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GENERALIZED HEAVISIDE FUNCTIONS IN THE COLOMBEAU
THEORY CONTEXT

FRANCISCO VILLARREAL

ABSTRACT. We defined generalized Heaviside functions for a variable x in R™,
and for variables (z,¢) in R™ x R™. Then study properties such as: compo-
sition, invertibility, and association relation (the weak equality). This work is
developed in the Colombeau generalized functions context.

INTRODUCTION

The study of Heaviside generalized functions considered in the work is devel-
oped in the Colombeau’s theory context [T, [3, 4]. These generalized functions are
introduced using basically products of the classical Heaviside’s step functions. In
particular, we present some basic properties of generalized functions of the form
vo(ayHy+bi,...,apH;+by), where v is a real generalized function on R satisfying
some conditions to be introduced in §4 and H,,..., Hy are real Heaviside general-
ized functions, in variables z in R™ or in variables (z,t) in R™ x R™, obtained by
regularization way. One of the motivations for introducing this subject is its use
in the study of shock wave solutions of partial differential equations that modeling
some physics phenomena, for example (see [2} [7, [0, [10] and Remark [£.10)).

In this work, unless otherwise stated, F, Fi,...,F; and G denote K-Banach
spaces (where K denotes either R or C), F' denotes a K-Banach algebra (as a K-
Banach space) and Q (resp. Q') denotes an open subset of E (resp. F). We
will briefly describe the content of this paper. Generally speaking we can affirm
that in the first three sections we collect the results to be used in the last one.
In §1 we fix some basic notation about the generalized functions theory that will
be used in the development of the work. In §2 and §3 we introduce the notion of
Heaviside generalized functions in R™ and in R™ x R™, respectively. In §4 we present
some basic properties about these generalized functions involving composition and
invertibility. The main results of this work are proposition and theorems
B.11} .6} B8 A9,

Problems were studied in [2,[7] (resp. [9,[10]) involving real Heaviside generalized
functions in the variables = in R (resp. in the variables « in R™, in the variables
z in R™ and (z,t) in R™ x R). In these works we use only the necessary results
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involving real Heaviside generalized functions. It is not made a deepened study on
these generalized functions such as here is presented.

This work constitutes a considerable advancement of the results contained in
[7]. In the present paper an additional complication arises from the expression
vo(ayHy 4 by,...,apHy + by), which requires the hard study of composition and
inverse multiplicative of generalized functions in the sense of Colombeau’s theory.
The basic references for Colombeau’s theory are [T}, 3l 4]. The general notation not
mentioned in this work are those like [IJ.

1. THE ALGEBRA G4(; F) AND ASSOCIATION RELATION

We denote by (the same symbol) | - | the norms in the considered spaces. The
symbol L(Fy,...,Fy;;G) denotes the space of continuous ¢-linear mappings from
product space (K-Banach space) Fy X --- x Fy into G endowed with the norm

|-, Ae L(Fy, ..., F;G) — sup [A(y1,. .- ve)] € Ry .
lyil=1, 1<i<¢e
If Fy = --- = F, = F this space is denoted by L(*F;G) and L(°F;G) =: G.

Let £[Q; F] := {u € FIOUX2 . y(g,.) € C®(Q; F) for all € €]0,1]}.

If p € N we consider the linear map u € &[Q; F] — uP) € £[Q; L(PFE; F)] where
u®) (e, x) := [u(e,-)]P)(z) and = € Q. The notation K € Q means that K is a
compact subset of Q and [uP)(e,-)|, x := sup, ¢ x [u® (g, 2)],.

Let & [ F| denote the algebra of all uw € &[Q; F| such that for each K € Q2
and each p € N there is N € N such that [u(®(¢,")|, x = O(e™") as £ | 0. This
algebra is called the algebra of moderate functions on Q with values in F.

By N;[Q; F] we denote the ideal of all u € &[Q; F| such that for each K € Q
and each (p,q) € N x N we have |uP) (e, )|, x = O(g%) as € | 0. This ideal is called
the ideal of null functions on Q with values in F.

The Colombeau algebra of generalized mappings on ) with values in F' is defined
as the quotient algebra ([11 [3] [ [6] [7] [§])

Es | F
N[ F

If F =K we write G5(Q) instead of G;(€;K) and a similar notation is used for
sets that generate (as well as for subsets of) G,(€;K).

We indicate by Gs ¢,(2; F') the set of maps f € G4(Q; F) so that f has a rep-
resentative f such that for each K € € there are C > 0 and 5 €]0,1] such that

~

SUPgc g |f(5,-’17)| < 07 (0 <e< 77)
If f; € Gs(4 Fy), 1 <i < ¥, we denote by (f1,..., fe) the class of

(Fioe s fo): (e,2) €]0,1] x Q — (ﬁ(g,m)7.,.,ﬁ(g7x)) EF % xF)

Gs( F) =

in Gs(Q; Fy X+ - - x Fy) where ﬁ is an arbitrary representative of f;. Here (f1,..., f¢)
is the generalized mapping on §2 with values in the K-Banach space I x- - -x Fy. The
generalized mappings f1, ..., f¢ are called the components of (f1,..., f¢). Remark
that (f1,...,fe) € Gs.oo( Fy x --- x Fy) if and only if f; € G5 (4 F;), 1 < i < L.
Let &5 m[Q; Q] :={u € & m[Q; F - u(]0,1] x Q) C '} be.
We denote by & ar,«[€2; '] the set of all u € & ar[€2; '] so that for each K € Q
there are K’ cC Q' and n €]0,1] such that u(]0,n[xK) C K’. We indicate by
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Gs,«(2; Q) the set of all elements of G4(£2; F') so that each one has representative
in & 7. [0 ).
If (u,w) € Es pr[Q; Y] X Es m [5G let wou € Es 1[Q; G] be defined by

(wou)(e,2) = wie,u(e, ), ((6:2) €10, 1] x 9).
Ifdim F < 4o and (f, g) € Gs +(2; Q') x G5 (Q'; G) we define the composite function

gof:=gof+MN(]

where ]?and g are arbitrary representatives of f and g, respectively [11 [6, [7, []].

Let & s (F) be the set of all u € FI%U such that there is N € N satisfying
lu(e)] = O(e™) as e | 0 and let N(F) be the set of all functions u € Es pr(F)
such that for each ¢ € N we have |u(e)| = O(e?) as € | 0. The algebra of the
Colombeau generalized vectors in F is defined by

o0 (F)
NL(F)

We can identify F with a subspace of Fy and F, with a subspace of Gs(; F). The
elements of the image of Fy in G4(€; F') are called generalized constants ([6, [7]).
In the cases F = R™ and F = K, we say that an element f in G¢(Q) is associated

Fy =

with the null function 0 (f = 0) if for some representative f of f we have f( )—0
in D'(Q) as ¢ | 0. We say that a map f = (f1,..., f¢) in G,(€;K*) is associated
with 0 if f; & 0 for each j = 1,...,¢. We say that two elements f, g € G,(Q;K")
are associated with each other if f — g ~ 0.

Let Q (resp. W) be an open subset of R™ (resp. R™). Let us suppose that (z,t) =
(X1, Zn,t1,...,ty,) denotes a generic element of R” x R™. If f € G;(2 x W;R),

we introduce the following notation: V,f := (nglv N aat—’;);
. of of olelf
d x = a0 8(1 = 73 _ a1 a4 o
Vol = Gy T ey % G
for o = (aq,...,an) € N*; 00 f := 73, ngmn

For a proof of the following result see [I, Thm. 6.3.1].

