCHRODINGER EQUATIONS

SHAOWEI CHEN

ABSTRACT. In this article, we study the semilinear Schréodinger equation
—EAu+u+V(z)u=f(u), uveH RY),

where N > 2 and ¢ > 0 is a small parameter. The function V is bounded
in RN, infpn (1 4+ V(z)) > 0 and it has a possibly degenerate isolated critical
point. Under some conditions on f, we prove that as ¢ — 0, this equation has
a solution which concentrates at the critical point of V.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT
In this article, we are concerned with the semilinear Schrédinger equation
—EAut+u+ V()= f(u), ueH(RY), (1.1)
where N > 2 and € > 0 is a small parameter. The function f : R — R satisfies

(F1) f € CYR) and there exist ¢ € (2,2*), 2 < p1 < p2 < 2* and a constant

C > 0 such that

'Ol < Ot~ + 82 72), teR
and for any L > 0,

sup{| f'(t) = f'(s)I/It — s|"72| t,s € [~ L, L], t # s} < o0, (1.2)
where 2* = 2N/(N —2) if N > 3 and 2* = o0 if N = 2;
(F2) there exists p > 2 such that f(¢)t > pF(t) > 0, t # 0, where F(t) =
Jy £ (s)ds:
(F3) f(t)/|t| is an increasing function on R\ {0};

Remark 1.1. A typical function which satisfies (F1)—(F3) is

f(t) = iai|t\5i_2t
i=1

with2< 1 < <fBn<2*anda; >0,1<i<m.

The potential function V satisfies the following conditions:
(V0) inf,cpn (14 V(2z)) > 0 and max,cpn |V ()| < oo;
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(V1) V € C%(R¥) has an isolated critical point zo such that
V(@) = Qu+ (z — z0) + of|z — wo|"")

in some neighborhood of xy, where n* > 2 is an even integer and @~ is an
n*- homogeneous polynomial in RY which satisfies that AQ,- > 0 in RY
or AQp+~ <0in RY and AQ,,- Z 0 in RV,

Remark 1.2. Without loss of generality, in what follows, we always assume that
xo = 0. Typical examples for Q- are £|z|" (n* > 2).

Our main result of this article is the following theorem.

Theorem 1.3. Suppose that f satisfies (F1)-(F4) and V satisfies (V0), (V1). Then
there exist €9 > 0 and a set KC whose elements are radially symmetric solutions of
equation

—Au+u=f(u), ucH' RY) (1.3)
such that if 0 < € < €, then equation (1.1)) has a solution u. satisfying that

1irr(1) dist y (ve, ) = 0,

where v.(x) = uc(ex), z € RN and Y = HY(RY).

The analysis of the semilinear Schrodinger equation (1.1]) has recently attracted
a lot of attention due to its many applications in mathematical physics.
If v is a solution of (1.1]), then v(ex) is a solution of the equation

—Autu+V(ex)u=f(u), uecHRY). (1.4)
Equation (|1.4)) is a perturbation of the limit equation ([L.3]). If (1.3]) has a solution

w € C?(RY) satisfying the non-degeneracy condition:
0
ker Ly = span{ d :1<i< N},
8a:i

where Lov = —Av+v — f'(w)v, then in the celebrated paper [I] (see also [2]), Am-
brosetti, Badiale and Cingolani developed a kind of variational reduction method
and showed that if the potential function V has a strictly local minimizer or maxi-
mizer xg, then admits a solution u. which converges to w(- — xg) in H'(RY)
as € — 0. In their argument, the non-degeneracy property of w plays essential role.
Using the non-degeneracy condition and the reduction method, it was shown by
Kang and Wei [20] that, at a strict local maximum point g of V' and for any posi-
tive integer k, has a positive solution with k interacting bumps concentrating
near zo, while at a non-degenerate local minimum point of V(z) such solutions
do not exist. Moreover, under the assumption of the non-degeneracy condition,
multiplicity of solutions with one bump has also been considered by Grossi [16].

However, for a general nonlinearity f, it is very difficult to verify the non-
degeneracy condition for a solution of . An effective method to attack problem
(1.1) without using the non-degeneracy condition is variational method. In [21],
Rabinowitz used a global variational method to show the existence of least energy
solutions for when € > 0 is small, and the condition imposed on V is a global
one, namely

0< inf (1+V(z)) <liminf(1+ V(z)).

z€RN |z|—o00
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Del Pino, Felmer and Gui [12, [13] 14} 15 [I7] used different variational methods to
obtain nontrivial solution of (1.1]) for small ¢ > 0 under local conditions which can
be roughly described as follows: V is local Holder continuous on R¥,

inf (14+V >0 1.5
nf (14V(2) (15)
and there exists k disjoint bounded regions Q4,. .., in RY such that
inf inf . 1.
A5, V@) > 5t V@) 16

Their methods involve the deformation of nonlinearity f and some prior estimates.
Recently, Byeon, Jeanjean and Tanaka [5] [6] developed the variational methods
and made great advance in problem . Byeon and Jeanjean showed in [5] that
if N > 3, V satisfies and with £k =1 and f satisfies

(f1) f:R — R is continuous and lim;_,o4 f(¢)/t = 0;

(f2) there exists some p € (1,2* — 1) such that lim; o f(t)/tP < oo;

(f3) there exists T > 0 such that $mT? < F(T), where F(t) = fot f(s)ds and

m = inf,cq, V(z),
then exists positive solution v, concentrating in the minimizers of V in ; as
¢ — 0. And in [6], Byeon, Jeanjean and Tanaka considered the case N = 1,2 and
obtained similar results. Their conditions on the nonlinearity f are almost optimal.
Moreover, when V satisfies and with k > 1 and f satisfies (f1)—(£3), in
[10], Cingolani, Jeanjean and Secchi constructed multi-bump solutions for magnetic
nonlinear Schodinger equations which contain equation as a special case.

Comparing to the variational methods mentioned above, the Lyapunov reduction
method of Ambrosetti and Badiale, although it need the non-degeneracy condition,
has its advantages that their method can be used to deal with elliptic equations
involving critical Sobolev exponent (see, for example, [3]) and other problems in-
volving concentration compactness (see, for example, [1§]).

In this article, we indent to attack the problem though a Lyapunov reduc-
tion method, but avoiding the non-degeneracy condition for the solutions of limit
equation . In this article, we develop a new reduction method for an isolated
critical set IC of the functional corresponding to . This method can be regarded
as a generalization of Ambrosetti and Badiale’s method. The non-degeneracy con-
ditions for the solutions in this critical set are no longer necessary and it does
not involve the deformation of nonlinearity. By combination of the new reduction
method and Conley index theory which was developed by Chang and Ghoussoub
in [9)(see also []]), we obtain a solution of in a neighborhood of K for suffi-
ciently small € > 0. Our method is new and it can be used to other problems which
involve concentration compactness. In contrast with the results of Byeon, Jeanjean
and Tanaka, although the assumptions we imposed on the nonlinearity f are much
stronger, the assumptions we made on V' seem weaker in a sense, because by the
assumption (V1), z¢ can be a local maximum point of V.

This article is organized as follows: In section [2] we obtain a critical set of the
functional corresponding to with nontrivial Topology. In section and section
a reduction for the function corresponding to is developed. In section[5] we
give the proof of Theorem Section [6] and [7] are appendixes.

Notation. R, Z and N denote the sets of real number, integer and positive integer
respectively. Let E be a metric space. Bg(a, p) denotes the open ball in E centered
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at a and having radius p. The closure of a set A C E is denoted by A or clg(A).
distg(a, A) denotes the distance from the point a to the set A C E. By — we
denote the strong and by — the weak convergence. By ker A denotes the null
space of the operator A. If g is a C? functional defined on a Hilbert space H,
Vg (or Dg) and V?g (or D?g) denote the gradient of g and the second derivative
of g respectively. And for a,b € R, we denote g% := {u € H : g(u) < a} and
gp :={u € H : g(u) > b} the sub- and super-level sets of the functional g, moreover,
gp :={u € H :b<g(u) <a}. 0;; denotes the Kronecker notation; ie., §; ; =1
if i = j and 0 if ¢ # j. For a Banach space F, denote L£(F) the Banach space
consisting of all bounded linear operator from E to E. If H is a Hilbert space
and W is a closed subspace of H, we denote the orthogonal complement space
of W in H by W+. For a subset A C H, span{A} denotes the subspace of H
generated by A. For a topology pair (A4, B) in metric space, H*(A, B) denotes the
Cech-Alexander-Spanier cohomology with coefficient group Zs (see [23]).

2. CRITICAL SETS OF LIMIT FUNCTIONAL WITH NONTRIVIAL TOPOLOGY

Throughout this article, we denote the Sobolev space H!(RY) and the radially
symmetric function space

HYRY) := {u € H'(R"Y) : u is radially symmetric}
by Y and X respectively. The inner product of Y is

(u,v) = / (VuVo 4+ wv)dz,
RN

and we use ||-|| to denote the norm of ¥ corresponding to this inner product. Define
1
I(u) = 7/ (|Vul?® + |u*)dx —/ F(u)dz, ue€X.
2 RN RN
1
J(u) = f/ (|Vul? + |u*)dx —/ F(u)dz, u€ey,
2 RN RN
1
E.(u) = 7/ (Yl + uf? +V(ex)|u|2)dx—/ Flu)de, ueY.
2 RN RN
For h € H7Y(RV), let (~A +1)"*h and (—A + 1+ V(ex))"'h be the solutions of
—Aut+u=nh, uecH'(RY) (2.1)
and
—Au+tu+Viex)u=h, ucH(RY) (2.2)
respectively.

Under conditions (F1)—(F3), I satisfies Palais-Smale condition (see, for example,
[24]) and has a mountain pass geometry; that is,
(i) 1(0) =0,
(ii) there exist po > 0 and dp > 0 such that I(u) > & for all ||u]| = po,
(iii) there exists ug € X such that ||ug|| > po and I(ug) < 0.

Thus the following minimax value is well defined and is larger than d,

= inf I(y(t 2.
¢= Inf max (v(t)) (2.3)

where

I'={y e C([0,1], X) : 7(0) = 0, I(~(1)) < 0}. (2.4)



EJDE-2012/85 EXISTENCE AND CONCENTRATION 5

Lemma 2.1. For any o € (0,d), if a € (c —0,¢) and b € (¢,c + o) are regular
values of I, then H(I°,1%) # 0.

