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LOCAL AND GLOBAL EXISTENCE FOR THE LAGRANGIAN
AVERAGED NAVIER-STOKES EQUATIONS IN BESOV SPACES

NATHAN PENNINGTON

Abstract. Through the use of a non-standard Leibntiz rule estimate, we
prove the existence of unique short time solutions to the incompressible, iso-
tropic Lagrangian Averaged Navier-Stokes equation with initial data in the
Besov space Br

p,q(Rn), r > 0, for p > n and n ≥ 3. When p = 2, we obtain

unique local solutions with initial data in the Besov space B
n/2−1
2,q (Rn), again

with n ≥ 3, which recovers the optimal regularity available by these methods
for the Navier-Stokes equation. Also, when p = 2 and n = 3, the local solution
can be extended to a global solution for all 1 ≤ q ≤ ∞. For p = 2 and
n = 4, the local solution can be extended to a global solution for 2 ≤ q ≤ ∞.
Since Bs

2,2(Rn) can be identified with the Sobolev space Hs(Rn), this improves

previous Sobolev space results, which only held for initial data in H3/4(R3).

1. Introduction

The Lagrangian Averaged Navier-Stokes (LANS) equation is a recently derived
approximation to the Navier-Stokes equation. The equation is obtained via an
averaging process applied at the Lagrangian level, resulting in a modified energy
functional. The geodesics of this energy functional satisfy the Lagrangian Averaged
Euler (LAE) equation, and the LANS equation is derived from the LAE equation
in an analogous fashion to the derivation of the Navier-Stokes equation from the
Euler equation. For an exhaustive treatment of this process, see [12], [13], [6] and
[8]. In [9] and [2], the authors discuss the numerical improvements that use of
the LANS equation provides over more common approximation techniques of the
Navier-Stokes equation.

On a region without boundary, the isotropic, incompressible form of the LANS
equation is given by

∂tu+ (u · ∇)u+ div ταu = −(1− α2∆)−1∇p+ ν∆u

u = u(t, x), div u = 0, u(0, x) = u0(x),
(1.1)

with the terms defined as follows. First, u : I × Rn → Rn for some time strip
I = [0, T ) denotes the velocity of the fluid, α > 0 is a constant, p : I × Rn → Rn

denotes the fluid pressure, ν > 0 is a constant due to the viscosity of the fluid, and
u0 : Rn → Rn, with div u0 = 0. Next, the differential operators ∇,∆, and div are
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spatial differential operators with their standard definitions. The term (v ·∇)w, also
denoted ∇vw, is the vector field with jth component

∑n
i=1 vi∂iwj . The Reynolds

stress τα is given by

ταu = α2(1− α2∆)−1[Def(u) ·Rot(u)],

where Rot(u) = (∇u − ∇uT )/2 and Def(u) = (∇u + ∇uT )/2. We remark that
setting α = 0 in equation (1.1) recovers the Navier-Stokes equation.

There is a wide variety of local existence results for the LANS equation in various
settings, including [12, 6, 7, 11]. In [7], Marsden and Shkoller proved the existence
of global solutions to the LANS equation with initial data in the Sobolev space
H3,2(R3). In [11], this result was improved, achieving global existence for data in
the space H3/4,2(R3) and local existence for initial data in the space Hn/2p,p(Rn).

The most significant obstacle to lowering the initial data regularity necessary to
obtain these results is the nonlinear terms. These terms are typically controlled by
the Leibnitz rule type estimate (see [3] for the original reference or Proposition 1.1
in[16]):

‖fg‖Hs,p ≤ ‖f‖Hs,p1‖g‖Lp2 + ‖f‖Lq1‖g‖Hs,q2 , (1.2)

where 1/p = 1/p1 + 1/p2 = 1/q1 + 1/q2, s > 0, and ‖ · ‖Hs,p denotes the Sobolev
space norm. In this article, we obtain better regularity results by changing to the
Besov space Bs

p,q(Rn) setting, where we have access to the following, non-standard
Leibnitz rule type result:

‖fg‖Bs
p,q
≤ ‖f‖B

s1
p1,q

‖g‖B
s2
p2,q

, (1.3)

provided s1 < n/p1, s2 < n/p2, s1 + s2 > 0, 1/p ≤ 1/p1 + 1/p2, and s = s1 +
s2 − n(1/p1 + 1/p2 − 1/p). This is Proposition 2.1 below, and can be found in [1].
This result has two advantages over equation (1.2). First, equation (1.3) allows
for “spreading” the regularity s between the two terms. This is not of particular
value here, since in the LANS equation the nonlinearity is of quadratic type, but it
is useful when estimating products of functions with varying degrees of regularity
(see, for example, [10]). The second advantage (and the the one used in this article)
equation (1.3) has over (1.2) is that there is no requirement that s > 0 and, by
allowing s1 + s2 > s, p1, p2 and p are no longer required to satisfy the Holder
condition.

This is particularly helpful when dealing with negative regularity operators, like
div(1− α2∆)−1. Specifically,

‖div(τα(u))‖Br
p,q
≤ ‖Def(u) ·Rot(u)‖Br−1

p,q
.

For r < 1, further estimating of this term using equation (1.2) would require first
embedding back to Bs

p,q(Rn), s > 0, and then applying the equation, which “wastes”
r− 1 derivatives. Using equation (1.3), we manage to make some (though not full)
use of these r− 1 derivatives. In the statement of our local existence results below,
we will further elaborate on the benefits of equation (1.3).

The paper is organized as follows. We devote the rest of this section to defin-
ing solution spaces and stating our main theorems. In Section 2 we outline some
fundamental, known Besov space results. In Sections 3 and 4, we prove Theorems
1.1 and 1.2, respectively, stated below. In Section 5 we prove Theorem 1.3, which
extends some of the local solutions from Theorem 1.2 to global solutions. Section
6 contains a technical result necessary for the proof of Theorem 1.3.
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As mentioned above, we denote Besov spaces by Bs
p,q(Rn), with norm denoted

by ‖ · ‖Bs
p,q

= ‖ · ‖s,p,q (a complete definition of these spaces can be found in Section
2). We define the space

CT
a;s,p,q = {f ∈ C((0, T ) : Bs

p,q(Rn)) : ‖f‖a;s,p,q <∞},

where
‖f‖a;s,p,q = sup{ta‖f(t)‖s,p,q : t ∈ (0, T )},

T > 0, a ≥ 0, and C(A : B) is the space of continuous functions from A to B. We
let ĊT

a;s,p,q denote the subspace of CT
a;s,p,q consisting of f such that

lim
t→0+

taf(t) = 0 (in Bs
p,q(Rn)).