Proposition 1.1. If f € Gs(R™ x R™) and 02 f =~ 0, there is ® € G;(R™ x R™)
such that 07® = 0 and f ~ ®. In particular, if n = m = 1, ® is a generalized
constant.

The next result follows from the dominated convergence theorem.

Proposition 1.2. Let (¢, f) € K x G, () be such that f(s, ) — ¢ a.e in Q

as € | 0 for some representative f of f. Then, f(s, ) — @ inD(Q) ase | 0. In
particular, if o € C*°(Q2) then [ = ¢.

Lemma 1.3. There is a function v» € D(R™) such that f(R* yn diva P(A)dX # 0
+
where RY == {X € R* : X > 0} and R* := {A € R: X\ # 0}.

Proof. Consider 1: R™ — R defined by ¥(\) = exp (Ml%l) if A\ < 1Tand ¢(\) =
if [\| > 1, for example. O
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2. HEAVISIDE GFs IN R"™

In this section will be considered the cases F = R" (or E = R" x R™), FF =R"
and G = K’. We indicate by d,, the Dirac measure in R™ at x = 0; that is, the
function 6, : ¢ € D(R") — ¢(0) € K. An element f € G;(R") is said to be a Dirac

generalized function in R™ if there is a representative f of f such that f (5, ) — On
in D'(R") as e | 0.
The Heaviside function in R™ is the function Y, : R™ — R defined by

0, ifA\j<Oforsomej=1,...,n
(/\17' a/\):: . .
1, ifAj>0foreach j=1,...,n

Lemma 2.1. The Heaviside and Dirac functions verifies OYY,, = 6, in D'(R™).

Proof. It ¢ € D(R™) and supp(¢) C [—a1,a1] X -+ X [—an, a,] then
aTL
(B2 / / S (s A0 = (B )
since (Y, ) = (~1)" [T f+°°Y Aty A2 0(AL, o An)dA - .. A,

O

An element H € G; (R") is said to be a Heaviside generalized function in R™ if
there is a representative H of H such that H( ) — Y, in D'(R") ase | 0. We
indicate by H(R™) the set of all Heaviside generalized functions in R™.

We denote by H,(R™) the set of all elements H of Gs ¢ (R™) so that it has
representative H such that H(e,-) — Y, in (R*)" as ¢ | 0.

We denote by (RT)" := {(z1,...,2,) €ER™ : z; < 0 for some j =1,...,n}.

Proposition 2.2. (a) If H € H(R™) then OYH ts a Dirac generalized function.
(b) If H € H(Rn) then Hl(Rf)ﬂ ~ 0, H‘(Ri)n ~ 1 and 8§‘H|(R*)n ~ 0, (Oé m
N™ a #0).
(c¢) If (k,H) e K x H(R™), then kdivy H = 0 if and only if k = 0.
(d) Hp(R™) € H(R™) and if (H,K) € H(R™) x H(R™) then H =~ K.
() If (a;, H;) € N* x Hy(R"),1 < j < m, then H™ ... Hom € H,(R™).
Proof. The statement (a) follows by using lemma [2.1} The statements (b) and (e)

result from given definitions. The statements (c) and (d) follow by using lemma [1.3]
and Lebesgue’s dominated convergence theorem, respectively. O

We say that a function H € Es.m[R"] wverifies the property (H,)™ if there is

10,1]

= (g1, ) € ((RG)™)7 such that lim. o p(e) = 0 and

0, if A\j < —p;(e) for some j=1,...,n

. , (2.1)
1, if A\j > p,(e) foreach j=1,...,n

ﬁ(aa)‘lw"aAn)_{

We indicate by H,(R™) the set of all elements of G, »,(R™) so that each one has
representative verifying the property (H,)™.
Lemma 2.3. If H: 10,1 x R™ — R wverifies the property (H,)", hold:

(a) H(e,") — Y, in (R*)" as e | 0 and hence H,(R™) C Hy(R™).

(b) For each K € (R*)™ there is n €]0,1] such that 0 < H <1 in ]0,n[x K.
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(c) If H € £y [R™R] and H s the class of H then H|(Rt)” =0, H|(Ri)n =1
and gTIﬂ(]R*)" =0,(1<j<n).
Proof. The statement (a) follows directly from conditions of property (H,.)™.

(b). From lim.jopu(e) = 0 we have (VK € (R*)")(In €]0,1]) : K C Q,(e),
(¢ €]0,n[), which together with ([2.I)) implies the statement (b), where

Que):={Ae®)" : XA>pule)}U{r: \j < —p,(e) for some j =1,...,n}.
(¢). From (2.1) we also have gTIz(E’)‘) = 0 for each € €]0,1] and A € Q,(¢e),

(j = 1,...,n). From (b) for each open subset V of R™ with V & (R*)" there
is n €]0,1] such that V" C §,(¢) for each € €]0,n[. From this, together with the
previus condition, it follows the third statement. ([l

We set B,.[0] := {A € R" : [\] <}, (r € R} ), and we denote by
An) = € DR") 02 0, 9(0) > 0. supp(i) € Bafo] and [ (3)dr = 1}.

The following proposition shows concrete examples of Heaviside generalized func-
tions in R”.

Proposition 2.4. If ¢ € A(n) and H 10,1] x R™ — R s defined by

-~ M "1 t t
Hy(e,Mi,. o0\ / / L .,?")dtl...dtn

we have 0 < flw <11in]0,1] x R™ and Hg,(&,)\) =0 (resp. =1)if \; < —¢ for
some j=1,...,n( resp. if \; > ¢ foreach j=1,....n), (A= (A1,...,A\,)), for
all € €]0,1]. Furthermore, if 6, is the class of ng (e,2) — 2@ (%) and if H, is
the class of ﬁgo then H, € H,(R™) and OYH, = 0.

Proof. Since 320 >0, for each (g, A1,...,An) €]0, 1] x R™, we have

~ ~ 1 t
0< Hy(e,MyevyApn) < 5¢(e,t)dt:/ —p(=)dt=1.
Rn B.jo] " €
Let € €]0,1] and A = ( 1,---3An) € R™ be fixed. Assume that A\; > ¢ for each
j=1,...,n. As supp[d sa( )} B.[0], for each j = 1,...,n and t; € [, \;], we

have 8, (e, t1, ..ty .o tn) =0, (£ €] =00, A, i=1,...,5—1,j+1,...,n). Thus
it follows that

. c 1t tn ~
Hy(e, M, ) :/ / g—nap(;l,...7;)dt1...dtn :/ dp(e,t)dt = 1.
—€ —& B.[0]

If \; < —¢ for some j = 1,...,n it is clear that ﬁsp(e,)\l, ...y An) = 0 consider-
ing that, for each ¢ = 1,...,7 — 1,7+ 1,...,n and each ¢; G] 00, A;], we have
dp(e,t1,. .. tj,...,ty) = 0. Thus H, € H,(R"). Finally, as 0y H, = d,,, we have

ONH, = 6,. O
Remark 2.5. If n =1, given ¢ € A(l) let K € H(R) be the class of I/(\'w defined
as in proposmon. If pj (A,.., ) ER" = X; €R, (j =1,...,n), we have
(Kopi)...(Kopy,) = H, where ¢ := (1) op1)... (¢ op,) and Hy, is the class of

(Kyopi)...(Kyopn).
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IEHRYR) :={(Kop1)...(Kopy,) : K € Ha(R)} (see [7, Remark 2.1]) and if
HA(R"?) :=={H, € Gs(R") : ¢ € A(n)}, where H,, is defined as in proposition
we have the following inclusions

HY(R"™) € Ha(R"™) C H,(R™) C H,p(R™) C H(R™).