Proof. Since b > ¢, by the definition of minimax value ¢, there exists v € I' such
that

trél[gﬁ] I(~(t)) <b. (2.5)

Let ug = (1). We infer that 0 and ug lie in different connected component of I°.
It follows that the homomorphism

o HOIY) — HO({0,u0}) = Zo © Zo

which is induced by the inclusion mapping ¢ : {0,ug} — I* is a surjection. Con-
sider the following homomorphism which is induced by the inclusion mapping
j : {Oau()} — Ib7
§* 2O — HO({0,u0}).
By , 0 and wug lie in the same connected component of I°. It follows that j* is
not a surjection.
Consider the following commutative diagram

HO(1%)

HO(I%)

Hl (Ib, Ia) -

H({0,u0})

Since j* is not a surjection and ¢* is a surjection, by this communicative diagram,
we deduce that Image(i*) # H(I*). Moreover, by the property of exact sequence,
we have Tmage(i*) = kera*. Thus kera* # H'(I%). Tt follows that a* # 0.
Therefore, H'(I°, 1) # 0. O

From [24, Chapter 4], we have the following lemma.
Lemma 2.2. If VI(u) =0 and I(u) < 2c, then u does not change sign in RY.

Let F be a C' functional defined on a Hilbert space M with critical set K.
And let V be a pesudo-gradient vector field with respect to DF on M. A pesudo-
gradient flow associated with V is the unique solution of the following ordinary
differential equation in M :

7.7 = 7V(n(xat))v 77(1’,0) =x.

A subset W of M is said to have the mean value property (for short (MVP)) if
for any * € M and any ty < t; we have n(z, [to,t1]) C W whenever n(z,t;) € W,
i=1,2.

Definition 2.3 ([9, Def. 1.10]). Let F be a C! functional on a Hilbert space M.
A subset S of the critical set K of F is said to be a dynamically isolated critical
set if there exist a closed neighborhood O of S and regular values a < b of F such
that

O C Fla,b] (2.6)
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and _
d(O)NKNF a,b] = 8, (2.7)
where O = Utern(O,t). (O, a,b) is called an isolating triplet for S.

Definition 2.4 ([9, Def. IIL.1]). Let F be a C! functional on a Hilbet space M
and let S be a subset of the critical set Kz for F. A pair (W, W_) of subset is
said to be a GM pair for S associated with a pesudo-gradient vector field V, if the
following conditions hold:

(1) Wisaclosed (MVP) neighborhood of S satisfying WNK = S and WNF, =
() for some «.

(2) W_ is an exit set for W, i.e., for each z9p € W and ¢; > 0 such that
n(xo,t1) & W, there exists to € [0,¢1) such that n(zo,[0,%]) € W and
n(a?o,to) eWw_.

(3) W_ is closed and is a union of a finite number of sub-manifolds that
transversal to the flow 7.

For o, B € R, define
K?:={uecX:VI(u) =0, a<I(u) <}

Let a and b BE the regular values which come from Lemma[2.I] Then by Definition
zheqingsabainiaotefr66yh, KU is a dynamically isolated critical set of I. By Lemma
and [9, Theorem IIL.3], we have the following lemma.

Lemma 2.5. Let o > 0 be sufficiently small and a € (¢ — 0,¢), b € (¢,c+ o) be
regular values of I. If (W,W_) is a GM pair of K% associated with some pseudo-
gradient vector field of I, then H'(W,W_) # 0.

Remark 2.6. In this remark, we shall show that the set of regular values of I
is dense in R. Therefore, for any o > 0, there always exist regular values of I in
(c—o,c) and (¢,c+ o). In fact, we shall show that I(C) is of first category, where
C is the set of critical points of I. It suffices to prove that for any u € C, there
exists d,, > 0 such that I(C' N Bx(u,d,,)) does not contain interior points.

Let u € C. Since u is radially symmetric, the dimension of the kernel space of
the following operator is at most one

ViI(u): X = X, he X —h—(=A+1)"Lf'(u)h.

If dim V21 (u) = 0, then by Morse Lemma (see, e.g., [7, Lemma 4.1]), there exists
0, > 0 such that w is the unique critical point of I in By (u,d,). Thus, in this case,
I(CNBx(u,d,)) = {I(u)}.

If diim V2 (u) = 1, let N = ker V2I(u) and note that I is a C? functional, then
by [19, Lemma 1] (see also [7, Theorem 5.1]), there exist an origin preserving C'!
diffeomorphism @ of some Bx(0,d,) into X and an origin preserving C* map h
defined in N N Bx(0, d,) into X such that

Lo®(z,y) = I(u) + || Pz|* — ||(id — P)z||* + I(h(y) +y)

where P : Nt — N+ is an orthogonal projection and N+ is the orthogonal com-
plement of N in X. Let U = {y € NN Bx(0,8,) : h(y) + y}. Then U is a C*
one-dimensional manifold. Let us restrict I to U. Then I : U — R is C'. Moreover,
CnNBx(0,§,) =CNU,so I(CNBx(0,8,)) = I(CNU). Therefore, by classical
Sard theorem, I(C'N Bx(0,d,,)) does not contain interior points.
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Forr >0, AC X, let
N, (A) :={ve X :distx(v,A) < r}. (2.8)

Lemma 2.7. Let ¢ be the mountain pass value coming from Lemmal2.1] For any
r > 0, there exists o, > 0 such that if a € (¢ — o,¢) and b € (c,c + o,) are
regular values of I, then there exists a GM pair (W,W_) of the critical set KX of
the functional I associated with the negative gradient vector field of I such that
W C N,.(Kb).

Proof. By (F1)—(F3), we know that I satisfies the Palais-Smale condition (see [24]).
Therefore, for any r > 0, there exists x, > 0 such that if a € (¢ — 1,¢) and
be (¢,c+ 1), then

[VIW)|| >k, Vv eI a,b]\ Nys(KD). (2.9)
Let
0 < 0, < min{rk,/6,1} (2.10)
and a € (¢ — o,,¢) and b € (¢,c + 0,) be regular values of I. For
u € I M a,b] N N, /3(KL), (2.11)
consider the negative gradient flow:
n(t) = =VI(n(t), n(0)=u. (2.12)
Let
T.F =sup{t > 0: for every s € [0,t], [(n(s)) > a}
and
T, =inf{t <0: for every s € [t,0], I(n(s)) < b}.
Let

U=Ueirs riin(tu) su € I Ma,b] N N, /5(K2)}.
Then [K%] C U, where
Kb ={veX:wh)Uw (v) ek},
w(v) = Ngson(v, [t, +00)) is the w—limit set of v and w*(v) = Ny=on(v, (—o0, —t])
is the w*-limit set of v.
By [0, Proposition I11.2], we deduce that there exists a GM pair (W, W_) of K’

such that W C U. Thus, to prove this Lemma, it suffices to prove that if o, > 0 is
small enough, then for u which satisfies (2.11)),

sp_ln(t) —ul < > (213)
te(Ty ,Ti)
Since their arguments are similar, we only give the proof for
sup[(t) —ull < 2 (2.14)
te[0, )
If were not true, then there exist 0 < t; < to < T, such that
r/3 <|n(t) —ul <2r/3, Vte€ [t1,ts]
In(t) = ull = /3, ln(t) — ull = 20/3.
According to (2.9)), we have
b—a=>1(n(t1)) — I(n(t2))

(2.15)
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ta

- / (VI0(t)), () dt = / IVI((e)]2dt > K2 (s — 1),

to t1
It follows that
ty—t1 < (b—a)/kK>. (2.16)
Combining and leads to

5 < Inte2) — el < [ oo

< -2 [ i) = @ v ( [ ienaene) 310

t1 tl
<ty —t)Y2(b—a)? < (b—a)/ky < 20,k

This contradicts (2.10). Thus, (2.14]) holds. O

3. A VARIATIONAL REDUCTION FOR THE LIMITING FUNCTIONAL [

Let o > 0 be sufficiently small and a € (¢ — o,¢), b € (¢,c+ o) be regular values
of I, where c is defined by . In what follows, for the sake of simplicity, we
denote the critical set K% by K.

By [, if u € Y is a weak solution of

—Au+u= f(u), (3.1)
ou

then v and a1 SiS N satisfy exponential decay at infinity. As a consequence,

K is a compact subset of W22(RY). If u € Y is a solution of equation (3.1]), then

%, 1=1,..., N are the eigenfunctions for the eigenvalue problem

— Ah+h = f'(u)h. (3.2)

Remark 3.1. By [22, Theorem C. 3.4]), any eigenfunction of the eigenvalue prob-
lem ([3.2) has exponential decay at infinity.

The argument in [I1, Page 970-971] implies the following Lemma.

Lemma 3.2. Suppose that u € X is a solution of equation (3.1) and it does not
change sign in RN. If v € Y is a solution of (3.2)) and satisfies

ou

—)=0, i=1,...,N
<’U7axl> 9 Z ) ? b
then v € X.

Remark 3.3. By Lemma[2.2] we infer that if u € K, then u does not change sign
in RV,

As it has been mentioned above, K is a compact subset in W22(RY). Thus for
any u € K and any ¢ > 0, there exists 7, > 0 such that

N ov Ou
ZH% _gﬂ <s, YveKnBx(u,21,). (3.3)
i=1 ’

Therefore, we can choose a finite open sub-covering of IC

A={Bx(ui,m,):i=1,...,5} (3.4)
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from the open covering {Bx(u,7,) : u € K}. Let ¢ € C°°(]0,+00)) be such that
0<(¢(t)<1forallt, ¢(t)=1forte[0,1/2] and ((t) =0 for t € [1,00). Let

=l o
G =S ) PSS

Then {¢; : 1 <i < s} is a C° partition of unity corresponding to the covering A.
For u € IC, let

0
Y, :={h€ X :V*I[(u)h =0}, Z,:= span{ag_ :1<i< N}
Let
Y =span{U;_, Y, }, (3.5)
g=dim). (3.6)
Let {e1, €2, ..., ¢4} be an orthogonal normal base of ). As mentioned in Remark

for every 1 < n < q, e, € W22(RY) and e, satisfies exponential decay at
infinity.

Let {e}, €, ...} be an orthogonal normal base of Y, where Y is the orthogonal
complement space of ) in X. From the appendix A of this article, for every k € N,
there exists

Ek = {éj,k 01 S _] S kj}, (37)
such that
(i) For every k, Ex C X N W22(RY) and E; LY
(ii) Every €, satisfies exponential decay at infinity, (€; x, €; 1) = d;,j and

sup ||é;x — 6;” <1/2%. (3.8)
1<j<k
For every k, denote
Xy :=span{E;} & ). (3.9)

Let P, : X — X; and P,ﬁ- X — X,ﬂ- be the orthogonal projections, where X,ﬂ-
is the orthogonal complement space of X in X. By the definition of X; and the
properties (i) and (ii) mentioned above, we have the following Lemma which is easy
to prove.

Lemma 3.4. For every h € X, limy_,o0 [|h — Peh|| = limg—oo || PiR|| = 0.