Note that while the norm ‖ · ‖a;s,p,q lacks an explicit reference to T , there is an
implicit T dependence. We also say u ∈ BC(A : B) if u ∈ C(A : B) and
supa∈A ‖u(a)‖B < ∞. Lastly, setting M((0, T ) : E) to be the set of measurable
functions defined on (0, T ) with values in the space E, we define

La((0, T ) : Bs
p,q(Rn)) =

{
f ∈ M((0, T ) : Bs

p,q(Rn)) :
( ∫ T

0

‖f(t)‖a
s,p,qdt

)1/a

<∞
}
.

Finally, because the Navier-Stokes equation is globally well-posed with initial
data in L2(R2) (see, for example, Chapter 17 in [15]), we will restrict ourselves to
the case where n ≥ 3. We are now ready to state our two local existence theorems.

Theorem 1.1. Let 0 < r1 < n/p, with p > n, and let u0 ∈ Br1
p,q(Rn) be divergence

free. Then there exists a unique local solution u to the LANS equation (1.1), where

u ∈ BC([0, T ) : Br1
p,q(Rn)) ∩ ĊT

(r2−r1)/2;r2,p,q, (1.4)

1 < r2 < r1 + 1, and T is a non-increasing function of ‖u0‖B
r1
p,q

, with T = ∞ if
‖u0‖s+,2,q is sufficiently small.

Similarly, with 0 < r1 < n/p, p > n, and u0 ∈ Br1
p,q(Rn) divergence free, there

exists a unique local solution u to the LANS equation (1.1), where

u ∈ BC([0, T ) : Br1
p,q(Rn)) ∩ La((0, T ) : Br2

p,q(Rn)), (1.5)

a = 2/(r2 − r1), 1 < r2 < r1 + 1, and T is a non-increasing function of ‖u0‖B
r1
p,q

,
with T = ∞ if ‖u0‖s+,2,q is sufficiently small.

Theorem 1.2. Let u0 ∈ Bn/2−1
2,q (Rn) be divergence free. Then there exists a unique

local solution u to the LANS equation (1.1), where

u ∈ BC([0, T ) : Bn/2−1
2,q (Rn)) ∩ ĊT

(r−n/2+1)/2;r,2,q, (1.6)

max(1, n/2− 1) < r < n/2 and T is a non-increasing function of ‖u0‖B
n/2−1
2,q

, with

T = ∞ if ‖u0‖s+,2,q is sufficiently small.
Similarly, with u0 ∈ B

n/2−1
2,q (Rn) divergence free, there exists a unique local

solution u to the LANS equation (1.1), where

u ∈ BC([0, T ) : Bn/2−1
2,q (Rn)) ∩ La((0, T ) : Br

2,q(Rn)), (1.7)

a = 2/(r−n/2+1), max(1, n/2−1) < r < n/2, and T is a non-increasing function
of ‖u0‖B

n/2−1
2,q

, with T = ∞ if ‖u0‖s+,2,q is sufficiently small.
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We pause here to address the distinction between these two results. Using
techniques like those in [5], the nonlinear term from the Navier-Stokes equation
div(u⊗u) can be controlled provided the initial data has regularity at least n/p−1.
Using Proposition 2.1, we are able to control the LANS specific nonlinear term,
div(τα(u)), provided the initial data has strictly positive regularity. Thus, when
p > n, the limiting factor will be LANS specific term div(τα(u)), and we obtain
local existence provided the initial data has strictly positive regularity. For p = 2,
the limiting factor is the Navier-Stokes nonlinear term div(u ⊗ u), and we obtain
existence provided the data has regularity n/2−1. We remark that this means, for
p = 2, the additional nonlinear term in the LANS equation is no longer limiting
the existence result.

Finally, we state our global existence extension.

Theorem 1.3. When n = 3, the local solutions with initial data u0 ∈ B
1/2
2,q (R3)

from Theorem 1.2 can be extended to global solutions. When n = 4, the local
solutions with initial data u0 ∈ B1

2,q(R4), with 2 ≤ q ≤ ∞, can be extended to global
solutions. In particular, the local solutions from Theorem 1.2 can be extended to
global solutions when u0 ∈ Bn/2−1

2,2 (Rn) = Hn/2−1,2(Rn) for n = 3, 4.

We remark that this last statement improves the result from [11], which only
gave global existence for initial data in H3/4,2(R3).

2. Besov spaces

We begin by defining the Besov spaces Bs
p,q(Rn). Let ψ0 ∈ S be an even, radial

function with Fourier transform ψ̂0 that has the following properties:

ψ̂0(x) ≥ 0

support ψ̂0 ⊂ A0 := {ξ ∈ Rn : 2−1 < |ξ| < 2}∑
j∈Z

ψ̂0(2−jξ) = 1, for all ξ 6= 0.

We then define ψ̂j(ξ) = ψ̂0(2−jξ) (from Fourier inversion, this also means
ψj(x) = 2jnψ0(2jx)), and remark that ψ̂j is supported in Aj := {ξ ∈ Rn : 2j−1 <
|ξ| < 2j+1}. We also define Ψ by

Ψ̂(ξ) = 1−
∞∑

k=0

ψ̂k(ξ). (2.1)

We define the Littlewood Paley operators ∆j and Sj by

∆jf = ψj ∗ f, Sjf =
j∑

k=−∞

∆kf,

and record some properties of these operators. Applying the Fourier Transform and
recalling that ψ̂j is supported on 2j−1 ≤ |ξ| ≤ 2j+1, it follows that

∆j∆kf = 0, |j − k| ≥ 2

∆j(Sk−3f∆kg) = 0 |j − k| ≥ 4,
(2.2)

and, if |i− k| ≤ 2, then

∆j(∆kf∆ig) = 0 j > k + 4. (2.3)
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For s ∈ R and 1 ≤ p, q ≤ ∞ we define the space B̃s
p,q(Rn) to be the set of

distributions such that

‖u‖B̃s
p,q

=
( ∞∑

j=0

(2js‖∆ju‖Lp)q
)1/q

<∞,

with the usual modification when q = ∞. Finally, we define the Besov spaces
Bs

p,q(Rn) by the norm

‖f‖Bs
p,q

= ‖Ψ ∗ f‖p + ‖f‖B̃s
p,q
,

for s > 0. For s > 0, we define B−s
p′,q′ to be the dual of the space Bs

p,q, where p′, q′

are the Holder-conjugates to p, q.
These Littlewood-Paley operators are also used to define Bony’s paraproduct.

We have

fg =
∑

k

Sk−3f∆kg +
∑

k

Sk−3g∆kf +
∑

k

∆kf

2∑
l=−2

∆k+lg. (2.4)

The estimates (2.2) and (2.3) imply that

∆j(fg) ≤
3∑

k=−3

∆j(Sj+k−3f∆j+kg) +
3∑

k=−3

∆j(Sj+k−3g∆j+kf)

+
∑

k>j−4

∆j

(
∆kf

2∑
l=−2

∆k+lg
)
.