A proof of the next result can be found in [9, Prop. 3] or in [2| Prop. 2.11].

Proposition 2.6. If g € G,(R™;K*), Q is an open subset of R™ and S is a C* -

diffeomorphism on R™ such that Jg(x) > 0 for all x € R™ (Jg denotes the jacobian
of S) the following statements hold:

(a) (goS)|a =~ 0(resp. (goS)|a = 0) if and only if g|s(a) = 0 (resp. g|s@) = 0).
(b) If mp: (A t) € R X R™ — X\ € R™ then (g o mm)|axrm = 0 if and only if
gla =~ 0 and (g o mp)|axrm = 0 if and only if gla = 0.

The proof of the next result is similar at proof of [7, Prop. 2.2]. We present it
for the convenience of the reader.

Proposition 2.7. If p € & p(R) and p > 1, then there exists Ve Es m[R™; R]
verifying the property (H,)"™ and the two conditions: 0 < V(e,-) < u(e) in R™ and
V(e ) = ue) in

Ao =UL {zeR" x| <ecandx; > —¢, (j=1,...,n,j #1)}
for all € €)0,1]. Furthermore, if V is the class of V then V & Ha(R™).
Proof. It ¢ € A(n) we consider the function u: (g,z) — [x(e,-) * &0(5/4, N (=),
where 6,: (£,2) — (%) and x(e, ) is the characteristic function of

B, :=U{z e R" : |z §3§ and x; > —3;, (G=1,...,n, 5 #9)}.

For a fixed & €]0,1], we have supplu(e,-)] C supp[x(e,-)] + supp[d,, (%,9)] = De,
where
D, :=U_{z eR": x| < 7% and x; > 772, (G=1,...,n,j#10)}

and u(e,-) € C*®(R™;R). Since 0 < x(g,-) < 1 and ¢ € A(n) it follows that
0 < u(e,-) <1 in R™. Moreover, we have

(e, )| < Ty /|aa Wildy, () €0,1] xR, a € N")
since 92u(e, ) = [xle, ) * (08,)(5 N(x) and (955,)(5 ) = 420 Bogp(2, ). Thus
u € & m[R™;R]. For fixed € €]0, 1], if

We:=U {z e R": |zy| < 5%

then W, — supp[(ip(i, )] € Int(B.) (interior set of B.). So, for each z € W, and
cach y € supp|d, »(5,°)], we have x(e,z — y) = 1. Therefore

~ /€ ~ /€
u(e,x) = / R 5¢(Z,y)x(5,x —y)dy = /&p(i,y)dy =1, (x eW,).
supp[d, (

The function V : (g, z) — 14v(e, z)[u(e)u(e, x) —1] satisfies the required properties,
where v € £)/[R™; R] is defined by v(e,z) =1 (resp. =u(e,x)) if z; < 55 for some
i=1,...,n (resp. if x; > 55 for each i = 1,...,n). O

andxj>f5i, (G=1,....n,j#19)}

€
1
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The auxiliary functions y, y*, 7, and y.. For a fixed y € C*(R™;R"), if
y o (x,t) e R" x R™ — . —y(t) € R” and y, : (z,t) € R” X R™ — (y*(z,t),t) €
R™ x R™, we have

Y =7moy. in R” x R™ (and hence y*(R™ x R™) =R") (2.2)
where m,,: (A, t) € R" x R™ — X\ € R"™. Moreover,
y.(Q) =y*(Q) xR", for Q=07 Q,, Q" R" xR™, (2.3)

where Q* := QT UQ,, QF = {(2,1) : yj(x,t) < 0forsome j = 1,...,n},
Qp == {(z,t) : yj(x,t) > 0forall j = 1,...,n} and y7,...,y, are the compo-
nent functions of y* associated to the component functions of y = (y1,...yn),
respectively. From proposition we have the following corollary.

Corollary 2.8. If f € G,(R";K*) and Q is an open subset of R™ x R™ such that
Y«(Q) = y*(Q) xR™, then (foy*)|a = 0 if and only if fl,-) = 0 and (foy*)|a =0
if and only if f|,~) = 0.

From the previous corollary and proposition 2.2 we have the next result.

Proposition 2.9. For each H € H(R™) the following statements hold.
(8) (Hoy o, ~ 1, (Hoy)lgr ~0 and 9 (Hoy)|o- ~ 0, (a € N", a £ 0).
(b) If k € K, then k div,(H oy*) =~ 0 if and only if k = 0.
(c) If (oj, H;) € N* x Hp(R™), 1 < j <'m, then (H{" ... Him™)oy* =~ H o y*.

3. HEAVISIDE GF's IN R™ x R™

In this section will be considered the cases E = R” x R™, F = K’ and G = R.
The Heaviside function in R™ x R™ is the function Y,,,,: R™ x R” — R defined by

0, ifA\j<Oforsomej=1,...,n

) _ (teR™).
1, if \; >0foreachj=1,...,n,

Yom (A1, .oy A, t) = {
Lemma 3.1. (a) ViYum =0 and div, Yy, = 0 in D/(R™ x R™).
(b) Given a, b in R, a <b, let X: R™ x R™ — R be defined by
b, if A\; <0 forsomej=1,...,n

t € R™).
a, if A;>0foreach j=1,...,n, ( )

X()\17~--;)\n7t) Z:{

Then VX =0 and dinnX =0 in D'(R™ x R™).

Setting 7, = (P1ms - - -, Prnm), Where pjm: (A t) € R” x R™ — X; € R, we have
Ynm = Ypomy,. Then, since 0YY,, = 6, (1emma and (pim)x, = 0i; (Kronecker’s
delta) for ¢, j = 1,...,n, by the chain rule we have

VY pm = 0 © Ty -

An element H € G4(R™ x R™) is said to be a Heaviside generalized function in
R™x R™ if there is a representative H of H such that H(e,-) — Y, in D' (R™ xR™)
as € | 0. We indicate by H(R™ x R™) the set of all Heaviside generalized functions
in R™ x R™.

We denote by H,(R" x R™) the set of all H € G, s»(R™ x R™) so that it has
representative H such that H (e, ) — Y, in (R*)" x R™ as ¢ | 0. The next result
follows from the above definitions.
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Proposition 3.2. (a) Foreach J =H, Hp, if T (A1) € R"XR™ > A € R"
and K € J(R"™) we have K o, € J(R™ x R™).
(b) H,(R™ x R™) C H(R" x R™) and if H, K € H(R" x R™), then H ~ K.
() If (o, Hy) € N* x Hy(R* x R™), 1 < j < k, then H® .. H® € H,(R" x
R™).
(d) If H € H(R" x R™), then H|g+ynypm = 0, H|g:)oxgm = 1, ViH ~ 0
and div,H ~ 0.

We say that a function H: ]10,1] x R™ x R™ — R werifies the property (H,)", if
there is 1 = (p1,..., pn): ]0,1] — (R%)™ such that lim. o p(e) = 0 and

1, if A; i(e) f hj=1,...
= Aj > pj(e) for each j 1m (2.1) €0, 1] x R™)
0, if A\j < —p;(e) for some j=1,...,n,

I?I(a,)\,t):{

where A = (Aq,...,\,). We indicate by H,(R™ x R™) the set of all elements of
Gs.oo(R™ x R™) so that each one has representative verifying the property (H,)7,.
The next result follows from this definition.