Lemma 3.5. For any r > 0, there exists [, € N such that if k > [, then for every
v € N,.(K), PkLVQI(vﬂXkL is invertible and

IPEV2 I x) oy < 2 (3.10)
Proof. For w € Xi-,
PEVAI(v)w = w — PH(—A + 1)1 f/(v)w. (3.11)
Denote the operator w +— Pi-(=A + 1)~ f/(v)w by A, ;. If we can prove that
lilrgrisotip sup {”Av’k-”‘c(XkL) tv e N (K)} =0, (3.12)

then the conclusion of this Lemma follows. If (3.12)) were not true, we can choose
v, € N,.(K) and wy, € Xj- with |wg|| =1, k= 1,2,..., such that

lim sup || Ay, xws|| > 0. (3.13)
k—o0
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Without loss of generality, we assume that vy — vg in X and wy — wp in X as
k — oo. Since for any 2 < p < 2*, X can be compactly embedded into the radially
symmetric LP space (see, for example, [24, Corollary 1.26])

LE(RY) := {u € LP(R") : u is radially symmetric},

combining the condition (F1), we can obtain
kllrgosup{/ﬂgN |/ (vi)weh — f'(vo)woh| : h € X, ||| <1} =0.
It follows that
Tim (<A + 1)~ (@~ F (o)) = 0. (314)

By (3.14) and Lemma we deduce that limy_, e || Ay, xwk| = 0. But this con-
tradicts (3.13)). O

For u € K, denote X, & Z,, by W,, 1, and let WLk be the orthogonal complement
space of W, in Y. Let PW%,C 1Y — Wy, and Py o L Y — ij be the
orthogonal projections. h
Lemma 3.6. Suppose that k := max{7,, : 1 < i < s} is sufficiently small, where

Tu; comes from (3.4). Then there exist C > 0 and I, € N such that if k > l,; and
v € Bx(ui, Ty,;) for some 1 <i <'s, then Py, . kVQJ(v)|W; . is invertible and

H(PWQ,CVQJ(U”Wzt’k)fl||L(th_yk) <C. (3.15)
Proof. We note that for w € Wj;k,
Py V(0w =w— Py (=A+ 1) f(u)w. (3.16)

Since for any p € [2,2*), X can be compactly embedded into the radially symmetric
LP space, by the condition (F1), we deduce that w — Py (—A+ D7 (v)wis a
compact operator. It follows that PwL V2 J(v )|WL . is a Fredholm operator with

index zero. Therefore, if we can prove that there exists C' > 0 which is independent
of k such that, for sufficiently large k,

1
||PWuLi7kV2J( Jollews ) = gllwll, vwe Wi o Yo € Bx(ug, ;) (3.17)

then the conclusion of this Lemma follows.
Without loss of generality, we assume that u; = u; and for the sake of simplicity,
we denote the operator Py, . kV2J(v)|WL . by Hy . If such C' > 0 does not exist,
a1, gk

then there exist sequences {7 }, {vx} C X and {wy} C Y such that 7¥ — 0 as

k — 00, vy € Bx (u1,70)), wkewlk, |lwkl| =1, k=1,2,... and
klim ||Hvk7kwkH =0. (318)

Passing to a subsequence, we may assume that wy — wg in Y as k — oco. By

7F — 0 as k — oo and the assumption that {vy} C Bx(u1, 7} ), we obtain

lim |lvg —uq| = 0. (3.19)
k— o0
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By wy € Wuﬁk and wr — wp in Y, we obtain wylX & Z,,. Combining the
condition (F1), (3.19)) and the fact that wy — wg in Y leads to

Tim (=2 -+ 1) (@ — £ ()| =0, (3.20)
Jim (=24 1)~ (e — £ (o) | = 0. (3.21)

By and , we obtain
Tim (=2 + 1)1 (o — (o) | = 0. (3.22)

By Lemma, we deduce that
lim [Py b= Pixez, ) hl =0, ¥heY, (3.23)

where Pixgz, )+ 1Y — (X Zul)l is the orthogonal projection. By (3.22) and
(3.23), we obtain
Jim (1P (=8 + )7 ' (0k)wk) = Pixez, ) (A + 17 f (un)wo)|| = 0.
(3.24)

By definition,

Hvk,kwk = Wi — PW:-I k(—A =+ 1)_1f'(vk)wk. (325)
By (3.24) and the assumption limy_,o ||Hy, pwi| = 0, we deduce that {wy} is
compact in Y. Therefore, ||wy — wol| — 0 as k — oo. It follows that ||wp] = 1,
since ||lwg|| = 1 for every k.

Sending k into infinity in the equality (3.25), by wo € (X @ Zul)l, (13.18]) and
(3.24), we obtain

Pixgz,, )+ (wo — (=A+1)7" f'(ur)wo) = 0. (3.26)
By wo L X and u; € X, we have
(wo — (=A + 1)~ ' (w1 )wo, )

1 (3.27)
= <’w0,h> - <(—A + 1) f (U1)h, ’LUO> =0, VhelX.
Since for any h € Z,,, h — (=A + 1)L f’(u1)h = 0, we obtain
wo — (A + 1)L (ur)wo, b
{wo — ( )" f (ur)wo, ) (3.28)

=(h— (=A+ 1) f'(ur)h,wo) =0, Yhe Zy,.
By and , we obtain
Pxoz, (wo— (=A+1)7"f'(ur)wo) = 0. (3.29)
By and , we obtain
wo — (A 4+ 1)1 (uy)wo = 0,
that is, wyg is an eigenfunction of with u = uy € K. But wq satisfies wo LX &

Zy, and |lwg|| = 1. This contradicts Lemma O
For v € US_, Bx (u;, Ty, ), let
%:span{ifi(v)aui :1<j<N}. (3.30)
=1 al’j - -

The space Xj, @ 7, is denoted by E, . Let PEik Y — Ej-,k be the orthogonal
projection. ’
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Lemma 3.7. Suppose that k = max{7,, : 1 < i < s} is sufficiently small.
Then there exist C' > 0 and l, € N such that if k > ., then for every v €
Ui_,Bx (ui, 7y,;), the operator PELksz('UNELk is invertible and

1(Pos, V2T 2 ) e, < O (3.31)

Proof. As in the proof of Lemma it suffices to prove that there exists C’ > 0
which is independent of k such that, for sufficiently large k,

1 S
1Pgs, V2T (0)wll g2,y > o llwll, vw e Eyy, Yo € Ui Bx (ui,70,).  (3.32)
Without loss of generality, we assume that v € B(uq, Tu, ). Let Px, : Y — X} and
Pr, 1Y — 7, be orthogonal projections. For h € Y,
PElkh =h— Px,h— Pr,h, (3.33)

and

Oy Tim &0 v) g
Prh= h i . 3.34
" Z Zl_ S0 Ty e 2 |2 (3.54)

Since {& : 1 <i < s} is a partition of unity, we obtain for every 1 < j < N|

0 ou; 81
||ﬂ Z@ UH—IIZ& Zsz “

6U1 8ui

If &(v) # 0, then v € Bx (u;, Ty,). Combining the assumption v € Bx (u1, 7y, ), we
obtain u; € Bx (u;, 27,,) N K. Therefore, by (3.3), we deduce that

(3.35)

8’&1 aul
— - £ . .
Znaxj o< i) £0 (3.36)
Combining ({3.35)) and ( - ) leads to
||% Zgz ‘9“1 H <g, for1<j<N. (3.37)

Thus, there exists C' > 0 which is independent of k such that

| Pr,h — Pz, h|| < Cs|lh||, VheY, (3.38)
where
N ou fo
. 1 ox
Pruy Y = Zuy B Z (" 5, ) T
j=1 J Ox

is orthogonal projection. By (3.33]) and ( , we have
|Pgs b — Pys kh|| < Cq|hll, VheY. (3.39)
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For w € E- > we have
| Py, V2 (0)u]
> Py V2T @] = |(Pgy, = Pwz )V (0)w]]

> [Ps V2Tl - OS2I @)le ol (by (B39)
> |Pys  V2I(0)(w ~ Py, w)| — |Pus V2T ()(Pz, )]
— G5 V2T (@)l vy [l
> Cllw = Pz, wll = [V2I@)ller) | Pa,, wl = CIVET@) eyl (349)
(by w— Pz, weW kand-
> Cllw|| - (C+ Iv27 ( ) eI Pz, wll = Csl[ V2T (0) [ oy [l
= Cllwll = (C + IV T ()l o) |1 Pr,w — Pz, w]|
= G| V2T ()| ey lw]l - (since Pr,w = 0)
> Cllwl| = <C(C +[[V2I ()| ey lwll = CSl[ V2T ()| 2oy ],
the above inequality follows from (3.38]). It follows that if « > 0 is sufficiently small,
then there exist I, € N and C’ > 0 such that for every k > I, (3.32)) holds. O

Recall that X;- is the orthogonal complement of Xy, in X and Py : X — X,
P : X — Xt are orthogonal projections. Let
Nszp ={u+ve X :ue Xy, distx(u, PLK) <6, ve X, |v]| <7},
where P,K = {Pyv : v € K}. By Lemma and the fact that K is a compact
subset of X, we obtain as k — oo, the Hausdorff distance of K and Pk,

sup distx (v, K) + sup dist x (u, PrKC) — 0. (3.41)
vEPLK

Thus, for any 6 > 0, 7 > 0 and 0 < r < min{4, 7}, if k is sufficiently large, then
N,.(K) C Né,r,k, (3.42)
where N, (K) comes from (2.8). And for any r > 0, if §,7 € (0,7/2), then for
sufficiently large k,
Ns w1 C Ni(K). (3.43)
Let
N = {u € X : distx (u, PyK) < §}. (3.44)
Lemma 3.8. If § > 0 is sufficient small and k is sufficiently large, then there exists
a Ct—mapping 7, : N5 — Xi& satisfying
(i) (VI(0+m(v)), 6) = 0, ¥ € X1
(ii) limp— oo sup {||me(v)]| : v € N} = 0;

)
)
(ifi) limg— oo sup {||Dmg(v)h| : v € N5, h € Xy, ||h] =1} =0;
(iv) va is a critical point of I(v + 7 (v)), then v + m(v) is a critical point of

Proof. By Lemma if r > 0 is small enough, then the operator
Ly i= Py V2(v)|xe : Xiw — Xip
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is invertible and if £ > .,
1Ly kllexpy <20 Yo € N(K). (3.45)

Assume that 0 < § < r, by (3.43)), if k is large enough, then N C N,.(K). For
p>0and v € Ny, define

Uok: Bx:(0,0) = Xir, ww— L PrVI(v+w).
For any w; € Bxé_ (0,p), i = 1,2, by the definition of L, , we have wy — w; —
L;iPIjVQI(v) (we — wy) = 0. Therefore,
[Wo,k(w2) = Wy i (w1)]|
= [lwy — w1 — Ly kP V2I(v + 0wy + (1 = 0)wy) (wy — wy)
(by the mean value theorem, 0 < 6§ = 6(z) < 1)
< Jlwe — w1 — Ly P V2I(0) (wz — wy) | (3.46)
L AP (VR (0 4 s + (1 — O)wy) — VEI(0)) (w5 — )|
= HLU_}CP;‘(VQI(U + 0wy + (1 — O)wy) — VI (v))(wg — w1)]|
<2[(V2I(v + Owy + (1 — O)wy) — V2I(v))(wy —wy)||  (by (3.45)).