(2.5)

This calculation will be very useful in Section 7.
Now we turn our attention to establishing some basic Besov space estimates.

First, we let 1 ≤ q1 ≤ q2 ≤ ∞, β1 ≤ β2, 1 ≤ p1 ≤ p2 ≤ ∞, γ1 = γ2 +n(1/p1−1/p2),
and r > s > 0. Then we have the following:

‖f‖
B

β1
p,q2

≤ C‖f‖
B

β2
p,q1

,

‖f‖B
γ2
p2,q

≤ C‖f‖B
γ1
p1,q

,

‖f‖Hs,p ≤ ‖f‖Br
p,q
,

‖f‖Hs,2 = ‖f‖Bs
2,2
≤ ‖f‖Br

2,q
.

(2.6)

These will be referred to as the Besov embedding results. Next, we record a
Leibnitz-rule type estimate. This can be found in [1], and for the reader’s con-
venience, the proof can be found in Section 7.

Proposition 2.1. Let f ∈ Bs1
p1,q(Rn) and let g ∈ Bs2

p2,q(Rn). Then, for any p such
that 1/p ≤ 1/p1 + 1/p2 and with s = s1 + s2 − n(1/p1 + 1/p2 − 1/p), we have

‖fg‖Bs
p,q
≤ ‖f‖B

s1
p1,q

‖g‖B
s2
p2,q

,

provided s1 < n/p1, s2 < n/p2, and s1 + s2 > 0.

Our third result is the Bernstein inequalities (see Appendix A in [14]). We let
A = (−∆), α ≥ 0, and 1 ≤ p ≤ q ≤ ∞. If supp f̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2jK} and
supp ĝ ⊂ {ξ ∈ Rn : 2jK1 ≤ |ξ| ≤ 2jK2} for some K,K1,K2 > 0 and some integer
j, then

C̃2jα+jn(1/p−1/q)‖g‖p ≤ ‖Aα/2g‖q ≤ C2jα+jn(1/p−1/q)‖g‖p.

‖Aα/2f‖q ≤ C2jα+jn(1/p−1/q)‖f‖p

(2.7)
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Next, we establish estimates for the heat kernel on Besov spaces.

Proposition 2.2. Let 1 ≤ p1 ≤ p2 <∞, −∞ < s1 ≤ s2 <∞, and let 0 < q <∞.
Then

‖et∆f‖B
s2
p2,q

≤ Ct−(s2−s1+n/p1−n/p2)/2‖f‖B
s1
p1,q

,

provided 0 < t < 1.

Using the Sobolev space heat kernel estimate, we obtain, for 0 < t < 1,

‖et∆f‖B
s2
p2,q

= ‖Ψ ∗ et∆f‖Lp2 +
( ∑

(2js1‖2j(s2−s1)∆je
t∆f‖Lp2 )q

)1/q

≤ t(n/p1−n/p2)/2‖Ψ ∗ f‖Lp1 +
( ∑

(2js1‖et∆∆jf‖Hs2−s1,p2 )q
)1/q

≤ t−(n/p1−n/p2)/2‖Ψ ∗ f‖Lp1 + tσ
( ∑

(2js1‖∆j ∗ f‖Lp1 )q
)1/q

≤ tσ‖f‖B
s1
p1,q

.

where σ = −(s2−s1 +n/p1−n/p2)/2, and we made liberal use of the fact that et∆

commutes with convolution operators. We remark that a straightforward density
argument can be used to show that, for any ε,

sup
0≤t<T

t(s2−s1+n/p1−n/p2)/2‖et∆f‖B
s2
p2,q

< ε, (2.8)

where T depends only on ‖f‖B
s1
p1,q

.

2.1. Integral-in-time results. In this subsection we establish integral-in-time re-
sults for Besov space. The proofs are similar to those in [11] used for the analogous
operators in Sobolev spaces. In this section, the operators Γ and G are defined by

Γf = et∆f,

G(f)(t) =
∫ t

0

e(t−s)∆f(s)ds.

We start with a result for Γ.

Proposition 2.3. Let 1 < p0 ≤ p1 < ∞, 1 ≤ q < ∞, −∞ < s0 ≤ s1 < ∞, and
assume 0 < (s1 − s0 + n/p0 − n/p1)/2 = 1/σ. Then Γ maps Bs0

p0,q0
continuously

into Lσ((0,∞) : Bs1
p1,q1

) with the estimate

‖Γf‖Lσ((0,∞):B
s1
p1,q1 ) ≤ C‖f‖B

s0
p0,q0

.

Also, for any ε > 0,
‖Γf‖Lσ((0,T ):B

s1
p1,q1 ) ≤ ε

provided T is sufficiently small. The necessary T depends only on ‖f‖B
s0
p0,q0

.

The proof is similar to [11, Prop. 4], with two main distinctions, both due to the
differences in interpolation theory between Sobolev and Besov spaces. The first is
that we interpolate using s0 instead of p0. The second difference is that we do not
require p0 ≤ σ, as we did in Proposition 4 of [11].

The remaining results in this section are for the operator G.
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Proposition 2.4. Given 1 ≤ p0 ≤ p1 < ∞, 1 ≤ q < ∞, −∞ < s0 ≤ s1 < ∞,
1 < σ0 < σ1 < ∞ and 1/σ0 − 1/σ1 = 1 − (s1 − s0 + n/p0 − n/p1)/2, for any
T ∈ (0,∞], G sends Lσ0((0, T ) : Bs0

p0,q0
) into Lσ1((0, T ) : Bs1

p1,q1
) with the estimate

‖G(f)‖Lσ1 ((0,T ):B
s1
p1,q1 ) ≤ C‖f‖Lσ0 ((0,T ):B

s0
p0,q0 ).

Proposition 2.5. 1 < p0 ≤ p1 <∞, 1 ≤ q <∞, −∞ < s0 ≤ s1 <∞, and assume
1/p1 ≤ 1/σ = 1 − (s1 − s0 + n/p0 − n/p1)/2 =. Then G maps Lσ((0, T ) : Bs0

p0,q0
)

continuously into BC([0, T ) : Bs1
p1,q1

) with the estimate

sup
t∈[0,T )

‖G(f)(t)‖B
s1
p1,q1

≤ C‖f‖Lσ((0,T ):B
s0
p0,q0 ).

3. Local solutions in ĊT
a;s,p,q

We begin by re-writing the LANS equation as

∂tu−Au+ Pα(div ·(u⊗ u) + div ταu) = 0, (3.1)

where the recurring terms are as in (1.1), with the exception that we set ν = 1.
For the new terms, we set A = Pα∆, u⊗ u is the tensor with jk-component ujuk

and div · (u ⊗ u) is the vector with j-component
∑

k ∂k(ujuk). Pα is the Stokes
Projector, defined as

Pα(w) = w − (1− α2∆)−1∇f
where f is a solution of the Stokes problem: Given w, there is a unique divergence-
free v and a unique (up to additive constants) function f such that

(1− α2∆)v +∇f = (1− α2∆)w.