Proposition 3.3. The following statements hold:
(a) If (oj, Hj) € N* x H . (R* x R™), 1 < j <k, then H{" ... H* € H,(R" x
R™).
(b) If 1 (A1) € R” X R™ — X € R”, then K om,, € H(R™ x R™) for all
K € H.(R™).
(¢) If H e H,(R" xR™) and t € R™, then H(-,t) € H,(R").

The proof of the next result follows in an analogous way to the proof of lemma|2.3]

Proposition 3.4. If H: 10,1] x R™ x R™ — R werifies the property (H,)",, then
the following statements hold:

~

(a) H(e,") = Ypm in (R*)" xR™ ase | 0 and H,(R™ x R™) C H,(R™ x R™).
(b) For each K € (R*)" there isn €]0,1] such that0 < H < 1in]0,n[x K x R™.
(¢) If H € Ey[R™ x R™;R] and H s the class of H, then H|(Rt)” =0,

H'(Ri)"xR’" =1 and g—gkk*)wm =0,(1<j<n).

X RmM

Remark 3.5. Denoting by (see Remark

HAR" xR™):={Hom, : He HA(R")} ={H,omp : ¢ € A(n)},
HY™(R" x R™) := {H oy, : H e HY(R™)}

where H, is defined as in proposition and mp: (A1) € R® x R™ — A € R”, we
have the following inclusions:

HP™(R"™ x R™) C Ha (R™ x R™) © H, (R x R™) C H,(R™ x R™) € H(R™ x R™).
From propositions [2.6] [3:2} [3:4] we have the following corollary.

Corollary 3.6. Ify € C®(R™;R") and (o, Hj) € N* x H,(R" xR™), 1 < j <k,
then (H® ... H™) oy, ~ Hovy,, (H € H(R" x R™).

Using the chain rule we have the following result.
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Proposition 3.7. If f = f(\, 1), g = g(z,t) € Gs(R" xR™) and y € C*(R™;R"),
y = W, 3yn), hold: dive(f o) = (divaf) o yu; 07(f o yu) = (93f) 0 yus
05 (goyst) = (02g) oyt (a €N);

Vi(foy)==>_( of 0 Y ) Vyi + (Vi f) 0 Ya,

i—1 OAi
—1y _ —  dg —1 -1
Vilgoy ) =) (5o )Vui+(Vig) oy,
i=1 ¢
where Vy; = (gfli, cey gfm)

The next proposition follows from the above result, using formula (2.2)).
Proposition 3.8. If f = f(A\) € Gs(R") and y = (y1,...,yn) € C°(R™;R™), then
dive(foy®) = (diva f) oy™; 97 (f o y™) = (05 f) oy™, (. € N"), and

. ~O(foyr
Vi(foy™) = —Z%Vyr

i=1

From propositions using formulas given in (2.3)), we have the

following result.

Theorem 3.9. If H € HR™ x R™) and y = (y1,-.-,Yn) € C®(R™;R"), then
(Hoy)la, = 1; (Hoy)lg+ = 0; [05(H oy.)] o =0, (¢ € N", a #0); (V,H) o
Yx =~ 0 and

n
OH
Vi(Hoy,) ~ — Z (87 0Y.) VY .
i=1 ’
Proposition 3.10. Given y € C®(R™;R") let ® € G,(R" x R™;K*) be such
that 07® = 0 and ®|q ~ 0 for some open subset Q # 0 of R™ x R™ such that
Y« () = y*(Q) x R™. Then & ~ 0.

The proof of the above Proposition follows by using proposition 2.6, with a
minor modification in the proof of [7, Prop. 2.5] (also see [B, p. 336]). By using
theorem [3.9] and propositions [T.1] and we obtain the next result.

Theorem 3.11. If y € C°(R™R"), (¢,¢) € C®(R™;K’) x C®(R™;K*) and
H € H(R™ x R™), then the following statements hold:
(a) If f € Gs(R" x R™K"), flo- ~ 0 and (H o y.)¢ + [0 (H o y.)] o = 0},
then p = ¢ =0 and f = 0.
(b) Ify € C®(R™;K") and (Hoy, )¢+ [0 (Hoy.)]p =~ 1, then) = ¢ = ¢ = 0.

Proof. (a) By restriction to Q4 C Q*, being (H o y.)|a, = 1, [0} (H o y.)]la,. =0
(theorem and (9} f)|a, ~ 0, we obtain ¢|g, ~ 0. From proposition it
follows that ¢ ~ 0. Since ¢ € C>®(R™;K*) we have ¢ = 0, which together with
hypothesis, implies that [0F(H o y.)]e ~ 2 f. Hence, by proposition one can
find a map ® € G,(R™ x R™;K*) such that 9"® = 0 and (H o y.)p ~ f + ®. By
restriction to QT C Q*, as (H o y.)|,+ ~ 0 and f|g+ =~ 0, we have ®|,+ ~ 0 and
hence ® ~ 0, by proposition So we get (Hoy,)p ~ f. From this, by restriction
to 4 and by a similar argument it was made to obtain ¢ = 0, we conclude that
@ = 0. Thus, from former condition, it follows that f a2 0. The proof of (b) it
follows in an analogous way at proof of (a). a
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From theorem and using proposition [3.2] and (2.2)), we have the analogous
result for the case of Heaviside generalized functions in R".

Corollary 3.12. If y € C®(R™;R"), (¢,9) € C®(R™ K’ x C®(R™; K" and
H € H(R™) the following statements hold:
(a) If f € Gs(R" x R™;K"), flo- ~ 0 and (Hoy*) ¢+ [0 (Hoy*) o = 0} f,
then o = ¢ =0 and [ = 0.
(b) If ¥ € C*(R™K") and (Hoy*) ¢+ [0F (Hoy") o = 1, then ¢ = ¢
¢ =0.

4. ADDITIONAL PROPERTIES OF HEAVISIDE GFs

More information about the special cases of composition and invertibility con-
sidered in what follows can be found in [6] Section 3] or in [7], Section 3].

Special case of composition. Here we suppose that I’ = RY. We fix a =
(a1,...,a¢) and B = (B1,...,8) in (Ry)* (Ry := Ry U {+o0}) with a < .
We will use the notation
¢ ¢ ¢
17 := [ [aw Bilc (RL), [o, 8] := [ [, 8i] and Jav, 5] == [ [lewi, 8i);
i=1 i=1 i=1
and we will consider ' = I C (R})".

We remark that I = (R%)* if @ = 0 and 8 = (+o0,...,+00). In the case £ = 1:
If =], B[ and I =R%, if a = 0 and 8 = +o0.

We denote by & ar.0[2; 1] the set of all u € & p[Q;R] such that for each
K € Q there are n €]0,1]; a, b € I?, a < b; and a function p = (1, ..., ue) from
10,1] into |a, a] such that (¢ — m) € &R, (1 <i<¥), and ule,x) €
[1(g), b] for all (g,7) €]0,n[x K. We denote by G, o (; I?) the set of all elements of
G(Q;R?) so that each one has representative in (see & r[Q; I7] for Q' = I? in §1)

Eent ol I0] = E [0 10 N Eapr o[ 15).
We denote by & gar[I2; G the set of all functions w € E[I?; G such that for each

p € N; each a, b € I?, a < b; and each function p = (u1, ..., ) from 0, 1] into

la, a] such that (e — ﬁ) € &.m(R), (1 <i<?),thereare N € N, C >0 and

wi(e
n €]0, 1] satisfying

sup [w® (e, y)|, <Ce™, (0<e<m).
y€[u(e),b]
Note that & om[I7;G) C E m[12; G). We define
C;)?QM[Ig; G] = C™(I5;G)NEsqulll; G).