Since I € C?(X,R) and K is compact in X, if § and p are small enough, then for
any v € Ns . and w € Bx1(0,p),

[V2I(v +w) — V2I(0)||z(x) < 1/4.
Thus, by (3.46), we obtain for any w; € Bx1(0,p), i = 1,2,

1o,k (w2) = Wy (wi)]| < %Hw —w]]. (3.47)
If § > 0 is small enough and k is large enough, then for every v € N,
W0k (0)] < p/2.
Then by ([3.47), we obtain for every w € m,
1o,k (W) < W,k (w) = Wy k()] + [[Vo,1 (0| < p- (3.48)

By and (3.43), ¥, j is a contractive mapping in BXkL (0, p) if § and p are small
enough and k is large enough. Thus, by Banach fixed point theorem, there exists
unique fixed point 7 (v) € By (0,p). Tt is easy to verify that my is a C1—mapping
and it satisfies the result (i).

Now, we give the proof of (ii). By PEVI(v + mx(v)) = 0 and 7 (v) € Xj-, we
obtain

0= (VI(v+m(v)), m(v)) = |7k (v)]|* — /RN fv+ 7)) - me(v). (3.49)

By Lemma we deduce that for any sequence {vy} with vy € Nk, m(vg) — 0
in X as k — oo. Combining the compact embedding X — LP(RY), we obtain

lim |f(vk + Wk(vk)” . |7Tk(’l}k)| =0.

k—oo JpN
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It follows that
klirn sup {/ fw+m(v)) - m(v) v € Ns i} =0. (3.50)
— 00 RN

The conclusion (ii) follows from (3.49)) and ([3.50)).

Differentiating equation Pi-VI(v+ m(v)) = 0 for the variable v in the direction
h € X}, we obtain

Dry(v)h — P (=A+ 1)7 (v + 7 (v)) (h + Dy (v)h) = 0. (3.51)

Note that Dy (v)h € Xi-. By (3.45), (3.51) and limy_,« |7 (v)|| = 0, we obtain if
k is large enough, then

%\IDﬂk(v)hll < [IDme(v)h — P (A + 1) 71 (v + 7k (v)) Dy (0) |

(3.52)
= [P (A + 1) (v +m(v))h|
It follows that for sufficiently large k,
sup{||Dm(v)h|| : v € N5, h € Xy, ||h|| <1} < oc0. (3.53)
By , we obtain
| Dy (v)h||? = /RN f'(v+m(v)) - (h+ Drg(v)h) - Drg(v)h. (3.54)

Inequality (3.53)) and the same argument as (3.50)) yield
klim sup {/ f'(v+m(v)) - (h+ Drg(v)h) - Dy (v)h :
— 00 RN

v € N, h€ X, ||h]| <1} =0.

Combining (3.54), we get the conclusion (iii).
By (iii), if % is sufficiently large, then

{h+ Drp(v)h: h € Xi} + Xj- = X.

Combining the result (i), we obtain if vy is a critical point of I(v + mk(v)), then

vo + Tk (vg) is a critical point of I. O
Remark 3.9. By (ii) and (iv) of Lemma [3.8] N - is a neighborhood of K if
7 > sup{||7i(v)]| : v € N5} (3.55)

Lemma 3.10. Let Z;(u) = || Piul®* + I(Pyu + 7 (Pyu)). Then

Jim (T = Tlos g = 0

Proof. By definition, we have

1 1
Tufw) = gll? + Pl = [ F(Peut mu( P,

For any sequence {uy} with ug € /\fgmk, by the mean value theorem, we obtain
F(Pyug + mp(Prur)) — Fug) = C(ug, 0)(Peuk + mp(Prug) — ug) (3.56)
= C(ur, 0)(mr(Prux) — Piruy) '

where
C(uk, 9) = f’(QPkuk -+ Hﬁk(Pkuk) + (]. — G)uk) (357)
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with 0 < §(x) < 1, z € RY. Then we have

[ [+ mPaw) - B = [ 1) fn(Pan) - Pl (3.55)
RN RN

By (ii) of Lemma [3.8] we obtain for 2 < p < 2%,
k—oo JrN
By Lemma we have
Plup —0 in X. (3.60)

Since X can be compactly embedded into LP(RY), by (3.60]), we obtain for 2 <
p <2,

lim |Pi-uglP = 0. (3.61)

N

k—o0 R

By (3.58), (3.59)), (3.61) and the condition (F1), we obtain

lim |F(Pkuk +7rk(Pkuk)) —F(uk)| =0. (362)
k—o0 RN
Thus
klim sup { / ’F(Pku + 7 (Pru)) — F(u)‘ tu € N&T)k} =0. (3.63)
— 00 RN
By (ii) of Lemma 3.8 and (8.63), we obtain
For h € X,
(VIi(u),h) = (u, h) + (mp(Pruw), Dy (Pru) (Pgh))
(3.65)
- Nf(Pku+7Tk(Pku))(th—i—DWk(Pku)(th))
R
By (iii) of Lemma and the same argument as above, we can obtain
Jim sup{(VZy(u) — VI(u),h) : u € N5 11, ||h]| <1} =0. (3.66)
The result of this Lemma follows from (3.64]) and (3.66). O

Remark 3.11. Forr > 0, let o € (0, 0,2), where 7, /5 comes from Lemma and
let a € (c—o0,c¢), b € (¢,c+ o) be regular values of I, where ¢ comes from ({2.3)). By
Lemma there exists a GM pair (W, W_) of Kb associated with some pseudo-
gradient vector field of I such that W C N, »(K%). By (8.42), if 0 < r < min{4, 7},
then N,.(K) C N5, if k is sufficiently large. Denote the critical set of Zj, in N ;&
by Kj. By (i) and (iv) of Lemma we deduce that Ky, = P,K?. Then by (3:41)),
Kr C int W if & is large enough. By [9, Theorem III.4] and Lemma we infer
that for sufficiently large k, (W, W_) is also a GM pair of T}, for K, associated with
some pseudo-gradient vector filed of Zj.

For v € Ny, denote I(v + m,(v)) by gx(v). And denote the critical set of gi
in W by K. By (i) and (iv) of Lemma we deduce that K, = P = IEk.
Let (W, W, ") be a GM pair of g for Kj. Note that for u = w +v € Ny, with
w e X, v e Xy, Zi(u) = §||lw||® + gi(v). By shifting theorem (see Lemma 5.1 of
[7]), we have

HY (Wi, W)= HI(W,W~), ¢=0,1,2,.... (3.67)
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Combining Lemma [2.5] we obtain, for sufficiently large k,
HY (Wi, W) = H'(W,W ™) # 0. (3.68)

4. A VARIATIONAL REDUCTION FOR THE FUNCTIONAL .E6
For v € U{_, Bx (u;,T,;) and y € R denote the space

Tv,y,k = {C( - y) : C S Xk} D ZJ( - y)a

where 7, comes from (3.30). Denote the orthogonal complemental space of T, , &
inY by Tvly k-

Recall that (see (3.44)
Né,k = {'LL e Xg : diStx(u, PkIC) < (5} (4].)
For v € N, define Ly : T, — Ty, 1 by
wE Ty = w = Syyk(=A+1+V(ew)) ™ (f (v(- — y))w) (4.2)

where Sy y 1 1 Y — TJ-y’k is orthogonal projection and the operator (—A + 1 +

V(ex))~! is defined by .

Lemma 4.1. Given R > 0, there exist 69 > 0, ¢g > 0, {* > 0 and C > 0 which
are independent of k, such that if k > 1*, 0 < § < g and 0 < € < €q, then for any
v € N5k andy € Brn (0, R), Ly y.c 1 is invertible and

Lo y.erwll > Cllwll, ]yl <R, Yw € Ty 1 (4.3)

Proof. Suppose k = max{r,, : 1 < ¢ < s} is small enough such that Lemma
holds. By (3.43)), for sufficiently small §y > 0, there exists I, > 0 such that
Nsoe C US_1Bx(ui,1y,) if & > 1I.. Note that L, 0 is exactly the operator

PEikVQJ (v)] BL, which has been defined in Lemma and for every w € qu’y’k,

Lu,y,0.5w = Lu,0,0 5w(- = y)-
Thus, by Lemma there exists C’ > 0 such that if k > I* := max{l,;,[].}, then
for any v € N, ,

| Luy00w] = C'llwl|, Yyl < R, Yw € T (4.4)

v,y,k>

where [, is the constant comes from Lemma Therefore, to prove (4.3)), it suffices
to prove that

lg% sup {HLv,y,e,kw - Lv,y,O,ka twe Tti_y,ka H’LUH <1

(4.5)

v € Nsyk, y € Ben (0, R), k > l*} = 0.

If we can prove that for any given sequences {k,} C N, {e,} C (0,4+00), {yn} C
Bgn (0, R), {v,} and {w,} which satisfy that ¢, — 0 as n — oo, v, € N, k.,

wy €T and [lwn| <1,n=1,2,...,
lim ||LUnyynv€n7knw" - Lvnvynvovknwn” = 07 (46)
n—oo

then holds. We only give the proof of in the case k, — o0, n — 00,
since the proofs in other cases are similar. Without loss of generality, we assume
that {k,} is exactly the sequence {k} and we shall denote €,,, ¥, v, and w, by €,
Yk, Ui and wyg respectively, k =1,2,....
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Passing to a subsequence, we may assume that as k — oo, yx — yg, v — vg in
X and wp, — wo in Y. Let

e = (A + 1+ V(er)) ™ (f (v (- — yr))w).
It is easy to verify that {n;} is bounded in Y and
e = (=A+ )7 (0 = ye))wr) = (A + )7V (). (4.7)

Passing to a subsequence, we may assume that ny — 79 in Y as k — oo.
By the definition of L, 4 ¢ 5 and (4.7), we obtain

Lo yypee kW = Ly e 0,6w = Svlmylwk’(iA + 1)71V(6kz)nk' (4.8)
The condition (V1) implies that V' (0) = 0. It follows that for any h € Y,
lim V(exx)nph = 0. (4.9)
k—oo JrN

Since 7 is a weak solution of the equation

— Amy + i + V(ewz)ne = f'(on(- — yr))we, (4.10)

by (4.9), yx — yo, nx — mo and wr — wp in Y, we obtain 7y is a weak solution of
the equation:

— Ang +no = f'(vo(- — yo))wo. (4.11)
From and -, we obtain
— Ak —no) + (k. — n0) + V(exx) (. — 10)

= (f'(vr(- = yr))wr, — f'(vo(- — yo))wo) — V (exx)no-

Multiplying the above equation by nr — 1o and integrating, we obtain that there
exists a constant C' > 0 such that

Cline — noll?