For a more explicit treatment of the Stokes Projector, see [13, Theorem 4].
Using Duhamel’s principle, we write (3.1) as the integral equation

u = Γϕ−G · Pα(div(u⊗ u+ τα(u))) (3.2)

with
(Γϕ)(t) = etAϕ,

where A agrees with ∆ when restricted to PαHr,p, and

G · g(t) =
∫ t

0

e(t−s)A · g(s)ds.

We prove local existence using the standard contraction mapping method and
heavy use of the results from Section 2. We begin by defining the nonlinear operator
Φ by

Φ(u) = et∆u0 + Ψ(u),
where

Ψ(u) =
∫ t

0

e(t−s)∆(V (u))ds

with V (essentially) given by

V (u) = div(u⊗ u) + div(1−∆)−1(∇u∇u),
where the full definition of V involves additional terms whose behavior is controlled
by the terms shown.

The proofs of local existence in Ċa;r,p,q for the two cases p = 2 and p > n are
sufficiently similar that we only present the p = 2 case here. In Section 4 we address
the Integral in time case, and there we provide the details for the p > n case.
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Having set p = 2, we seek a fixed point of Φ in the space

E =
{
f ∈ BC([0, T ) : Bn/2−1

2,q (Rn)) ∩ ĊT
r−n/2+1

2 ;r,2,q
:

sup
t∈[0,T )

‖f − et∆u0‖n/2−1,2,q + ‖f‖(r−n/2+1)/2;r,2,q < M
}
,

for some T , M , to be determined below. First, we show that Φ : E → E, and we
have

‖Φ(u)‖E = I + J +K,

where
I = ‖et∆u0‖(r−n/2+1)/2;r,2,q

J = sup
t∈[0,T )

‖Ψ(u)‖n/2−1,2,q

K = ‖Ψ(u)‖(r−n/2+1)/2;r,2,q.

(3.3)

For I, Proposition 2.2 and equation (2.8) give that

‖et∆u0‖r−n/2+1;r,2,q < M/3, (3.4)

provided T is sufficiently small. Estimating J and K is significantly more work,
and is the focus of the next two subsections.

3.1. Estimating J. We begin by writing J ≤ J1 + J2 where

J1 = sup
t∈[0,T )

‖
∫ t

0

e(t−s)∆ div(u(s)⊗ u(s))ds‖
B

n/2−1
2,q

,

J2 = sup
t∈[0,T )

‖
∫ t

0

e(t−s)∆ div(1−∆)−1(∇u(s)∇u(s))ds‖
B

n/2−1
2,q

,

and for notational convenience we set a = (r − n/2 + 1)/2. Starting with J1, we
use Minkowski’s inequality and then the heat kernel estimate to get

J1 ≤ sup
t∈[0,T )

∫ t

0

|t− s|(n/2−1−(r−1)+n/p−n/2)/2‖u(s)⊗ u(s)‖Br
p,q
ds, (3.5)

where 1/p = 1− r/n. By Proposition 2.1, we have

‖u(s)⊗ u(s)‖Br
p,q
≤ ‖u(s)‖Br

2,q
‖u(s)‖B0

p̃,q
≤ ‖u(s)‖2Br

2,q
,

where 1/p = 1/2 + 1/p̃ (which, combined with the definition of p, implies 1/p̃ =
1/2 − r/n) and the second inequality used equation (2.6). Substituting back into
equation (3.5) above, we obtain

J1 ≤ sup
t∈[0,T )

∫ t

0

|t− s|(−r+n−r)/2‖u(s)⊗ u(s)‖Br
p,q
ds

≤ C sup
t∈[0,T )

∫ t

0

|t− s|−(n/2−r)s−2as2a‖u(s)‖2Br
2,q
ds

≤ C sup
t∈[0,T )

‖u‖2a;r,2,qt
−(n/2−r)−(r−n/2+1)+1 ≤ C‖u‖2a;r,2,q.

(3.6)

We remark that this calculation required n/2 − r < 1 and 2a = r − n/2 + 1 < 1,
which are both satisfied for n/2− 1 < r < n/2.
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For J2, with 1/p = 1− (r − 1)/n, we have that

J2 ≤ sup
t∈[0,T )

∫ t

0

|t− s|−(n/p−n/2)/2‖div(1−∆)−1(∇u(s)∇u(s))‖
B

n/2−1
p,q

ds. (3.7)

By Proposition 2.1, we have

‖div(1−∆)−1(∇u(s)∇u(s))‖
B

n/2−1
p,q

≤ ‖∇(u(s))∇(u(s))‖
B

n/2−2
p,q

≤ ‖∇u(s)‖B0
2,q
‖∇u(s)‖Br−1

2,q

≤ ‖u(s)‖2Br
2,q
,

provided n/2 − 2 ≤ 0 + (r − 1) − n/2 − n/2 + n/p. Recalling the definition of p,
this simplifies to n/2 − 2 ≤ r − 1 − n + n − (r − 1) = 0, which holds for n ≤ 4.
We pause here to remark that this would not follow from a more standard Leibnitz
rule estimate, since n/2 + n/2 6= n/p. Returning to equation (3.7), we have

J2 ≤ sup
t∈[0,T )

∫ t

0

|t− s|−(n/2−(r−1))/2s−2as2a‖u‖2Br
p,q
ds

≤ C sup
t∈[0,T )

‖u‖2a;r,2,qt
−(n/2−r+1)/2−(r−n/2+1)+1 ≤ C‖u‖2a;r,2,q,

(3.8)

again provided n/2− 1 < r < n/2. Combining equations (3.6) and (3.8), we obtain

J ≤ C‖u‖2a;r,2,q ≤ CM2. (3.9)

Now we turn to K.

