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POSITIVE ALMOST PERIODIC SOLUTIONS FOR
STATE-DEPENDENT DELAY LOTKA-VOLTERRA

COMPETITION SYSTEMS

YONGKUN LI, CHAO WANG

Abstract. In this article, using Mawhin’s continuation theorem of coinci-
dence degree theory, we obtain sufficient conditions for the existence of positive
almost periodic solutions for the system of equations

u̇i(t) = ui(t)
h
ri(t)− aii(t)ui(t)−

nX
j=1,j 6=i

aij(t)uj

`
t− τj(t, u1(t), . . . , un(t))

´i
,

where ri, aii > 0, aij ≥ 0(j 6= i, i, j = 1, 2, . . . , n) are almost periodic func-

tions, τi ∈ C(Rn+1, R), and τi(i = 1, 2, . . . , n) are almost periodic in t uni-
formly for (u1, . . . , un)T ∈ Rn. An example and its simulation figure illustrate
our results.

1. Introduction

Proposed by Lotka [14] and Volterra [18], the well-known Lotka-Volterra models
concerning ecological population modeling have been extensively investigated in
the literature. When two or more species live in proximity and share the same
basic requirements, they usually compete for resources, food, habitat, or territory.
In recent years, it has also been found with successful and interesting applications
in epidemiology, physics, chemistry, economics, biological science and other areas
(see [3, 5, 6]). Owing to their theoretical and practical significance, the Lotka-
Volterra systems have been studied extensively [7, 8, 9, 10, 15]. To consider periodic
environmental factors, it is reasonable to study the Lotka-Volterra system with both
the periodically changing environment and the effects of time delays. Li [11] studied
the state dependent delay Lotka-Volterra competition system by using coincidence
degree theory:

u̇i(t) = ui(t)
[
ri(t)−aii(t)ui(t)−

n∑
j=1,j 6=i

aij(t)uj

(
t− τj(t, u1(t), . . . , un(t))

)]
, (1.1)
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where i = 1, 2, . . . , n, ui(t) stands for the ith species population density at time t,
ri(t) is the natural reproduction rate for the ith species, aij represents the effect of
interspecific (if i 6= j) or intraspecific (if i = j) interaction.

Virtually all biological systems exist in environments which vary with time, fre-
quently in a periodic way. Ecosystem effects and environmental variability are very
important factors and mathematical models cannot ignore, for example, year-to-
year changes in weather, habitat destruction and exploitation, the expanding food
surplus, and other factors that affect the population growth.

Since biological and environmental parameters are naturally subject to fluctu-
ation in time, the effects of a periodically varying environment are considered as
important selective forces on systems in a fluctuating environment. Therefore, on
the one hand, models should take into account the seasonality of the periodically
changing environment. However, on the other hand, in fact, it is more realistic
to consider almost periodic system than periodic system. Recently, there are two
main approaches to obtain sufficient conditions for the existence and stability of the
almost periodic solutions of biological models: One is by using the fixed point theo-
rem, Lyapunov functional method and differential inequality techniques (see [2, 12]);
the other is by using functional hull theory and Lyapunov functional method (see
[16, 17]). To the best of our knowledge, there are few papers published on the
existence of almost periodic solutions to almost periodic differential equations done
by the method of coincidence degree theory [16-18] and no published papers consid-
ering the almost periodic solutions for non-autonomous Lotka-Volterra competitive
system with time delay by applying the method of coincidence degree theory.

Motivated above, we apply the coincidence degree theory to study the existence
of positive almost periodic solutions for the state dependent delay Lotka-Volterra
competition system (1.1) under the following assumptions:

(H1) ri, aii > 0, aij ≥ 0(j 6= i, i, j = 1, 2, . . . , n) are almost periodic functions,
τi ∈ C(Rn+1, R), and τi(t, u1, . . . , un) (i = 1, 2, . . . , n) are bounded and
almost periodic in t uniformly for (u1, . . . , un)T ∈ Rn.

The result obtained in this paper is new, and our method can be used to study
other population models.

2. Preliminaries

Let X, Y be normed vector spaces, L : Dom L ⊂ X → Y be a linear mapping and
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim kerL = codim Im L < +∞ and Im L is closed in Y .
If L is a Fredholm mapping of index zero and there exists continuous projectors
P : X → X and Q : Y → Y such that Im L = ker L, ker Q = Im L = Im(I − Q),
it follows that the mapping LDom L∩ker P : (I − P )X → Im L is invertible. We
denote the inverse of that mapping by KP . If Ω is an open bounded subset of
X, then the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and
KP (I −Q)N : Ω̄ → X is compact. Since Im Q is isomorphic to kerL, there exists
an isomorphism J : Im Q → ker L.