< |lnk — mol® + /RN V(exz)(nr —10)? (by the condition (V0))

(4.12)

= /]RN (f'(vk(' — yi))wi — f(vo (- — yo))wo — V(ckx)m) “(Mk —10) (4.13)
< [ |7t =y = o = )] -1 =

/2
/ V2ea)d) - nk —moll ey

Since vy — vp in X and yr — yo as k — oo, by the fact that X can be compactly
embedding into LP(RY) (Vp € [2,2*)), we obtain

klingo lve (- = y&) —vo(- = yo)llLrery = 0, Vp € [2,27). (4.14)

By (4.14) and the condition (F1), we obtain

i [ | f" (i (- = yx))wr — f'(vo(- = yo))wol - [k — no| = 0. (4.15)

By (I3, (£13) and

lim VZ(epx)na =0, (4.16)

k—oo JpN
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we obtain
Jin [ = ol = 0. (4.17)
Equalities (4.16]) and - 4.17)) yield
lim V2(epx)ni = 0. (4.18)
k—oo JpN
It follows that
Jim [(-A+ D7V (egz)ni|| = 0. (4.19)

Combining (4.19) and (4.8) leads to (4.6).

Finally, by definition, Ly is a Fredholm operator with index zero and by
(4.3), it is an injection. Therefore, it is invertible. O

Theorem 4.2. Given R > 0. There exist §* > 0 and €* > 0 such that if 0 < 6 < §*
and 0 < € < €*, then there exist k(6) and a C*-mapping

ws k(-5 €) : Ns g x Bpn (0, R) — Y, (u,y) — wsx(u, y, €)
for k > k(9), satisfying
(i) w(sk(u y,€) € -, 1, for all (u,y) € N5 x Ben (0, R)'
(i) (VEe(u(- —y) +wsi(u,y,¢)),¢) =0, for all g € T, ,;
(ifl) we,k(u,y,0) = (me(w)(- — y), V(u,y) € N5 x Brn (0, RR);
(iv) for any r > 0, there exists 6, > 0 such that if 0 < & < 6., u € Ny,
y € Brn (0, R) and k > k(9), then ||ws i (u, y, €)|| < r;
(v) for any n >0,

sup {||(1 + |x|)”w§,k(u,y,e)HLm(Rw) : (u,y) € N5 x Benv(0,R), 0 < e < €'} < o0.

Proof. By Lemma we know that for any R > 0, Ly, .« is invertible if 0 < § <
00, 0 < e <e¢g and k: > [*. Moreover, the upper bound of ||L | is independent

of u, y, € and k. For u € N and r > 0, let

uyek'

. 1
Dy Y6,k Bij k(O,T) 7 Luy,ko

SuykVEe(u(- —y) +w).

W= w— Luyek

Now, we show that if r, § and € are small enough and k is large enough, then for
any u € N, Py y .k is a contractive mapping in Bp. ,(0,7). Using
u,y,

VE.(u(- —y)+w) =u(- —y)+w— (A + 1+ V(ex)) L f(u(- —y) +w)

and the mean value theorem, we obtain for any wy,ws € Brs  (0,7), Quy,en(wi)—
u,Y,r~
Doy e (w2), we have

(w1 ) L;y ¢ kS ’y,k{(wl — UIQ)
—-(-A+1+ V(ex)) N (= y) + ) - (wr —w2))
= (wl - w2) u y e,k 7y7k{(w1 - w2 (420)

— (A + 1+ V(ew) ™ f (ul- = y))(wr — w2)
— (A + 1+ V(ex)H(f (ul- —y) + @) = f(ul- —y)) (w1 — w2)}
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where @ = fw; + (1 — §)ws for some 0 < § < 1. By the condition (F1), we can
prove that

lim sup {[|(=A +1+ Viex)) " (f'(u(- —y) + @) — f'(ul- — y)))ell
ueNsk, [y SR, p€Y, o[ <1, 0<e< e} =0.

By HL;L,e,kHE(Y) < 1/C (see Lemma, [Su,y.kllzevy < 1 and ([£.21)), we deduce
that if 7 is small enough, then
Ly e xSy k(A + 14+ V(ex) " (f (u(- = y) + @)

u,y,6,k

— Pl = ) (ws — w)|
SIEA+ T+ V@)l — y) +8) — £l — ) —wo)]|

(4.21)

4.22)

IN

IN

|

B w1 — w2||

By the definition of Ly y. ¢k,
L7 S { (01— w2) — (~A 4+ 14 V(ew)) ™ (- — ) s — wa)}
= (w1 — ’LUQ).

Combining (4.22)), (4.23) and (4.20)), we deduce that there exists ro > 0 such that if
0<r<r9,0<d <0 0<e<e andk >1*, then for any (u,y) € N5 xBr~ (0, R)
and wy,wz € By (0,7),

Uy,

(4.23)

1
1Py ek (wi) = Puy,en(we)] < 5 llwr —wol|. (4.24)

Claim: For any 0 < r < rg, there exist €., §, and k(J,7) such that if 0 < § < 4,,
0<e<e¢ and k > k(d,r), then

|Pu,y.e.c(0)]] <7/2, V(u,y) € Nsi x Ben (0, R). (4.25)
Let hyye=(—A+1+V(ex)) t f(u(- —y)). It is easy to verify
Puge = (A + 1) fu(-—y) = (A + 1) 7'V (em)hoy.e. (4.26)
The same argument as in (4.18)) yields
lim sup {/ V¥ex)h?, .: uweNs x, y€Brn(0,R), k>1"} =0.
€E— RN

Thus, by (4.26)), as e — 0,
sup { (=2 + 1+ V()" flu(- — ) — (<A + 1)~ f(ul- — )] :
u 6./\/'50’]€7 y € Brn (0, R), k > l*} — 0.
It follows that as € — 0,

Sup{HVEe(u(~ —y)) = VJu(-—y)|:ue N%»’“ y € Bpn (0, R), k> l*} — 0.
(4.28)
Therefore, for 0 < r < rg, there exists ¢, > 0 such that for any v € Ngo,k,

y € Brn (0, R) and k > 1,

(4.27)

IVE(u(- —y)) — VJ(u(- —y))|| < %r if0<e<e,, (4.29)
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where the constant C' comes from Lemma Since VJ(v(- —y)) = VJ(v) = 0,
Vv € K, we obtain for any 0 < r < rq, there exists d,- such that for any 0 < § < §,
and any u € Nas(K),

IVl — ) < . (4.30)

4
By (4.30) and the fact that (see (3.41]))
klim ./\/'571@ C Nos(K),

we deduce that there exists k(d,r) such that if & > k(d, r), then for any 0 < 6 <4,
and any u € N&k,

C
IV (ul- =)l < 7 (4.31)
Thus, the claim follows from (4.29)), (4.31)) and the fact that

@k < SIVE (- = )]

Combining (4.24) and (4.25) leads to ||y y.c 1 (w)|| < r for every w € BTf,y,k(O’r)'

Therefore, @, 4.,k is a contractive mapping in BT;y . (0,7). By Banach fixed point
theorem, there exists unique fixed point ws x(u,y, ej of @4y k. Denote 57“0 by &*,
€r, by € and k(d,m0) by k(6). It is easy to verify that the conclusions (i) — (iv)
hold for ws i (u,y,€).

Now, we prove that wsx : N5 x Bpn(0,R) — Y is C'. For any (uo,yo) €
N, x By (0, R) and (u,y) close to (ug,yo), both Sy o k|7 L TL , — Tk

U,Y, %0,Y0,k
. 1 1 . . . .
and Su7y,k:|T:beoyk : T ok — Lay e are isomorphisms, and finding a solution w €

Ty, 1 to the equation Sy, 1V Ec(u(- —y) +w) = 0 is equivalent to finding a solution
w e TJ;),yo,k? to the equation Sy yo,kSuy,k VE(u(- —y) + Suyrw) = 0. Note that

U

Suoo kSuy kVE(u(- —y) + Sy pw) is C! near (ug, yo, wo) € Ny x Brn (0, R) x
Tlo,yo,k and the Fréchet partial derivative of Sy yo.kSu,ykVEe(U(- —Y) + Sy y kW)

U
at (uo,Yo,wo) with respect to w is Ly, yo.e,x Which is invertible. Therefore, the

implicit functional theorem implies that

we k(5 €) : Nsg x Ben(0,R) = Y

is a C' function.
Finally, we give the proof of (v). Let

Pug.ek = ul- = y) Fwsi(w,y,€) = Pr, ,  (VE(u(- —y) + wsi(u,y,€))),  (4.32)

where Pr, , :Y — Ty, is orthogonal projection. By the conclusion (ii) of this
Theorem, we obtain

Pr, ,.(VE(u(- = y) + ws i (u,y,¢€))) = VE(u(- —y) + wsp(u, y,€)).  (4.33)
Thus, by (4.32) and (4.33)), @u,y,c 1 satisfies

- A@u,y,é,k + Qu,y,e.k T V(Ex)@U,y,E,k = flu(- —y) + w(s,k(u, Y, €))- (4.34)
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By the definition of T, , 1, we have
Ty (VEe(u(- —y) + ws i (u, y, €)))

:Z<VE€( c—y) + ws i (u, Y, €) Zﬁl )>

R
135 ow) 22 (4.35)

(VE.(ul- — ) + win(w,y, ), éu (- — 1)l =)

'M*

s
Il
-

(VE (u(- = y) + wsr(u, y,€)), ei(- — y))ei(- — y).

'MQ

Il
_

K3
Since €; j, e;, v and 6;‘;’ satisfy exponential decay at infinity, by (4.35)), for any

given k > k(0) and n > 0, there exists C}, ; > 0 such that

sup {[|(1 + [z)"(Pr, ,  (VEe(u(- — y) + ws k (u, y, €))))l| oo () -
u € N5,y € Ben(0,R),0< e <€} <Cp

(4.36)

and

sup 11+ [z))"u(- = y)ll e @yy < C (4.37)
wENs &, yEByn (0,R)

Note that ¢, 4 ¢ 1 satisfies the elliptic equation (4.34). Therefore, by the bootstrap
argument and the fact that

{wé,k(%yvf)) U € Né,ka Yy € BRN(OaR)7 0 <e< 6*}

is compact in Y (because for fixed k, N5y is compact), we obtain

yiu € Nsp, y€ Bpn(0,R), 0<e< e} <oo (4.38)

sup{lu,y.c

and

ph—{&Sup{H‘p“’yvak||L°°(RN\W) tu € Nsp, y € Ben(0,R), 0<e< e} =0.
(4.39)

By (4.38)), (4.39) and (4.32]), we obtain
sup{||ws,k (u, Y, €) || poo mry : u € N5, y € Brn (0, R), 0 < e < €'} <oo. (4.40)

and

p&rgosup{||w5,k(u7y,E)HLOQ(RN\W) cu € Ns g, y € Ben (0,R), 0 < e <€} =0.