3.2. Estimating K. As with J , we write K as K ≤ K1 +K2, where

K1 = sup
t∈[0,T )

ta‖
∫ t

0

e(t−s)∆ div(u(s)⊗ u(s))ds‖Br
2,q
,

K2 = sup
t∈[0,T )

ta‖
∫ t

0

e(t−s)∆ div(1−∆)−1(∇u(s)∇u(s))ds‖Br
2,q
,

where again a = (r − (n/2− 1))/2. For K1, we have

K1 ≤ sup
t∈[0,T )

ta
∫ t

0

|t− s|−(r−(r−1)+n/p−n/2)/2‖div(u(s)⊗ u(s))‖Br−1
2,q

ds

≤ C sup
t∈[0,T )

ta
∫ t

0

|t− s|−(1+n/2−r)/2‖u(s)‖2Br
2,q
ds

≤ C sup
t∈[0,T )

‖u‖a;r,2,qt
at−(1+n/2−r)/2−(r−n/2+1)+1 ≤ C‖u‖a;r,2,q,

(3.10)

where p is as in the estimate of J1 and we again used Proposition 2.1.
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For K2, using an argument similar to that used for J2, we have with 1/p =
1− (r − 1)/n,

K2 ≤ sup
t∈[0,T )

ta
∫ t

0

|t− s|−(n/p−n/2)/2‖div(1−∆)−1(∇(u(s))∇(u(s)))‖Br
2,q

≤ sup
t∈[0,T )

ta
∫ t

0

|t− s|−(n/2−r+1)/2‖∇(u(s))∇(u(s))‖Br−1
2,q

ds

≤ C sup
t∈[0,T )

ta
∫ t

0

|t− s|−(n/2−r+1)/2‖u(s)‖2Br
2,q
ds

≤ C sup
t∈[0,T )

‖u‖2a;r,2,qt
at−(1+n/2−r)/2−(r−n/2+1)+1 ≤ C‖u‖2a;r,2,q,

(3.11)

where this time the use of Proposition 2.1 required n/2 − 1 ≤ r. Combining
equations (3.10) and (3.11), we obtain

K ≤ C‖u‖2a;r,2,q ≤ CM2. (3.12)

3.3. Finishing Theorem 1.2. From equations (3.4), (3.9) and (3.12), we have
that

‖Φ(u)‖E ≤ I + J +K < M/3 + CM2 < M,

provided T and M are sufficiently small, and thus Φ : E → E. To show that Φ is
a contraction, we observe that

u⊗ u− v ⊗ v = (u− v)⊗ u+ v ⊗ (u− v),

∇u∇u−∇v∇v = ∇(u− v)∇u+ v∇(u− v),

and so, using a slight modification of equations (3.9) and (3.12), we have

‖Φ(u)− Φ(v)‖E ≤ CM‖u− v‖E ,

which proves that Φ is a contraction for a sufficiently small choice of M . This
completes the proof of the first part of Theorem 1.2. Adapting the above argument
to the p > n case proves the first part of Theorem 1.1. The details necessary for
this adaptation are similar to those found in the next section.

4. Local solutions in La((0, T ) : Bs
p,q(Rn))

As in Section 3, we seek a fixed point of the map

Φ(u) = et∆u0 + Ψ(u),

where

Ψ(u) =
∫ t

0

e(t−s)∆(V (u))ds

with V (essentially) given by

V (u) = div(u⊗ u) + div(1−∆)−1(∇u∇u).
We present the details for the p > n case. The p = 2 case is handled by a combi-
nation of the arguments presented here and the arguments used in Section 3.

We begin by defining F , for a T and M to be chosen later, as

F = {f ∈ BC([0, T ) : Br1
p,q(Rn)) ∩ La((0, T ) : Br2

p,q) :

sup
t∈[0,T )

‖f − et∆u0‖B
r1
p,q

+ ‖f‖La(B
r2
p,q) < M},
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where a = 2/(r2−r1), r1 is an arbitrarily small positive number, and 1 < r2 < 1+r1.
As in the previous section, we first show that Φ : F → F , and we have

‖Φ(u)‖F = I + J +K,

where

I = ‖et∆u0‖La(B
r2
p,q)

J = sup
t∈[0,T )

‖Ψ(u)‖B
r1
p,q

K = ‖Ψ(u)‖La(B
r2
p,q).

For I, Proposition 2.4 gives that

‖et∆u0‖La(B
r2
p,q) < M/3, (4.1)

provided T is sufficiently small. As in the previous section, estimating J and K is
the focus of the next two subsections.

4.1. Estimating J. We write J ≤ J1 + J2, where

J1 = sup
t∈[0,T )

‖G(div(u⊗ u))(t))‖
B

r1−1
p,q

,

J2 = sup
t∈[0,T )

‖G(div(1−∆)−1(∇u∇u))(t)‖B
r1
p,q
.

For J1, we use Proposition 2.5 and get

J1 ≤ ‖div(u⊗ u)‖Lσ(Br−1
p/2,q

) ≤ ‖u⊗ u‖Lσ(Br
p̃,q), (4.2)

where 1/σ = 1 − (r1 − r2 + 1 + 2n/p − n/p)/2 = (r2 − r1 + 1 − n/p)/2. Using
Proposition 2.1, we have

‖u(s)⊗ u(s)‖B
r2
p/2,q

≤ ‖u(s)‖B
r2
p,q
‖u(s)‖B0

p,q
.

Plugging back into equation (4.2), we obtain

J1 ≤ ‖u⊗ u‖Lσ(Br
p̃,q) ≤

( ∫ T

0

(‖u(s)‖B
r2
p,q
‖u(s)‖B

r1
p,q

)σds
)1/σ

≤ C sup
t∈[0,T )

‖u(t)‖B
r1
p,q
‖u‖La(B

r2
p,q) ≤ CM2,

(4.3)

where we used that ‖ · ‖Lσ ≤ ‖ · ‖La , since σ ≤ a.
For J2, again using Proposition 2.5, we have

J2 ≤ ‖div(1−∆)−1(∇u∇u)‖L1(B
r1
p,q) ≤ ‖∇u∇u‖

L1(B
r1−1
p,q )

. (4.4)

Using Proposition 2.1, we have

‖∇u(s)∇u(s)‖
B

r1−1
p,q

≤ ‖∇u‖2
B

r2−1
p,q

≤ ‖u(s)‖2
B

r2
p,q
, (4.5)

provided r1 − 1 ≤ 2(r2 − 1) − n/p (recall r2 > 1, so r2 − 1 > 0). This condition
is equivalent to n/p ≤ 2r2 − 1 − r1, and since r1 < n/p − 1, equation (4.5) holds.
Using equation (4.5) in equation (4.4), we have

J2 ≤ ‖∇u∇u‖
L1(B

r1−1
p,q )

≤ C‖u‖2
L2(B

r2
p,q)

≤ C‖u‖2
La(B

r2
p,q)

≤ CM2, (4.6)

since 2 < a = 2/(r2 − r1). So using equations (4.3) and (4.6), we have

J ≤ CM2. (4.7)
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4.2. Estimating K. We have that K ≤ K1 +K2 with

K1 = ‖G(div(u⊗ u))‖La(B
r2
p,q),

K2 = ‖G(div(1−∆)−1(∇u∇u))‖La(B
r2
p,q).

Using Proposition 2.4, for K1, we have

K1 = ‖G(div(u⊗ u))‖La(B
r2
p,q) ≤ ‖div(u⊗ u)‖

Lσ(B
r2−1
p/2,q

)
≤ ‖u⊗ u‖Lσ(B

r2
p/2,q

), (4.8)

where 1/σ − 1/a = 1 − (r2 − (r2 − 1) + 2p/n − n/p)/2, which can be rewritten as
1/σ = (r2 − r1)/2 + (1− n/p)/2. Using Proposition 2.1, we have

‖u(s)⊗ u(s)‖B
r2
p/2,q

≤ ‖u(s)‖B
r2
p,q
‖u(s)‖B0

p,q
.