Proving the next result follows by a similar argument as in [I, Prop. 2.1.5].
Proposition 4.1. We have w € & om[I?;G] if and only if for each (v,a,b) in
N™ x [P x I, a < b, and for each p = (p1,...,ftm) € (]a,a])]o’l] such that
(e — ﬁ) € & mR), (1 <i < m), there are N € N, C > 0 and n €]0,1]
satisfying

sup  |Jjw(e,y)| < ce™, (0<e<m).
y€[n(e),b]
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Given f € Gy 5(Q2;17) and ¢ € C’;f’QM[Ig; G] we define the composite function
po fi= ¢of+./\/;[Q;G]
where f € Es.m [ IP] is any representative of f (see [6, Thm. 3.3]).

Special case of invertibility. In this part we consider F = G = R and Q' = R*.
We denote by & ar,0[2; R*] the set of all u € & [ R] such that for each K € Q2
there are 1 €]0, 1] and a function u € (R%)I%! such that (¢ ﬁa)) € & m(R) and
u(e) < u(e,z)| for all (e, ) €]0,n[x K.

Note that & 41,0 [ 18] C E.ar.0[% R*] and hence, for all o and § in R, with
a < B, we have E v .o[Q; I7] C Es.m.0[Q; R].

We denote by Gs o(€2; R*) the set of all elements of G5(€2;R) so that each one has
representative in (see & pr [ R*] for Q' = R* in §1)

Eo o[ G R = E [ R N E ar.0[ RY).

Note that Es ar.0[Q; 7] C Esaro[R*], thus Gs (25 15) C Gy o(Q;R*) for all «
and 0 in Ry with a < 8.
The proof of the following result can be found in [6, Thm. 3.6].

Proposition 4.2. IfdimE < +o0o0; a, B € Ry, o < B; and f € Gs.0 (% 15) then

f (resp. f — ) has a multiplicative inverse and % (resp. %) is a representative

—Q

of% (resp. f%a), for every f € Es 1 [ IP] representative of f.

Some properties of Heaviside GFs. In what follows, will consider the cases
E=R" (or E=R"xR™), F =K’ and G = R.

Hypothesis 4.1 (For propositionand theorems We fix a = (a1, ..., a¢)
and b = (b1,...,by) in C°(R™;R") such that 0 < a(t) < b(t), (t € R™). For
i=1,...,0 we define A;(t) := a;(t) — b;(t), (t € R™). We also fix a, = (avq,...,qy)
and B, = (B1,...,0¢) in (Ry)" with o, < B, and v, = (v1,..., 1) in C®(R%;RY)
such that each component of v, is an increasing function. Let us suppose that
{1,...,¢} is a reunion of two disjoint subsets I and J such that for i € I (resp. for
j € J) v; is strictly increasing with Im(v;) = I and inverse function v; ' (resp. v;
not strictly increasing with Im(v;) C [oy, 5;])-

Let us consider the real numbers g = a1 + -+ ay, By == b1+ -+ B¢
and v(s) defined by v(s)(y1,...,ye) = vi(y1) + -+ ve(we), (v1,-.-,y0) € (RY)").
Moroever, if a; > 0 for all j € J, we consider o) := aq ... ag, B(x) = F1... 08¢ and
V(ry defined by vy (y1,. .., ye) == vi(y1) ... ve(ye)-

With these notation, for each v = v(y), V(r), we consider the associated map
(vr,vL,Av), where vg :==voa, vy := vob and Av := vg — vr. In the sequel
(v, a, B) it indistinctly indicates (I/(S)7 (s), /6)(5)) or (V(ﬂ,), Oy, ,6)(71.))

Proposition 4.3. Given H; € Gs(R" x R™), 1 < i < ¢, let f = (f1,...,[fe¢) be
being that f; == A;H; 4+ b;. If each H; has representative H; such that

-~ a; (t)& — bi (t)
s e ls =g (0

then f = (fi,-- o) == (AvHy + b1y, AgHy + by) € Espro[R™ x R™; (R%)1.
Furthermore, if v; € EsquR%;R], 1 < i < (, then v € E om([(R%)%R] and the
following statements hold

€]0,1] x R™)
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(1) if Hi(e,) — Ynm in (R x R™ as e | 0, for each i = 1,...,, then
vol=vL ¢ H,(R™ x R™).

(2) if 1A€ I and (¢ — m) € & m(R) for each r > 0, then the map
vo f €& meR? x R™ IS, Mohiza1 ¢ g\ (R x R™) and

vof—a

N v (bl)*al : +\n m
viofi —aq ao—=t in (RT)" xR
(7)(‘% ) - ul(aLl)—oq : * \n m

——— un (R+) x R

VR—«Q

= ase |0

vof—a
In the case of (v,a, B) = (V(xy, Q(x), Bx)) we set the additional assumption
a > 0 whenever 2 < k < /.

The above result follows by using proposition |4.1{ (to check v € & oum[(R%)% R]),
and by a minor modification in the proof of [7, Prop. 4.2].
Hypothesis 4.2 (For propositions We fix (o, 8) in Ry x Ry with a < 3,
v € C=(R%;R) strictly increasing such that Im(v) = I (v~! denotes the inverse
function of v) and (a,b) in R} x R} with a < b. Let A :=a —0b be, vg := v(a),

v == v(b), Av:=vgp —vg and 0 := -,

Proposition 4.4. Ifv=! € & qum[I?;R], then for each p:10,1] — [1,0[ such that

(e €]0,1] W € R) € & m(R) and v(ae) < Avpu(e) + vi, for all

e €]0,1]), there is H € Es m[R™; R] werifying the property (H,)™ and the following
conditions:
ag —b

sup |H(e,z)| < , (e €]0,1)), (4.1)
~ b

(VK € (R*)")(3n €]0,1]) : sup  |H(e,z)| < —— (4.2)
(e,2)€]0,n[x K A

and H(e,-) = p*(e) in A., (¢ €]0,1]), where
Ac=U {zeR" |z <ecandx; > —e, (j=1,...,n,j#1)}

vt v vy ) —
and p*: e €]0,1] — (a “(AEH L)t €|

H, then H € H,(R™) \ Ha(R").

The proof of the above result follows from proposition [2.7] and lemma by a
minor modification of the proof in [7, Prop. 4.1].

1, —%[. Furthermore, if H is the class of

Proposition 4.5. Let H € Es m[R™; R] be such that (H,a,b,A) verifies {1) and
let f be the class of AH +b. If v € E qu[R%;R], then for each n € N, n > 2,
there is a strictly increasing function ¢ € C;’f’QM[Rj_; R] such that

Apof) wvof—adf ‘
= _— 1< .
N o (l=jsn)
Furthermore, if ﬁ(s, ) =Y, in (R*)" ase | 0 and if (ﬁ, b, A) verifies then
(@ o flrtyn = @(b) and (g o f)lrs ) = ¢(a).