(4.41)
Let d(t) = f(t)/t, t € R. Then by (4.40)), (4.37) and the condition (F1), we have

sup { || d(u(-—y)+ws ik (u,y,€))|| Lo @n) : uw € Ny, y € Bgn (0,R), 0 < e < €'} < o0,
(4.42)
By conditions (V0) and (F1), and (4.41]), we deduce that there exists py such that

inf {1+ V(ex) — d(u(z — y) + ws i (u, y,€)) : |z| > po, u € N,
y € Ben(0,R), 0<e< €} > 0.

(4.43)
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Let 1 be a cut-off function which satisfies 7 = 1 in B~ (0,p9) and 7 = 0 in
RN\ By~ (0, po + 1). We can rewrite equation (4.34)) as

= Apuyer+ (14 Vier) — (1 —n@))d(u(z —y) + wsk(u, Y, €))Puy.ek
= fu,y,e,k

with

(4.44)

fuy.er = d(u(- —y) + wsr(u, y,€)) - u- —y)
+0(z) - d(u(- —y) + ws 1 (w, y, €)) - ws k. (u, Y, €)
— (L =n(x)) - d(u(- — y) + ws k(u, y, €))
x (u(-—y) = Pr, , .(VE(u(- — y) + wsx(u,y,€))).
By (4.37)), (4.36), (4.42)) and the fact that

(4.45)

n(m>d(u( - y) + w&,k(ua Y, 6)) : wﬁ,k(“ﬂ Y, 6)
has compact support, we deduce that there exists C}’; > 0 such that
sup 1A+ 20" fuy,ekll e @y < Cilp- (4.46)
u€ENG, ., yEByn (0,R)

By (4.46), (4.43)), (4.44) and [25, Proposition 4.2], we obtain that there exists
C, . > 0 such that

~ sup 1L+ 12D "™ Puy e kll oo ) < Ol (4.47)
uENa,kJJEBRN (O,R)
Then conclusion (v) follows from (4.32)), (4.47), (4.36]) and (4.37). O

By conclusion (iii) of Theorem we obtain
J(u(- = y) + wsk(u,9,0)) = I(u+ m(u)), V(u,y) € Nop X Ben (0, R).  (4.48)

In what follows, for a C! mapping f defined in Nj; x B~ (0, R), we use the
the symbols Df, D, f and D, f to denote the derivatives of f with respect to (u,y)
variable, u variable and y variable respectively and use D f(u, y)[4, §] to denote the
derivative of f at the point (u,y) along the vector (@,%) € Xj x RY. Furthermore,
we use D, f(u,y)[a] and D, f(u,y)[g] to denote the Fréchet partial derivatives with
respect to the v and y variables along the vectors @ and ¥ respectively.

Condition (V1) for the potential V yields

V(ex)

e—0 €N

= Qn~ (). (4.49)
The proof of the following proposition will be given in the appendix.

Proposition 4.3. Let 6 > 0 be sufficiently small and k > k(5). If t < n*, then

1
liH(l) sup {;Ak(u,y,e) : (u,y) € Noj x Bpnv (0,R)} =0 (4.50)

where
Ar(u,y, €) = [Jws k. (u, y, €) — T (u) (- — y)|

Tt [ Dws e (u, y, )]0, 7] = D(mi(u)(- = y))[0, 7 (4.51)

L [ Dws 1. (u, y €)[v, 0] = D(mx(u)(- = y))[v, O]]-
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Moreover, there exists a constant M > 0 which is independent of (u,y) and € such
that for every (u,y) € Ny X Brn(0,R) and 0 < e < €*,

Ag(u,y,€) < Me™ . (4.52)
For 0 < § < 6* and 0 < e < €*, denote the functional
\I/k(ua Y, 6) = Ee(u( - y) + wé,k(uv Y, 6))7 (ua y) € N§,k X B]RN (Oa R) (453)

Theorem 4.4. Suppose that 0 < § < §* and k > k(). Then there exists e, > 0
such that if 0 < € < e and (ue,ye) € N X Brn (0, R) is a critical point of the
functional Vi (u,y,€); that is,

DUy (ue,ye, €)[v, 5] = 0, V(v,7) € Xj x RY, (4.54)
then ue(- — ye) + ws k (Ue, Ye, €) s a critical point of Ek.

Proof. By conclusion (ii) of Theorem [.2] and hypothesis (4.54), we deduce that to
prove ue(- — ye) + ws i (Ue, Ye, €) is a critical point of E., it suffices to prove that for
suﬂiciently small € > 0,

{v — (- Vaue) (- —ye) + Dws i (e, Ye, €) [0, 7] v € X, § € ]RN}—F ek =Y

(4.55)
If were not true, then there exist €, — 0 as n — oo such that Y;, # Y, where
Y,, denotes the space appeared in the left side of with € = ¢,. Passing to a
subsequence, we may assume that y., — yx and v, — ug in Y as n — oo, since

{(ue,,ye,)} is a bounded sequence in the finite dimensional space X; x RY. By
the hypothesis and Proposition we deduce that uy is a critical point of
I(v + m(v)). Then by the conclusion (iv) of Lemma ug + 7 (ug) is a critical
point of I. We denote it by . Since Dmg(ur)v € X and 7, C X+, we get
Dy (ur)v LT, , where 7, comes from (3.30). Moreover, by Lemma [3.8 we obtain
Dy (ug)v € Xi-. Thus,

Dﬂk(uk)UJ_Xk (&%) %k = Tuk,O,k-
It follows that the subspace of Y,
{v = §Vup — GVamp(up) + Drp(up)v :v € Xi, y € RN} 4T rs 0 & (4.56)
is equal to
{U—ng U — YV Wk(uk) v € X, yERN}—i— wn,0,k
={v— gVl :v e Xy, GERV} 4T

As it has been mentioned above, @y = uy + 7 (uk) € IC. Therefore, by (3.3), we
obtain for every 1 < j < N,

au aui a _ ., 0t Ou;
A <Y gmlg - 5l < (4.58)
i=1 Zj i=1 J J

By (ii) of Lemma and the fact that every &; is a Lipschitz function, we deduce
that for every 1 < j < N, as k — oo,

1Y &) 5 3“2 Z@
=1

(4.57)

uk7

6ui
Z €3(w) — &) 1522 |

(4.59)

_ 6”1
SCZHuk—ukll- ||—>0,
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where C' is the the Lipschitz constant of &;. By (4.58) and (4.59)), we obtain that
for every 1 < j7 < N,

hmsup||7—z& u) ||<§
k—oo
It follows that
lim sup sup ||gVaux — Zyg Zfl

k—oo |y|<1 =1 i—1

(4.60)

Thus, when ¢ is sufficiently small and k is sufficiently large, the space defined
by (4.57) is equal to Y. As a consequence, when ¢ is sufficiently small and k is
sufficiently large, the space defined by (4.56) is also Y. Therefore, the space

{v(- =) = (@Vour) (- = yr) = (FVarr(ur)) (- — yr) + (Dra(ur)v) (- = yx) :
v € Xg, yGRN}-i- ok

(4.61)

is equal to Y. Then we can define a bounded linear operator H,, : Y — Y,
w=v(—yr) = (YVour)(- = yx) = (GVamr(u)) (- — yx) + (Dme(ur)v)(- — yr) + ¢
= Hp(w) = 0(- = ye,) = (§Vaue, ) (- = Ye,) + Dwsp(ue, s Ye,, - €n)[0, 9] + 0, w6

where ¢ € T ke It satlsﬁes Y, = H,(Y), where Y,, denotes the space appeared
in the left side of (| with € = €,. By u., — uk, ¥, — yr and Proposition
as n — 00 we obtain |H, — id||[;(y) — 0. Therefore, when n is large enough,
H,(Y) =Y. It follows that Y,, = Y, which contradicts the assumption. Thus,
when k ) is large enough and k > k(0), there exists e, > 0 such that if 0 < e < ¢,

then ) holds. O

5. PROOF OoF THEOREM [L.3]

By conclusions (iii) and (v) of Theorem .2} if u € Njy, then m(u) decays
exponentially at infinity. Therefore, for u € Ng,k and y € RV, we can define

De(u,y) = | Que(z +y)(u+ mi(u)da.
RN
By the same argument as [Tl Lemma 3.2] and by (4.49), (4.37) and the Lebesgue
Convergence Theorem, we can get the following Lemma.

Lemma 5.1. For any given k > k(), as e — 0,

6711* /]RN V(e(x+y))(u+7rk(u))2dz—Fk(u,y)| : (u,y) € N5y xBgn (0,R)} — 0
and
sup {10 [ Vet + )+ mu(w)Pds — Tu) 31

veE Xy, v <L, geRY, |y <1, (u,y) € N5j x Ben(0,R)} — 0.

(5.1)

For the rest of this article, for the condition (V1), we assume that AQ,~ > 0
and AQ,- # 0 in RY, since the proof for the other case is similar.
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Lemma 5.2. If § > 0 is small enough, then for any u € Ny, Tk(u,-) has a
strict local minimum at y = 0 and Dng(u, 0) is a positive-definite matriz. More
precisely, there exists a constant Ax > 0 such that

Dirk(uv O>y Y2 Ak‘y|27 Vu € Nts,ka vy € RN (52)
Proof. By [I, Lemma 4.1], we know that y = 0 is a critical point of I'y, (u, -) for every

u € Ny If (5.2]) were not true, then there exist 6, > 0, u, C Nj, x, n=1,2,...
and {y,} € SV~ such that 6, — 0 as n — oo and

lim DT (tn, 0)yn - yn| = 0. (5.3)
n—oo
Since (un,y,) is bounded in the finite dimensional space X; x RY, passing to a
subsequence, we may assume that u,, — ug in X, and y, — 3o € SV ! as n — oc.
Let DT (un,y) be the second derivative of T'y(uy,y) with respect to the variable

y; and diag{D11Tk(un,0),..., DyNTk(un,0)} be diagonal matrix with diagonal
elements D11k (uy,0), ..., DynTr(un,0). By the appendix of [I], we obtain

Diil'(un, 0) = _% on (un + 75 (un))VQn (@) - V(up + 7 (un))da,  (5.4)

where 1 <7 < N. Therefore,
DT (tn, 0)yn - Yn = vy, - diag{ D11 T (un,0), ..., DNnT(ttn,0)} - yn

- —%ynf/RN(un () VQue () - V(4 i ()
_ —%W / VQue () - V(tn + i (up))*dee

1
=l [ Qe (@) (u + malun)da
RN
(5.5)
By (5.3) and (5.5)), we infer that

. 1
lim Dirk(una 0)Yn - Yn = N|y0|2 /N AQn+ () - (uo + 7"'k(u()))zd‘r =0.
R

n—oo

It is a contradiction, since we have assumed that AQ,-(x) > 0 and AQ,+ # 0 in
RN, |

In the rest of this section, we assume that ¢ > 0 is sufficiently small and & > k(9)
is sufficiently large such that (3.68|) holds, where the constant k(J) comes from
Theorem 4.2

Proof of Theorem By the definition of W (u,y,€) (see (4.53)), for (u,y) €
Ns.i X Brn (0, R), we have

\I]k(uayve)
1 2 1 2
= 5l =)ty 0l + 5 [ Vel - )+ wos(o.y. ) d

— / F(u(- —y) + wsx(u,y, €))dx
RN

1 1
= §||u(' —y) + w5k (u, y,0)[* + §||w6,k(u7 y,€) — ws (u,y,0)]?