Applying this to equation (4.8), we have

K1 ≤ C
( ∫ T

0

(‖u(s)‖B0
p,q
‖u(s)‖B

r2
p,q

)σds
)1/σ

≤ C sup
t∈[0,T )

‖u(t)‖B
r1
p,q
‖u‖Lσ(B

r2
p,q) ≤ CM‖u‖La(B

r2
p,q) ≤ CM2,

(4.9)

which required 1/σ > 1/a, which holds since p > n. Now we turn to K2, where we
have

K2 = ‖G(div(1−∆)−1(∇u∇u))‖La(B
r2
p,q)

≤ ‖div(1−∆)−1∇u∇u‖Lσ(B
r1
p,q) ≤ ‖∇u∇u‖

Lσ(B
r1−1
p,q )

,
(4.10)

provided 1/σ − 1/a = 1 − (r2 − r1)/2, which implies σ = 1. Then, by equation
(4.10) above, we have

K2 ≤ ‖∇u∇u‖
Lσ(B

r1−1
p,q )

≤ CM2. (4.11)

Combining equations (4.3) and (4.6), we obtain

K ≤ CM2. (4.12)

Given equations (4.1), (4.7), and (4.12), we have that

Φ(u) ≤M/3 + CM2 < M,

provided M is sufficiently small. From here, local existence follows from the stan-
dard method.

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3, and we start by proving the following a
priori estimate.

Lemma 5.1. Let f be a solution to the LANS equation such that f(t) ∈ H2,2(Rn)
for all t ∈ [a, T ) for some a ≥ 0. Then

sup
t∈[a,T )

‖f(t)‖H1,2 ≤ ‖f(a)‖H1,2 .

We begin the proof of the Lemma by stating the following equivalent form of the
LANS equation (see [7, Section 3]):

∂t(1− α2∆)f(t)− (1− α2∆)∆f(t)

= −∇p− α2(∇f(t))T · (−∆)f(t)−∇f(t)[(1− α2∆)f(t)]
(5.1)
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Taking the L2 product of the equation with f(t), we obtain

∂t(‖f(t)‖2L2 + α2‖∇f(t)‖2L2) + ‖∇f(t)‖2L2 + α2‖∆f(t)‖2L2 ≤ I1 + I2 + I3, (5.2)

where

I1 = (∇f(t)f(t), f(t)),

I2 = α2
(
(∇f(t)∆f(t), f(t)) + ((∇f(t))T · (−∆)f(t), f(t))

)
,

I3 = (∇p, f(t)).

An application of integration by parts and recalling that div f(t) = 0 gives that
I3 = 0. For I1, writing the expression in its coordinate form gives

I1 = (∇f(t)f(t), f(t)) =
n∑

i,j=1

∫
fi(t)(∂xifj(t))fj(t)

=
n∑

i,j=1

1
2

∫
fi(t)(∂xi

(fj(t))2) = −1
2

∫
div(f(t))|f(t)|2 = 0.

For I2, writing it in coordinates (and temporarily suppressing the time depen-
dence), we see that

I2 =
n∑

i,j=1

α2

∫
fi(∂xi∆fj)fj + (∆fi)(∂xjfi)fj

=
3∑

i,j=1

α2

∫
−(fi(∆fj)(∂xifj)) + (∆fi)(∂xjfi)fj = 0,

where we again used integration by parts and exploited the divergence free condi-
tion. We remark here that it is these cancellations which make it easier to control
the long time behavior of the LANS equations. Returning to equation (5.2), we
have

∂t(‖f(t)‖2L2 + α2‖∇f(t)‖2L2) ≤ −(‖∇f(t)‖2L2 + α2‖∆f(t)‖2L2),

which, combined with Gronwall’s inequality, completes the Lemma. Note that, if
α = 0, this reduces to the well-known L2 control of the solution.

Now we are ready to prove Theorem 1.3. The extension arguments for the two
different local existence results from Theorem 1.2 are similar, and we present here
the argument for the local solution u given in equation (1.6). First, because the
time interval of the local solution given by Theorem 1.2 depends only on ‖u0‖B

n/2−1
2,q

,
global existence will follow from a standard bootstrapping argument once we have
a uniform in time bound on ‖u(t)‖

B
n/2−1
p,q

.

Because u ∈ BC([0, T )n/2−1
2,q (Rn)), there exists an a < T such that

sup
t∈[0,T )

‖u(t)‖
B

n/2−1
2,q

≤ 2‖u0‖B
n/2−1
2,q

+ sup
t∈[a,T )

‖u(t)‖
B

n/2−1
2,q

. (5.3)

So our remaining task is to bound the second term, and this will follow from Lemma
5.1. First, from Lemma 6.1 in the next section, we have that u(t) ∈ B

n/2+1
2,q (Rn)

for all t > 0. From the Besov embedding results in equation (2.6), this means
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u(t) ∈ H2,2(Rn) for all t > 0, and thus Lemma 5.1 can be applied to our solution
u. Using Lemma 5.1, when n = 3, we have

sup
t∈[a,T )

‖u(t)‖
B

n/2−1
2,q

≤ sup
t∈[a,T )

‖u(t)‖H1,2 ≤ ‖u(a)‖H1,2 .

Plugging this back into (5.3) gives the desired uniform bound on ‖u(t)‖
B

3/2−1
2,q

. For

n = 4, n/2− 1 = 1, and Lemma 5.1 provides the desired bound when ‖u(t)‖B1
2,q
≤

‖u(t)‖H1,2 = ‖u(t)‖B1
2,2

, which holds for 2 ≤ q ≤ ∞.
For the integrable in time spaces, the only distinction in the argument is that

Lemma 5.1 only provides a bound almost everywhere, since Lemma 6.1 gives that
u(t) ∈ B2

2,q(Rn) for almost every t > 0. So, in this case, Lemma 5.1 and the Besov
embedding results only give that ‖u(t)‖

B
n/2−1
2,q

is uniformly bounded for almost all

t. However, since u ∈ BC([0, T ) : Bn/2−1
2,q (Rn)), continuity extends the bound to

all time.

6. Higher regularity for the local existence result

In this section we quantify the smoothing effect of the heat kernel on our local
solutions. The proof is an induction argument, similar to the one in [11] applied
to the LANS equation (which was in turn inspired by the argument in [4] for the
Navier-Stokes equation).