The above result follows from propositions by a minor modification of
the in the proof of [7, Prop. 4.4]. In what follows assume that the elements a and
b in hypothesis 4.1 are constant functions. More precisely, we give the following
additional hypothesis.
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Hypothesis 4.3 (For theorems[4.6] We fix a = (a1,...,a¢) and b = (b1, ..., by)
in R with 0 < a <b. Fori=1,...,0,let A; := a; — b;. For v = V(s), V(m) (see
hypothesis 4.1), the components of (vg, vy, Av) are given by vg := v(a), vy, := v(b)
and Av :=vg — .

Theorem 4.6. We assume that v; € E;.qu[R;R] and v, " € Equ[I5;R] fori €

I and that v; = o in RY for j € J. Then there are Hy, ..., Hy in H,.(R"™)\ Ha(R™)
verifying the following properties.

(a) Each H;, i =1,...,¢, has representative H; such that

sup |I§i(€, A < i€ = bi, (e €]0,1]),
AER® A;
. b;
(VK € (R")™) (3n €]0,1]) : sup |[Hi(e, \)] < ——.
(e M€l x K A

(b) For each H € H}(R™) we have [vo (A1Hy+by,...,A¢Hy+by) — ]gf ~ 0
and [vo (A Hy 4+ by, ..., AcHy + by) — a}Hg—g ~0, forj=1,..

(¢c) For each H € Ha(R™) we have [vo(A1Hy+by,. .., AgHg+bg)—a}3§fH ~
and [vo (ArHy +b1,...,AcHy + b)) —a]HOYH ~

Proof. Fix j € J. Since —% > 1 and %_,bj > 1, (e €]0,1]), by proposition

and lemma there is H; € H,(R™) \ Ha(R™) having a representative ﬁj
verifying the conditions of statement (a). On the other hand, for a fixed i € I,
as v; is strictly increasing with Im(v;) = IS, we can choose n €]0,1] such that

vi(a;)e + vi(aie) < via;), (0 < e <n). If Ay = vi(a;) — vi(bi), 6; = %’;(b)
vi(ai)etvi(aie)—=vi(bs) ’

and p;:]0,1] — [1,6;] is given by p;(e) := o (resp. := 1) for
e €]0,n] (resp. € € [n,1]) we have that v;(a;e) < Avui(e) + vi(b), (e €]0,1]),
lim, o pi(e) = 6;, and [since Av;p;(e) +v3(b) — s = vi(a;)e +vi(ae) —a; > v(aq)e,
(e €]0,1])]
1
Esm(R).
(E - Avipi(e) + vi(b) — 041-> € &om(R)
Then, as v; ' € & QM[Iﬁi']R} by proposition | there is H; in H,(R™) \ Ha(R™)
having a representative H satisfying the Condltlons of the statement (a) and
Hi(e,-) = pi(e) in A., where uf: ¢ €]0,1] — (A (Z)J”” (be))=b: el,— [ and
A. = U ({A e R" : |Ag] < € and A\, > —¢, (7" =1,...,n, 17 # k)} Therefore
[Vio (Aif[i) +bl} (6,)) = Avipi(e) + vi(b;) in AL, (e e]o, 1), i€l). If f =
vo (Alﬁl +b1,..., AcH, + be), we have the formulas
V(s) © f: Zl/i ¢} (Azﬁl + bl) + ZO&j, V(x) © fA: H [l/i o (Azﬁl + bl)} HOéj
i€l Jjel i€l Jjel

If pugsy: 10, 1] — [oys), vsy(@)] is defined by
M(S)(E) = Z[AVZ,U/Z + Vz ,L + Za] , 5 E 0 1])

i€l J€J

we have that (v(4) o f)(e, ) = s (e) in Ag, (¢ €]0,1]), and (since p;(e) — 6; as
€ 10, for each i € I) we also have that p5)(¢) — a(s) as € | 0. In a similar way, if
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try s 10, 1] = oy, Vixy (@)] is defined by
Pry(€) i= H[Ayi,ul + v (b Ha] . (e€]0,1])

i€l jEJ
we have that ji(r)(e) — ) as € | 0 and that (v, o f)(s,) = p(m(e) in A,
(¢ €]0,1]). Thus, if p indistinctly denotes pi(s) or pi(ny, we have that p(e) — « as
] 0 and that (vo f)(e,-) = u(e) in A, (¢ €]0,1]).
(b) For a fix H € HR(R™), let ¢ € A(1) be such that H is the class of the
function H:]0,1] x R — R defined by H(e,\) := K(e,A1)... K(c, \y) where
K: (e,5) €)0,1] x R — I, 5(e,t)dt € R and 0: (e,t) — 1p(L). To check that H

verifies the required relations, for the sake of simplicity, it will be worked with gTH.

To prove the first, fix ¢ € D(R™), it is sufficient to see that I(¢) — 0 as ¢ | 0 where
~ oH
10)i= [ 1o PEN - alg-E e, (o).
Since (v o f)(e,-) = u(e) in Az, 2L (e,X) = 3(e, \)K (e, Az) ... K (¢, Ay) and
oH
supp[a)\ (g, )] c{reR":|A1| <eand A\, > —¢ for some k=2,...,n} C A,

we have I(g) = [u(e) — o] [°_ (2, M\)ule, A )dA; where

u(e,\y) == / A K(e,As) .. K(2, M) oA, Aoy - Ap)dAg . dA
Choosing C > 0 such that |u(e, A\1)| < C for all (g, A1) €]0, 1] x R we have
[1(e)] < Clule) - a i 3(e, M)A = Clu(e) = o, (e €]0,1))
thus it follows that I(¢) — 0 ase | 0. Proving the second relation and the statement

(c) follows in similar way. O

What follows we present an auxiliary lemma of theorem

Lemma 4.7. Given v € C*°(R*;R) with Im(v) = I?, a, B in Ri (v < B) and
Y v(s)—a

0 > 0 we consider ¢: y € R} fg —ds € R. If v is strictly increasing and
v € & ou[RL;R], then ¢ is strictly increasing, ¢ € C4[RY;R] and

w(0) —al(; — 5), ify<?o
lo(y)l < vy
w(y) - al(5— ), Fy=0.
Proof. Since ¢'(y) = w and v(y) > a, (y > 0), it follows that ¢ is strictly
increasing, and hence
If A,B € R} and y € [A, B], then [o(y)| < [p(A)], or [p(y)] < |@(B)[.  (4.4)
To check ¢ € & QM[R+,R] fixpe N, a,b e R}, a <b, and i from |0,1] in ]0, a]

such that (e — @) € & m(R), we must find N e N, C > 0 and 7 €]0, 1] verifying

(4.3)

sup [P (y)| < Ce™N, (0<e<n). (4.5)
yelu(e) b
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In fact, since v € & ou[R;R] and P (y) = Zg;é CP(v — @)@ ()Pt
(y >0, p>1), where

Cli=(-1)P""nn+1)...(n+p—q—2) <]3; 1)

it is enough to check (4.5)) in the case p = 0. For V/ := max{0,b}, let N € N be,
C > 0 and 7 €]0, 1] such that

sup  |v(s) —al <Ce™N, (0<e<n). (4.6)
s€[u(e),b']