+ <’LL( - y) + wé,k(u7 Y, 0)7 ’LU(;’k(U, Y, 6) - wé,k(ua Y, O)>
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1
+ 3 V(ex)|u(- —y) + ws (u, y, 0)|dx
]RN

1
g [ Ve ussu ) = won(up.0) Pz
R

2

+ / V(EI) (U( - y) + wé,k(ua Y, O)) : (wé,k(ua Y, 6) - wzs,k(ua Y, 0))d£€
RN

= [ Pt =)+ wsa (0o

= fox fu( —y) +wsx(u,y,0)) - (ws x(u, y, €) — ws x(u,y,0))dw

- 771(%1%6)7 (56)
where
nl(uay7€)
= /]RN Fu(- —y) + ws x(u,y,€))de — /]RN Fu(- —y) + ws i (u, y,0))dx (5.7)

- f(u( - y) + w&,k(ua Y, 0)) : (w5,k(ua Y, 6) - wJ,k(ua Y, O))dl‘
RN
By Taylor expansion, we deduce that there exists 0 < § = 0(x) < 1, Vz € RY such
that

m(u,y,€) = % - I (u(-—y) + Ows r(u,y,0) + (1 — O)ws 1 (u,y, €)) (5.8)
X (ws 1 (u, y, €) — wgyk(u,y,O))zdx

By condition (F1), Proposition and (5.8]), we deduce that

tim sup{ (., €)| : (w,) € Mo x B0, B} =0, (59)
Note that for v € X}, 7 € RV,
D (u,y,€)[v,y]
fu(- —y) +wsk(u,y,€))
x (v(- = y) = 4(Veu) (- = y) + Dws i (u, y, €)[v, y])dw
= [ 1 =)+ ws.0))
x (v(- —y) = g(Vou) (- = y) + Dws i (u,y, 0)[v, y])dx
/ £ = 9) + wa (1,9, 0)) - (s (0,9, ) — w50, ,0))
—y) = Y(Vaou)(- —y) + Dws i (u, y,0)[v, y])dx
. fu(- = y) +ws x(u,9,0)) - (Dws i (u,y, €)[v,y] — Dws i (u,y,0)[v, 7])
(5.10)

Then by conclusion (iii) of Theorem Proposition and condition (F1), we
deduce that

liH(IJ sup (w,y,€)|| : (u,y) € Ns i, x Bpn (0, R)} = 0. (5.11)
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Combining (5.9) and (5.11)) yields

L sy, )|+ 1D (. ) : (usy) € N x Ban (0, )} = 0. (5.12)

cn

lim sup{
e—0

By conclusion (i) of Theorem [£.2] and the fact that ws x(u, y, €) — wsk(u,y,0) €

J_ .
Ty ks We obtain

<U( - y) + w5,k(u7 Y, O)a wé,k(uv Y, 6) - w5,k(ua Y, O)>

= . (u(- — y) + w5 (u, ,0)) - (ws 1 (u,y, €) — w5 (u,y,0))dz. (5.13)

By Proposition [£:3] we deduce that
12 (ua Y, 6)

1 1
= §||w6,k(u7y7 €) — ws k(u,y,0)[|> + 5/ V(ex)|ws k(u, y, €) — we i (u,y,0)*dx
RN

+ o V(ex)(u(- —y) + ws ik (u, y,0)) (ws ks (u, ¥, €) — ws 1 (u,y,0))dx
(5.14)

also satisfies ((5.12]). By conclusion (iii) of Theorem we infer that
J(u(- = y) + wsp(u,y,0)) = J(u(- = y) + 7 (u)(- —y)) = I(u+7mx(u)).  (5.15)
Finally, by conclusions (iii) and (v) of Theorem [4.2| and (4.37)), we have
1

5 [ Vielu( - y) + wsi(u.y,0) Pz
RN

B % /RN Viex)(u(- —y) + m(u)(- = y))*dw (5.16)

1 .
56” Ly (u,y) +n3(u, y, €),

where

Tp(w,y) = [ Qne()(u(- —y) + mx(u)(- — y))*dz
R (5.17)

= [, Qo+ )+ ()

By Lemma conclusion (v) of Theorem [4.2]and (4.37)), we deduce that n; satisfies
(-12). By (5.6)-(5.16), we obtain

Wi(,,0) = I+ () + 5 Thlwy) Hulwy.e),  (519)

where 7 = 71 + 72 + 13 satisfies (5.12)).
By Lemma for every u € N, Iy (u,y) has a strict local minimum at y =0
and there is a constant A; > 0 such that

DT (u,0) > Agld (5.19)

where Id denotes the N x N identity matrix. By (5.19) and (5.18), we deduce
that there exists €j, > 0 such that if 0 < e < ¢, then for every u € Ny, there
exists ye(u) € Brn (0, R/2) such that y.(u) is the unique minimizer of Wy (u, -, €) in
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Bgn (0, R). Moreover, by implicit functional theorem, y.(-) € C*(Nsx). By -,
we obtain

lim [[ Wy (u, ye (), €) = 1 (u+ 7 (W)l or 57y = 0- (5.20)

By [9, Theorem IV.3], a GM pair is a special kind of Conley index pair which is
associated with some pseudo-gradient flow of a functional. Therefore, the GM pair
(Wi, W, ) which was defined in Remark[3.11|is a Conley index palr associated with
some pseudo—gradlent flow of the functlonal ge(u) = I(u+ m(uw)). Then by (5.20)
and [9, Theorem II1.4], we deduce that if € is small enough, then (Wk, W, ) is also
a Conley index pair associated with some pseudo-gradient flow of the functional
Uy(-, ye(+),€). By and [8, Theorem 5.5.18], we infer that if € is sufficiently
small, then Wy (-, y.(-),€) has at least a critical point u. € Ny . Then by Theorem
Ue = Ue(- — Ye(te)) + ws 1 (Ue, Ye(uc), €) is a critical point of E.. Moreover, by

(5.20)), we have
lirr(l) disty (e, ) =0

with K = K. This completes the proof of Theorem

6. APPENDIX A

In this appendix, we shall give the proof of the existence of {€; ;} which satisfies
the conditions (i) and (ii) in Section

Since X N Cg°(RY) is dense in X, for any pur > 0, we can choose {&;x} C
X N C§(RY) such that

sup 1€, — €5l < p and [lejull =1, 1 <5 < k. (6.1)
<j<

We show that if py, is small enough, then {€;; :1 <j <k}U{e; : 1 <j<g}is
linearly independent. If it were not true, without loss of generality, we may assume
that

k—1 q
€k k = E ;e + E ﬁjej, (6.2)
j=1 =1
then
k—1 k—1 q
= / = /
ek =y aies + ) ai(En —¢h) + Y Bie;.
Jj=1 j=1 j=1

It follows that if pj, < 1/4v/2, then

k—1 k—1 k-1 k—1
U=llewill® =D ad + 1) eiEn — eI’ + 20> ajef, > a;(@r —€f))
P = o o
LY Zﬁnewz% e =
Jj=1 Jj=1
k—1
3
120+ Zﬂ“l\zoq @ — €pI* - 8Zajllegk—egl\2
j=1
k—1 1 q
2 2
Sailye
=1 =1

v

IV
N =

(6.3)
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By (6.2),
k—1 k—1 q
=Y e+ > a;(En—€)) + Y Biej + (ef — Erp),
Jj=1 j=1 j=1
combining (6.3), we obtain

k—1
L=leill> =Y a;(ejn — €, €h) + (e — enpreh)
j=1
- (6.4)
<k Y lagl+ e < (V2K + 1.
j=1

This induces a contradiction if we assume (v2k + 1)p, < 1. Thus, {€;,:1<j <

k}U{e; : 1 <j <k} is linearly independent if iy < min{1/(v/2k + 1),1/4+/2}.
By (1) and

(€jksEjr k) = (€ + (Ejk — €)), €5+ (8jrk —€5))s (Ejksejr) = (€ 4 (& —€),e50),

we obtain

sup (@5 00| < 2pn + i, sup (€ ks €50)] < g (6.5)
1<4,§'<k,j#j’ J#3’
Therefore, if py is sufficiently small, using Gram-Schmidt orthogonalizing process
to{ej:1<j<qlU{ejr:1<j <k}, weget {€:1<j <k} which satisfies the
conditions (i) and (i) in Section [3]

7. APPENDIX B

In this appendix, we give the proof of Proposition Let

Mgk = (A + 17 f(u(- = y) + m(u) (- = y)). (7.1)

Then
Ny, k = (—A+1+V(ex))_1f(u(-—y)+7rk(U)(-—y)))+(—A+1+V(ex))_IV(ex)nz,?%k).
2

Subtracting equation
SuykVEe(u(- —y) +wsk(u,y,e) =0

from equation
Suyk VI (u(- —y) + m(u)(- —y)) =0,
by (7.2) and the mean value theorem, we obtain

Lu,y,e,k (wé,k(ua Y, 6) — Tk (u)( - y))
= —Suyr(—A+1+ V(m))_1‘/(&91:)77%%;C

+ Sug (A + 1+ V(ex)™ ((f'(U(- —y)+ ) — f'(u(-—y)))

x (ws.k(uyy,€) = m(u)(- — 9)

(7.3)

where @ lies between ws i (u, y, €) and 7 (u)(- — y). By conclusion (iv) of Theorem
we obtain ||wsx(u,y,€)|| <rif0 < <6, and k > k(4). And by (ii) of Lemma
we deduce that if k(J) is large enough and k > k(0), then ||7x(u)(- — y)|| < r.
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Therefore, |w| < rif 0 < d < §, and k > k(6). Moreover, by ([4.21), we deduce
that if r is small enough, 0 < 6 < 4, and k > k(J), then

|(ca+1+vien " ((f - y) +)
(=) - (wsnlu, ) = mw) — ) | (7.4
< S w0 = me() (-~ ),
where C is the constant in Lemma [4.1} By (7.4), and Lemma we obtain

Cllwso(u,y, €) = me(w)(- = )l < 2[(=A+ 1) 7'V (ex)nuy.rl.- (7.5)

By (4.37)), conclusion (v) of Theorem [4.2| and [25 Proposition 4.2], we obtain that
for any n > 0,

sup{[| (1 + &))" 1y k[l L @v) + (u,y) € N g x Ban (0, R)} < oo (7.6)

By (7.6, using the same argument as in [I, Lemma 3.2], we can obtain that if
L < n*, then

e—0 62L w,y,k *

lim { /]RN VQ(Ex)vf : (u,y) € N5 x Benv (0, R)} =0 (7.7)

and

V2
sup{/RN (ex)ni)y’k (u,y) € N5 X Bpn(0,R), 0 < e <€} < oo.