Lemma 6.1. Let u0 ∈ Bs
p,q(Rn) and let u be an associated solution to the LANS

equation with initial data u0 such that

u ∈ BC([0, T ) : Br
p,q(Rn)) ∩ ĊT

(s−r)/2;s,p,q,

where 0 < s− r < 1 and s > 1. Then for all k ≥ s, we have that u ∈ ĊT
(k−s)/2;k,p,q.

We have an analogous result for the integral in time case.

Lemma 6.2. Let k > s2 > s1, with s2 ≥ 1, and let ε be a small positive number.
Then, for k − s2 = s2 − s1 = ε, for any solution u to the LANS equation (1.1)
where

u ∈ BC([0, T ) : Bs1
p,q(Rn) ∩ L2/(s2−s1)((0, T ) : Bs2

p,q(Rn)),

we have that u ∈ L1((0, T ) : Bk
p,q(Rn)).

The proofs of the two Lemmas are similar. The rest of the section is devoted to
the proof of Lemma 6.1.

Proof. We start with a solution to the LANS equation u. Then let δ > 0 be
arbitrary, and let w = tδu. We note that w(0) = 0. Then

∂tw = δtδ−1u+ tδ∂tu

= δt−1w + tδ(∆u− div(u⊗ u+ τα(u, u)))

= δt−1w + ∆w − t−δ div(w ⊗ w + τα(w,w)).

Applying Duhamel’s principle, we obtain

w = et∆w0 +
∫ t

0

e(t−s)∆s−1w(s)ds

+
∫ t

0

e(t−s)∆s−δ(div(w(s)⊗ w(s) + τα(w(s), w(s))))ds.
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Recalling that w(0) = w0 = 0, and substituting w = tδu, we obtain

u = t−δ

∫ t

0

e(t−s)∆sδ−1u(s)ds+t−δ

∫ t

0

e(t−s)∆sδ(div(u(s)⊗u(s)+τα(u(s), u(s))))ds.

Now we are ready to apply the induction. We have by assumption that u is
in ĊT

(r−s)/2;r,p,q, where r > 1. For induction, we assume this solution u is also in
ĊT

(k−r)/2;k,p,q, and seek to show that u is in ĊT
(k+h−r)/2;k+h,p,q, where 0 < h < 1 is

fixed and will be chosen later. We have

‖u‖Bk+h
p,q

≤ I + J1 + J2,

with I, J1, and J2 defined by

I = t−δ

∫ t

0

‖e(t−s)∆sδ−1u(s)‖Bk+h
p,q

ds

J1 = t−δ

∫ t

0

‖e(t−s)δsδ(div(1− α2∆)−1(∇u(s)∇u(s)))‖Bk+h
p,q

ds

J2 = t−δ

∫ t

0

‖e(t−s)δsδ(div(u(s)⊗ u(s)))‖Bk+h
p,q

ds

where, as usual, we have suppressed terms from τα that are controlled by the terms
we included.

6.1. Bounding I, J1, and J2. Starting with I, we have

I ≤ t−δ

∫ t

0

|t− s|−h/2sδ−1‖u(s)‖Bk
p,q

≤ t−δ‖u‖(k−r)/2;k,p,q

∫ t

0

|t− s|−h/2sδ−1−(k−r)/2ds

≤ C‖u‖(k−r)/2;k,p,qt
−δt−h/2tδ−1−(k−n/2)/2+1

≤ Ct−(k+h−r)/2‖u‖(k−r)/2;k,2,q,

(6.1)

provided
1 > h/2, −1 < δ − 1− (k − r)/2,

which clearly holds for sufficiently large δ. We observe that, without modifying the
PDE to include these tδ terms, we would need (k − r)/2 to be less than 1, which
does not hold for large k.

For J1, we have

J1 ≤ t−δ

∫ t

0

|t− s|−(h+2n/p−n/p)/2sδ‖div(1−∆)−1(∇u∇u)‖Bk
p/2,q

ds

≤ t−δ

∫ t

0

|t− s|−(h+n/p)/2sδ‖(∇u∇u)‖Bk−1
p/2,q

ds

≤ t−δ

∫ t

0

|t− s|−(h+n/p)/2sδ‖u‖Bk
p,q
‖∇u‖B1

p,q
ds

≤ t−δ‖u‖(k−r)/2;k,p,q‖u‖(1−r)/2;1,p,q

∫ t

0

|t− s|−(h+n/p)/2sδ−(k−r)/2−(1−r)/2ds

≤ t−δ−(h+n/p)/2−(k−r)/2−(1−r)/2+1+δ‖u‖2(k−r)/2;k,p,q

≤ t−(k+h−r))/2−(n/p−1−r)/2‖u‖2(k−r)/2;k,p,q ≤ t−(k+h−r)/2‖u‖2(k−r)/2;k,p,q , (6.2)
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provided

δ > (k − r)/2 + (1− r)/2, 2 > h+ n/p, r ≥ n/p− 1,

and we again see that this is easily satisfied by choosing δ large and h small. For
J2, we handle the cases p = 2 and p > n separately. For p > n, we have

J2 ≤ t−δ

∫ t

0

|t− s|−(h+1+2n/p−n/p)/2sδ‖u⊗ u‖Bk
p/2,q

ds

≤ t−δ

∫ t

0

|t− s|−(h+1+n/p)/2sδ‖u‖Bk
p,q
‖u‖Bs

p,q
ds

≤ t−δ‖u‖(k−r)/2;k,p,q‖u‖0;s,p,q

∫ t

0

|t− s|−(h+1+n/p)/2sδ−(k−r)/2ds

≤ t−(h+k−r)/2−(1+n/p−2)/2‖u‖(k−n/2)/2;k,2,q‖u‖0;n/2,2,q

≤ t−(h+k−r)/2‖u‖(k−n/2)/2;k,2,q‖u‖0;n/2,2,q,

(6.3)

provided
1 > h+ n/p, −1 < δ − (k − r)/2.