For a fixed ¢ €]0,1] and y € [u(e), b], we have [p(y)| < [ (b)] or [(y)] < |@(u(e))]
(by (4.4)). In the last case, by definition of ¢ and using (4.6)), it follows that

a1 1
“P(y)|§05 ng_@a (O<€<nay>0)

which together with condition (¢ — ﬁ) € & m(R) implies (4.5)).
To prove the inequalities in (4.3)), let y € R¥ be fixed. If y < 6 we have

ply) = /ey v —ay /: a=vls) g

52 52

thus, as v(s) > « for s > 0, it follows that

W@H<LGM_V Le”

and hence, since v(s) < v(0) for s € [y, 0], we have
o) < 6) ~a] [
y

On the other hand, if y > 6 we have |p(y)| = ¢(y) = [, ”(SS) “ds and thus, being
a(s) <wv(y) for s € [0,y], it follows that

o)l < foz/e —ds = [v(y) — o] (

).

| =
< |

O

Hypothesis 4.4 (For theorem We fix (a,3) € RL xR%, o < 3, and v in
C°°(R%;R) with Im(v) = IZ. For each 7 = p, u also will be considered
o 7,7 € C®(R™;R) such hat 0 < 7,.(t) < 74(t), (t € R™)
e A7 € C*°(R™;R) defined by AT :=7, — 7
o H, € & y|[R™ x R™;R] such that H,(g,) = Yy, in (R*)* xR™ ase | 0
and

sup |H (g, \1)] < 7r(t)e — o(t)

Sup. ADIS T ((e,1) €]0,1] x R™) (4.7)

e the generalized function 7, as being the class of 7, := ATfIT + 7.



16 F. VILLARREAL EJDE-2012/87

Theorem 4.8. If v is strictly increasing and v € E, qu[R;R], then there is a
strictly increasing function ¢ € C;’f’QM[Ri; R] satisfying the following conditions

Ipops) vop.—adp.

= ;o (I=j<n),
OA; p3 OA; (4.8)
VO Py —
Vi(pops) = ppizvtﬂ*;

lim[pu(p 0Pl ) = (ApYum + p)lp o (ApYum +po)] - in D'(R™ x R™); (4.9)
|(Rf)anm ~ pe(ue = c)(p o pe),
[(ux = c)ps (@ 0 p)ll @ yn xrm = pr(ur — )( 0 pr);

for all ¢ € C°(R™;R). In particular, if ¢, (pr, pe) and (u,,us) are constant func-
tions, we have Vi[p.(¢ 0 p.)] = 0, [(us — €)ps (9 0 p)]| g+ ynxrm = pe(ue — )p(pe)
and (s — €)pu(20 p)ll s yoin = pr(tr — )p(p1):

(4.10)

Yy v(s)—a

Proof. Fix 6 > 0. By lemma H Yy — f Z—ds is strictly increasing, ¢ in
C’g,oM[Rjr;R] and satisfies the inequalities (4.3)). From (4.7) and definition of 74,
T = p, u, it follows that

Tule, A t) € [e7(2),270(t)] for all (e, A, t) €]0,1] x R" x R™.

Fix K € R™. For each 7 = p, u, let A, > 0 and B; > 0 be such that A, < 7.(¢)
and 27y(t) < B, (t € K). From above conditions it follows that

Tule, N t) € [Are, Br],  ((e, A1) €]0,1] xR® x K, 7 =p, u). (4.11)
This condition shows that p, € & a,g[R" x R™;R% | and, by proposition Px

has multiplicative inverse in G5(R™ x R™;R) and ;3% is a representative of oo By
the chain rule we have
9(p o px) / Opx .
= ) AT = ].7 ey
= (e )
9(p o ps) / ops .
_ DL Gi=1,...,m).
ol = (o) m)
From ¢'(y) = '/(7’;# it follows that ¢’ o p, = ”%2%0‘ and hence ¢’ o p, = %

which together with previous formulas implies the required equalities in (4.8]).
On the other hand, from (4.3)) we have
Y .
el < () —ald - 7), ify <0
Y .
wew) < W) —al(d - 1), ify20.
Thus, noting that 0 < 1 — ¥ < 1 and by using (4.11) two times in the second
inequality, we have

[P«(p o p)l(e A D] < () —al,  if pu(e, A t) <0
N ~ B e~
[Pl p))(e: A1) < W(By) —al(5F = 1), if Pule, A1) 2 6
for each (g, A\, 1) €]0,1] x R™ x K. Thus, if

M = max{[v(9) — a], [v(B,) — a](=2 — 1)}
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we have sup(y y)ernx i |[Px(9 0 px)](g, A, )] < M, (0 < e < 1), which together with
(4.11) implies

sup  |[(Ux = )pu(p o pi)] (e, A1) < M(By + Be), (0<e<1),
M) ERTM X K

where B, > 0 is such that sup,c |c(t)] < B.. From the last two conditions it
follows that p.(¢ o ps), (ux — c)ps(w o ps) € Gs i (R™ x R™; R).
From hypothesis 4.4, remarking that |A7(¢)| > 0, (t € R™), we have

T(e,) =AY + 70 in (Rx)" xR™ase |0, (7=p,u) (4.12)

and thus (¢ o py)(g,") = @ o (ApYym + pe) iIn(R*)™” x R™ as ¢ | 0. From these two
conditions it follows that

lsn[7 (¢ © 5))(e: ) = (ApYoum + 1) [0 (Ap¥am + pr)] in (RY)" x R™. (4.13)

Like this, as p.«(p o ps) € G5 a(R™ x R™; R), by proposition [L.2| the statement (4.9)
is verified.

Using (4.12) and (4.13) we have
[(Ts — )P 0 Px)] (8,7) — pe(ug —c)(pope) in (RT)" x R™ase | 0
(@ = )Pl 0 p)] (,) = prur — c)(popy) in (RY)" x R™ase | 0.

Therefore, as (u. —¢)ps(p o ps) € Gs op(R™ x R™;R) and py(ue — ) (¢ o pe), pr(ur —

c)(pop,) € C®(R™;R), by proposition [I.2] the statements in ([4.10)) hold.
Finally, if p, and py are constants we have

pep(pe), i (RE)™ x R™
(ApYrnm + pe)p o (ApYnm + pe)] = . *\n m
pre(pr), in (RE)" xR

and hence, by lemma 3.1} we have

0
ETe (ApYpm + pe) [p o (ApYpm +p)] } =0 in D'(R" xR™), (i=1,...,n)
and, from hypothesis 4.4, for each i = 1,...,n, we have
. 0 . R 0
i { 7 500 21| 61) = s {86 ¥on + 1) 0 (AT + )]

in D/(R™ x R™). From these two conditions it follows that Vi[p.(¢ 0 p.)] = 0. O

Theorem 4.9. We assume that v; € Equ[R;R] and v, € Equm[I;R] for
each i € I and that v; = a; in RY for each j € J. Then there are generalized func-
tions Hy, ..., Hy in H,(R™ X R™)\ Ha (R™ x R™) wverifying the following properties.

(1) Fach H;, i =1,...,¢, has representative I;Q such that

a;€ — bi

sup  |Hy(e,x,t)| < . (e €)0,1)),
(z,t)ER™ XR™ A
A b;
(VK € (R*)") (3n €]0,1]) : sup |Hi(e,2,t)| < ——.
(e,2,t)€]0,n[x K xR™ A;

(2) If H € HY™(R" xR™) we have [vo(AiHy+bi,..., AcHp+be) —a] 55 ~ 0
and [VO(AlHl+b1,...,AgHg+bg)*a}HgTIi ~0, forj=1,...,n.