€2n*

Thus, for « < n*,

. 1 _
lim sup{— (A + 1)V (ex) el < () € Nog x Ban (0,10} =0 (7.8)

and

1

sup{en* I(—A + 1)*1V(ex)nu’y7kH : (u,y) € N5 x Ben(0,R), 0 <e< e*} < 0.

(7.9)

Combining ([7.5)), (7.8) and (7.9) yields that for « < n*,if § > 0 is small enough and
k > k(9), then

i {2 w9, €) — me(w)(- — )|+ (0,9) € Ko x Ban (0,80} =0 (7.10)

and

ws 1o (u, Y, €) =T (u) (- — )| (u,y) € Nsp X Ben (0, R), 0 < e < €'} < oo.

(7.11)
Recall that Sy y kY — Tulyy’l€ is an orthogonal projection. Therefore, for h € Y,

1
sup { o

k

Sugkh =h—=> (he;(- —y))e;(- —y) = > (b, &k = y)ék(- —y)

j=1 j=1

N e AT a2 —y)
- h, i(u)—( — - I )
D (I G 9) T

Ba:j

(7.12)
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Thus, the Fréchet partial derivative of S, , xh with respect to u along the vector
v E Xy is

Du(Su Y, kh)[ ]

du; Y-t fz’(u)@(- —y)
;@ ZD& b )T o
S - u (D& (u)]) - Zu( —

Z< 3w 3z.)>z (D& (u)[v]) - 53+ (- =)

purt ‘ 1305 i) G212 (7.13)

<.

v 2 ) i 0B T D )
2> (( Z& J09) 1 G 3

Jj=1 i=1
X Zgz 8“2 - y))

and the Fréchet partial derivative of Sy , xh with respect to y along the vector
7€ RN is

Dy(Su,y,x)[y]

+

q k
= > @9ae) = w)es = )+ S (G080 YD e~ )

MQ

k
+ > (h,e;(- —y))(GVae;)( )+ Z hy €j.( NGV k) —y)
j=1

(7.14)

j=1

TG
(n va (e, V) T ROLE

N> SO RO I
h, i - — S 2 .
< Zg ) TS

Differentiating the equation S, , 1 (V E.
tion Sy, y (VI (u(-—y)+mx(u)(-—y)) =

Mz

+

J

M=

+
1

<.
Il

(u(- —y) + ws k(u,y,€))) = 0 and the equa-
0 with respect to u along the vector v € Xy,

we obtain
Suyk(V2Ec(u(- — y) + ws i (u, y, €)) (v(- — y) (7.15)
+ Dws i (u, y, €)[v,0])) + Dy (Su,y.6h1)[v] =0 .
and
Sw,k(VzJ(U(' - y) =+ Wk(u)(' - y))(v( - y) (7.16)

+ Drg(u) (- = ) [v, 0)) + Du(Suy rho)lv] =0,

where hy = VE (u(- — y) + ws (v, y,€)) and hg = VJ(u(- —y) + 7 (u)(- —y)). By
(7.2) and (7.4), it is easy to verify that there exists a constant C' > 0 such that

lh1 = ha|| < Cllws(u,y, €) — (W) (- = )l + Cl(—=A + 1)V (ex)puy,rll. (7.17)
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By (7.17) and , we obtain for |lv|| < 1, there exists a constant C' > 0 such
that

| Du(Su,y,kh2)[v] = Du(Suy,kha) ]|l

< Cllwsi(ury, ) — me@)( — )|+ CUA+ D) Veahpuysl D

A direct computation shows that

Suy o (V2 Ee(u(- —y) +wsk(u, y, €)) (v — y) + Dwspo(u,y, €)[v, 0]))
= Sugy (V2T (u(- =) + 7 (u)(- = y) (v(- = y) + Dmi(w)(- — y)[v, 0]))
= Suyk (V2T (u(- = y) + 1 (w) (- = y))(Dws g (u, y, €)[v, 0] — D(mp(w) (- - y))[v,0]))

— Sua( =0+ )7 (£l =) + wsn (. 6)

— f/(u(- = y) + () = y))) x (0 = y) + Dwss(u,y,€)[v,0))}
+ Sy k(A + 1)V () y e (V)

(
y)
(7.19)

where

Tug,e (V) = (=A + 14 V(ex))  (f'(u(- = y) + w5 (u,y,€))) - (v(- = y)
+ Dws i (u, y, €)[v,0])).

By (4.37), conclusion (v) of Theorem and (1.2) in (F1), we obtain for any
v,h €Y, ol = [Ihll =1,

/.

f'(u(- = y) + wsn(u,y,€) = f(ul- = y) + m(u)(- = y))

x |[v(- —y) + Dws i, (u,y, €)[v,0]| - |h|dz (7.20)
< Cllws . (u, y, €) = mr(w)(- = y)ll-
It follows that
H( A+1) 1{( (- —y) +ws k(u,y,¢€))
— f'(u(- = y) + 7 (u)(- — y))) x (v(- —y) + Dws i (u, y, €)[v, O])}H (7.21)

< Cllwsk(u, y, €) — m(u)(- = y)|-
By (7.15)), (7.16)) and (7.18)(7.21)), we deduce that
10,6 (V2T (u(- = y) + 7r(u) (- = 1)) (Dws p(u, y, €) [0, 0] — D(me(u) (- = ))[v, 0]))|
< Cllws i (u,y, €) = m(u) (- = y)ll + Cl(=A + 1) 7 V(ew)uy i
+Cl(=A+ 1)V (€)Tuy.e (V)]

(7.22)
By conclusion (ii) of Lemma[3.8 and ([.21]), we deduce that
Jim sup {[V27(u(- ) + mi(u)(- ~ )~ V2Tl ~ 1) ey
(u,y) € N5 x Bpn (0,R)} =
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Therefore, as k — oo,
18,6 (V2T (u(- = ) + 7 (u) (- = 9))(Dws k. (u, y, €)[v,0] = D(mx(u)(- — y))[v, 0]))

~ Suyk(V2J (u(- = 9))(Dws i (u, y, €)[v, 0] — D(mp(u)(- — y))[v, 0))
= o(D)[|Dws (u,y, €)[v, 0] = D(mx(u)(- — y))[v, 0]]|-

(7.23)
By and , we obtain that as k — oo,
18,4,k (V2 I (u(- = y)) (Dws g (u,y, €)[v,0] = D(m(w)(- = ))[v, 0]))]|
< Clluspl ) = m(@ =)l + A+ D V@mal

+CO(=A + )7V (€@)iuy.en (V)]

+o(1)[[Dws 1 (u, y, €)[v, 0] = D(mx(u)(- = y))[v, O]]]-
Let 7,.(-—y) = {h(-—y) : h € T,} and T, (-—y) be the orthogonal complement space
in Y, where 7, is defined in (3.30). Let Pri_,:Y — TH(-—y) and Pr,(._y :
Y — 7,(- — y) be orthogonal projections. Since Dws (u,y, €)[v, 0] LX%(- — y) and

lil(ﬂ'k(u)( —y))[v,0] LXk(- —y), where Xi(- —y) = {v(- —y) | v € Xk}, we deduce
that

Pri(—y)(Dwsk(u, y, €)[v,0] = D(mk(u)(- = ))[v,0]) € Tiiy i
Therefore, by Lemma we have
1S,y (V2T (u(- = 9)) P (. —y) (Dws i (u,y, €)[v, 0] — D(mi () (- = y))[v, 0]))|
= | Luy, 0,k Prp (—y) (Dwsp(u, y, €)[v,0] = Dy (w)(- — y))[v, 0]) |
> C||Pra(—y)(Dwsr(u, y, €)v,0] = D(m(u)(- — y))[v, 0]]-

(7.25)
Differentiating the following equation with respect to u, along the vector v,
<’U)57k(u,y7 )—Tl'k _y Zfl ) :0
we obtain
(D(ws (u,y, €) — 7 (u) (- = y))[v, 0] Z& 83:] >
s (7.26)

= —(wslu0.9.0) = me(u) (- — y%Z(D&(u)[vDW)

i=1
It follows that there exists a constant C' > 0 such that
1P, -~y (D(ws,k (u,y, €) — T (w) (- — ) [, 0])|| < Cllwsp(u, y, €) — mr(u)(: —(y)||~)
7.27
By (7.24)—(7.27), we deduce that when k is large enough, then there exists a con-
stant C' > 0 such that
1D (ws i (u, y, €) — T (w)(- — y))[v, O
< Cllws go(u, y,€) = me(uw) (- = )| + Cll(=A + 1) 7V (€x)uy.e x|
+C|I(=A + 1)V (€@)uy,e.x (0)].
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Then by (7.8)—(7.11)) and the fact that for ¢« < m,

. 1 _ _
li b { = /(= + 1)1V (€0 h(0)]

(7.28)
(u,y) € Nsp X Brn (0, R), v € Xy, [Jv]| < 1} =0
and
1 _ _
Sup{en* (-A+1) 1V(€$)77u,y,e,k(v)” S (u,y) € Né,k x Brx (0, R), (7.29)
vE X, v £1,0<e< €} < oo,
we obtain for ¢ < n*,
1
li —||D LY, €) — - — L0 -
tim sup { 1D (w,(u,,€) — m(u)- — 9)o, 0] a0
(u,y) € Nk X Ben (0, R), v € X, [v]| <1} =0
and
1
sup {E? D(wé,k(ua Y, 6) - ﬂ—k(u)(' - y))[uO]H : (7 31)

(u,y) € N5 X Ben (0,R), v € X, [[v] £1,0< e < €'} < 0.

Differentiating the two equations S, , k(VEe(u(- — y) + ws x(u,y,€))) = 0 and
Suyk(VI(u(- —y) + 7 (u)(- — y)) = 0 with respect to y, along the vector § € RY,
we obtain

Suy (V2 Ee(u(- = y) + ws o (u, 5, ) (=5 Vau(- — )

+ Dus 1,9, )[0,31)) + Dy(Sugrah)[g] = 0 (732
and
Suyk (V2T (u(- = y) + mk (u) (- = 9)) (=5 Vpu(- — y) (7.33)
+ D(mi(w)(- = 9))[0, 9])) + Dy(Suy,kh2)[y] = 0. '
The same arguments as and yield that for ¢ < n*,
g sup {1 Do) = me(w)- ~ ) 0,311 73
(u,y) € N5 x Ben (0, R), g € RV, [g| <1} =0
and
sup { i D,y €) — my(w) (- — )0, a5

(u,y) € N5 x Ben (0, R), 5 € RN 7] < 1,0 < e < €'} < 0.
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