For the p = 2 case, we specialize to the case r = n/2 − 1, which is the min-
imal s allowed by our local existence theorem. The argument for larger s is a
straightforward generalization of the one presented here. Defining 1/p̃ = 1 − 1/n,
we have

J2 ≤ t−δ

∫ t

0

|t− s|−(h+1+n/p̃−n/2)/2sδ‖u⊗ u‖Bk
p̃,q
ds

≤ t−δ

∫ t

0

|t− s|−(h+1+n/2−1)/2sδ‖u‖Bk
2,q
L2n/(n−2)ds

≤ t−δ‖u‖(k−r)/2;k,2,q‖u‖(1−r)/2;1,2,q

∫ t

0

|t− s|−(h+n/2)/2sδ−(k−r)/2−(1−r)/2ds

≤ t−(h+k−r)/2−(n/p−r−1)/2‖u‖(k−n/2)/2;k,2,q‖u‖(1−r)/2;1,2,q

≤ t−(h+k−r)/2‖u‖(k−n/2)/2;k,2,q‖u‖(1−r)/2;1,2,q,

(6.4)
provided

2 > h+ n/2, −1 < δ − (k − r)/2− (1− r)/2, r ≥ n/2− 1,

which, again, are easily satisfied.
Combining equations (6.1), (6.2) and (6.3) for p > n (or (6.4) if p = 2), we have

that, for h small enough and δ large enough,

I + J1 + J2 ≤ Ct−(h+k−n/2)/2‖u‖2(k−n/2)/2;k,2,q

This in turn gives

‖u‖Bk+h
p,q

≤ Ct(k+h−r)/2‖u‖2(k−n/2)/2;k,2,q

which proves the desired result. We remark that δ is chosen after beginning the
induction step, while the appropriate value of h is fixed by the choices of the
parameters. �
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7. Appendix: A Modified Product Estimate

In this appendix we prove Proposition 2.1, which can be found in Corollary
1.3.1 in [1]. Before beginning, we establish another result for the Littlewood-Paley
operators and make a slight notational change. First, we observe that, by changing
variables,

‖ψj‖Lp ≤ 2jn/p′‖ψ0‖Lp ≤ C2jn/p′ , (7.1)

where p′ is the Holder’ conjugate to p; i.e., 1 = 1/p+ 1/p′. Next, we make a slight
notational change. For j > 0, we leave ψj as defined in Section 2. For j = 0, we
set ψ0 = Ψ, so ψ̂0 is now supported on the ball centered at the origin of radius 1/2
and ∆0f = ψ0 ∗ f = Ψ ∗ f . Then the Besov norm can be defined by

‖f‖Br
p,q

=
( ∞∑

j=0

2rjq‖∆ju‖q
Lp

)1/q

.

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. We start by taking the Lp norm of equation (2.5), and
get:

‖∆j(fg)‖Lp ≤
3∑

k=−3

‖∆j(Sj+k−3f∆j+kg)‖Lp +
3∑

k=−3

‖∆j(Sj+k−3g∆j+kf)‖Lp

+
∑

k>j−4

‖∆j

(
∆kf

2∑
l=−2

∆k+lg
)
‖Lp .

We first observe that, without loss of generality, we can set k = l = 0 in the finite
sums and replace k > j − 4 with k > j. Doing so, we obtain

‖∆j(fg)‖Lp ≤ ‖∆j(Sj−3f∆jg)‖Lp + ‖∆j(Sj−3g∆jf)‖Lp +
∑
k>j

‖∆j

(
∆kf∆kg

)
‖Lp .

Starting with the first term, and defining p̃ by 1 + 1/p = 1/p̃+ 1/p2, we have

‖∆j(Sj−3f∆jg)‖Lp ≤ ‖ψj‖Lp̃‖∆jfSj−3g‖Lp2

≤ C2jn/p̃′‖∆jg‖Lp2‖Sj−3f‖L∞

≤ C2jn/p̃′‖∆jg‖Lp2

∑
m<j−3

‖∆mf‖L∞

≤ C2jn(1/p2−1/p)/p̃′‖∆jg‖Lp2

∑
m<j−3

2mn/p1‖∆mf‖Lp1 ,

where we used Young’s inequality, equation (7.1), Holder’s inequality, and finally
Bernstein’s inequality.

A similar calculation for the second term yields

‖∆j(Sj−3g∆jf)‖Lp ≤ C2jn(1/p1−1/p)‖∆jf‖Lp2

∑
m<j−3

2mn/p2‖∆mg‖Lp1 .

For the third term, we have∑
k>j

‖∆j(∆kf∆kg‖p) ≤ ‖ψj‖q̃

∑
k>j

‖∆ku∆kv‖Lq
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≤ 2jn/p̃′
∑
k>j

‖∆kf‖p1‖∆kg‖p2

≤ 2jn(1/p−1/p1−1/p2)
∑
k>j

‖∆kf‖p1‖∆kg‖p2 ,

where 1 + 1/p = 1/q̃ + 1/q and 1/q = 1/p1 + 1/p2.
So we have that

‖∆j(fg)‖Lp ≤ 2jn(1/p2−1/p)‖∆jg‖Lp2

∑
m<j−3

2jn/p1‖∆mf‖Lp1

+ 2jn(1/p1−1/p)‖∆jf‖Lp1

∑
m<j−3

2jn/p2‖∆mg‖Lp2

+ 2jn(1/p−1/p1−1/p2)
∑
k>j

‖∆kf‖p1‖∆kg‖p2

(7.2)

Multiplying (7.2) by 2j(s1+s2−n(1/p2+1/p1−1/p)) and taking the lq norm in j, we
obtain

‖fg‖Bs
p,q
≤ I + J +K,

where

I =
( ∑

j

2(s1+s2−n/p1)jq‖∆jg‖q
Lp2

( ∑
m<j−3

2mn/p1‖∆mf‖Lp1

)q)1/q

,

J =
( ∑

j

2(s1+s2−n/p2)jq‖∆jf‖q
Lp1

( ∑
m<j−3

2mn/p2‖∆mg‖Lp2

)q)1/q

,

K =
( ∑

j

(2j(s1+s2)
∑
k>j

‖∆kf‖p1‖∆kg‖p2)
q
)1/q

.

For I, we have

I ≤
( ∑

j

2(s1+s2−n/p1)jq‖∆jg‖q
Lp2 (

∑
m<j−3

2jn/p1‖∆mf‖Lp1 )q
)1/q

≤
( ∑

j

(2js2‖∆jg‖Lp2 )q(
∑

m<j−3

2m(n/p1+s1−n/p1)2(j−m)(s1−n/p1)‖∆mf‖Lp1 )q
)1/q

≤ ‖f‖B
s1
p1,∞

∑
k

2−(s1−n/p2)
( ∑

j

(2js2‖∆jg‖Lp2 )
)1/q

≤ ‖f‖B
s1
p,q
‖g‖B

s2
s2,q

,

provided s1 < n/p1. A similar calculation for J yields

J ≤ ‖f‖B
s1
p,q
‖g‖B

s2
s2,q

,

provided s2 < n/p2. For K, we have, using Young’s inequality for sums,

K =
( ∑

j

(
∑
k>j

2(j−k)(s1+s2)2ks1‖∆kf‖p12
ks2‖∆kg‖p2)

q
)1/q

≤ ‖g‖B
s2
p2,∞

( ∑
j

(
∑
k>j

2(j−k)(s1+s2)2ks1‖∆kf‖p1)
q
)1/q
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≤ ‖g‖B
s2
p2,∞

∑
k

2−k(s1+s2)
( ∑

k

(2ks1‖∆kf‖p1)
q
)1/q

≤ C‖f‖B
s1
p1,q

‖g‖+Bs2
p2,q,

provided s1 + s2 > 0. This completes the proof. �
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