(3) If H € HA(R™ x R™) we have [vo (A1Hy+b1,...,A;H;+by) —a]OTH =~ 0
and [vo (A1Hy +b1,...,A¢Hy 4+ by) — o]HOPH = 0.
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The proof of the above theorem follows from theorem [£.6] and propositions [3.3]
2.0l

Remark 4.10. (1) The existence of shock wave solutions for the following system
of hydrodynamic equations, with viscosity v, was studied in [7]:

pr+ (pu)e =
(pu)e + (p+ pu?)e = {[v o (p,p,€) — aluz}a

er + [(e +p)uly = {[vo (p,p,e) — aluuy}y (4.14)

1
e~ A\p+ ipuz, A e R,

where p is the density, u the velocity, p the pressure, e the total energy, v in
Cc* ((R1)3;I£) (o, B € R+, a < f3) satisfying some adequate conditions and =
denotes the association relation in G4(R?;R). In [7] was also studied the nonexis-
tence of shock wave solutions for the system obtained by replacing in the two first
equations of the association relation by the equality of generalized functions.
In [2] was studied the existence and nonexistence of shock wave solutions for the
systems: (4.14]) and the system obtained by replacing in the first equation of
the association by the equality, in the cases a = 0 and v o (p,p,e) = v o (p). These
studies were realized using Heaviside generalized functions in variables x in R.

(2) The existence of shock wave solutions for the following system, using Heavi-
side generalized functions in variables z in R™, was studied in [9]:

ot + dive(pu) = 0
(pu)¢ + divy(p + pu?) ~ 0

et +divy[(e + p)u] = 0
e A\p+ %(qu), A eR”
where p, u, p and e are real generalized functions in R™ x R. The introduction of
this system was suggested by the system considered in (1), in the case v = 0.

(3) The existence and nonexistence of shock wave solutions for Burger’s equations
us + u divy v &~ 0 and u; + u div, u = 0, where u € G5(R™ x R;R), was studied
in [I0], using Heaviside generalized functions in variables z in R™ and in variables
(z,t) in R™ x R.

(4) The existence and nonexistence of shock wave solutions for systems suggested
by the systems in (1), in the case v # 0, are being studied by the author of this
article. These studies are realized using Heaviside generalized functions in variables
2 in R™ and in variables (z,t) in R™ x R and the tools considered in this work. The
results will be stated in a work which is in preparation and it will appear in a
forthcoming publication.

5. APPENDIX: NOTATION AND DEFINITIONS

A := B means that A is defined as being equal to B

R*:= {z € R: z # 0}, R% := {z € R*: 2 > 0}, Ry := Ry U {400}
RO == {(z1,...,2,) ER": 2; <0 for some j =1,...,n}

K denotes either R or C

B.[0] :={z e R": |z| <7}, (r > 0)

K € Q means that K is a compact subset of €
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L(Fy,...,Fy;G) is the space of continuous ¢-linear mappings from Fj X
--- X Fy into G endowed with the norm

|A‘/ = sup |A(y17"'7yf)|
lyil=1,1<i<¢
for A € L(Fy,...,Fp;G). When Fy = --- = F, = F this space is denoted

by LEF;G), and L(°F;G) =: G
E F) := {u € FIOUX2: y(g,.) € C®(Q; F) for all € €]0,1]}
ifpeN, K €Qand u e &[Q; F] (u(p) € ES[Q;L(pE;F)]),

ulP) (e, ) := [u(e, )] (x) and [uP (e, -)|p, K = sup,ef [uP) (e, 7)1,
Es m[Q; F, NG[Q; F] and G4(§; F) are defined on page 2
Gs.00(82; F') is defined on page 2
(f1,---, fe) denotes the class of the function

(Froee i J):101] X Q — Fy x - %y, (2,2) v (ﬁ(s,x)7...,ﬁ(€7m)>

Esm[; Q) i={u € E [ F): u(]0,1] x Q) C '}

Eo [ ] and E pr . [Q; Q'] are defined on page 3

If (f,9) € Gon(%Q) x Gu(2;G), then g o f =G o f+ N[O G)
Esm(F), Ns(F) and F; are dfined on page 3

Definition of f ~ g for f and g in G,(©2; K*) are provided on page 3
Vif = (%{V"ﬁ%)? div, f = %+"'+;T{L’

82]0 = (%;PJ#W’ agf = 69:18‘7.1};9:"

Definition of Dirac GF's in G,(R™) is provided on page 4

Y, : R" — R denotes the Heaviside function in R™

H(R™) is the set of Heaviside GFs in R™

H,(R™) is the set of H in G, ¢(R™) so that has representative H such that
H(e,") » Y, in (R*)" ase | 0

Property (H,)™ is defined on page 5

o H,.(R™) is the set of elements of G, s, (R™) so that each one has representa-

tive verifying the property (H,)™
Aln):={p € D(Ri): ©>0,¢(0) > 0,supp(¢) C B1[0] and [ p(N)dX = 1}
If ¢ € A(n), then H,: ]0,1] x R™ — R is defined by

N A1 An 1 t tn
Hy(e Mo h) = [ . E—nw(;,...,;)dtl...dtn

H, denotes the class of ]?Iy,

HY(R™) :={(Kop1)...(Kop,): K € HA(R)}

HA(R™) :={H, € Gs(R"): ¢ € A(n)}

If y € C*(R™;R"), we have y*: R* x R™ — R"™: (z,t) — a — y(t) and
Ye : R X R™ — R" x R™: (z,t) — (y*(z,t),t); which are the functions
associated with y = (y1,...yn)

Q=0T uQ,, QF = {(a,1): y;(x,t) <0 for some j =1,...,n}, Q4 =
{(2,1): yj(z,t) > 0 for all j =1,...,n}, which are the sets associated with
y=(y1,---yn) € C*(R™R")

e Yom: R" X R™ — R denotes the Heaviside function in R™ x R™
o H(R™ x R™) is the set of Heaviside GFs in R™ x R™
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o Hy(R™ x R™) is the set of H € G, (R™ x R™) so that H(e,") — Yo, in
(R*)™ x R™ as € | 0 for some representative H

e Property (H, ), is defined on page 9

o H,(R" x R™) is the set of elements in G, »(R™ x R™) so that each one has
representative verifying the property (H,.)%;

e HAR" xR™) :={Homy,: He HAR™)} ={Hyomp: ¢ € A(n)}

o HY"(R™ x R™) :={H omp,: H € HY(R™)}

o ifa=(ay,...,a0) and B = (B1,...,5) in (Ry)"

‘ ‘ ‘
Ig = H]aivﬁi[c (Ri)éﬂ [O‘vﬁ] = H[aivﬁi]v ]a,ﬂ] = H]alvﬁz]
i=1 i=1 i=1

e Note that I? = (R%)¢ if a =0 and 8 = (+0o0,...,+00)

e If ¢ =1, then I? =], B[. Also If =R* | if o =0 and 8 = +o0

b 58,1\/[,@[9;-[5]3 gs,M,®[Q;Ig] = Es,M[Q;Ig} n 85,M,®[Q;Ig] and (]57@(9;[5)
are dfined on page 12

e & om[I?;G) and C?QM[IQ;G] = C®(I8;G) N Es.omlIf; G) are dfined on
page 12

o If f € Gow(15) and ¢ € C, ) [15; G, then po f :=po f+ N[ Gl

* &Ml RY, E o[ R i= & MR N & m,0[ R*] and G o (5 RY)
are defined on page 13
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