For convenience, we introduce the Mawhin’s continuation theorem [4] as follows.

Lemma 2.1 ([4]). Let Ω ⊂ X be an open bounded set and let N : X → Y be a
continuous operator which is L-compact on Ω̄. Assume that

(1) Ly 6= λNy for every y ∈ ∂Ω ∩Dom L and λ ∈ (0, 1);
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(2) QNy 6= 0 for every y ∈ ∂Ω ∩ ker L;
(3) deg{JQN, Ω ∩ ker L, 0} 6= 0.

Then Ly = Ny has at least one solution in Dom L ∩ Ω̄.

For f ∈ AP (R, Rn) we denote by

Λ(f) =
{

λ ∈ R : lim
T→∞

1
T

∫ T

0

f(s)e−iλs ds 6= 0
}

and

mod(f) =
{ m∑

j=1

njλj : nj ∈ Z, m ∈ N, λj ∈ Λ(f), j = 1, 2, . . . ,m
}

the set of Fourier exponents and the module of f , respectively.
Suppose that f(t, φ) is almost periodic in t, uniformly with respect to φ ∈

S. E{f, ε, S} denotes the set of ε-almost periods for f with respect to S ⊂
C([−σ, 0], Rn), l(ε, S) denotes the length of the inclusion interval and m[f ] =
limT→∞

1
T

∫ T

0
f(s) ds denote the mean value of f . Set

X = Y = V1 ⊕ V2,

where

V1 =
{
y = (x1, x2, . . . , xn)T ∈ AP (R, Rn) : mod(y) ⊂ mod(F )∀µ0 ∈ Λ(y) satisfies

|µ0| > α
}

and

V2 =
{
y = (x1(t), . . . , xn(t))T ≡ (k1, . . . , kn)T , (k1, . . . , kn)T ∈ Rn

}
,

where F = (F1, F2, . . . , Fn)T . For i = 1, 2, . . . , n,

Fi(t, ϕ) = ri(t)− aii(t) exp{ϕi(0)}

−
n∑

j=1,j 6=i

aij(t) exp
{
ϕj

(
− τj(t, ϕ1(0), . . . , ϕn(0))

)}
,

ϕ = (ϕ1, ϕ2, . . . , ϕn)T ∈ C([−σ, 0], Rn), σ = max1≤j≤n sup(t,u)∈R×Rn{τj(t, u)} and
α is a given positive constant. Define the norm

‖y‖ = sup
t∈R

|y(t)| = sup
t∈R

max
1≤i≤n

{|xi(t)|}, y ∈ X(or Y).

The following lemma will play an important role in the proof of our main result.

Lemma 2.2. If f ∈ C(R, R) is almost periodic, t0 ∈ R. For any ε > 0 and
inclusion length l(ε), for all t1, t2 ∈ [t0, t0 + l(ε)] := Il(ε). Then for all t ∈ R, the
following two inequalities hold

f(t) ≤ f(t1) +
∫ t0+l(ε)

t0

|f ′(s)| ds + ε (2.1)

f(t) ≥ f(t2)−
∫ t0+l(ε)

t0

|f ′(s)| ds− ε. (2.2)
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Proof. For any t ∈ R, there exists τ ∈ E{f, ε} such that t ∈ [t0 − τ, t0 − τ + l(ε)].
Thus, t + τ ∈ [t0, t0 + l(ε)]. So we can obtain

f(t)− f(t1) =
∫ t

t1

f ′(s) ds =
∫ t+τ

t1

f ′(s)ds +
∫ t

t+τ

f ′(s) ds

≤
∫ t+τ

t1

|f ′(s)|ds + |f(t + τ)− f(t)|

≤
∫ t0+l(ε)

t0

|f ′(s)|ds + ε.

Hence, (2.1) holds.
Similarly, we have

f(t)− f(t2) =
∫ t

t2

f ′(s) ds =
∫ t+τ

t2

f ′(s)ds +
∫ t

t+τ

f ′(s) ds

≥ −
∫ t+τ

t2

|f ′(s)|ds− |f(t + τ)− f(t)|

≥ −
∫ t0+l(ε)

t0

|f ′(s)|ds− ε.

Thus, (2.2) holds. The proof is complete. �

3. Main results

By making the substitution

ui(t) = exp{xi(t)}, i = 1, 2, . . . , n,

Equation (1.1) is reformulated as

ẋi(t) = ri(t)− aii(t) exp{xi(t)}

−
n∑

j=1,j 6=i

aij(t) exp
{
xj

(
t− τj(t, exp{x1(t)}, . . . , exp{xn(t)})

)}
.

(3.1)

Lemma 3.1. X and Y are Banach spaces endowed with the norm ‖ · ‖.

Proof. If {yn} ⊂ V1 and yn converges to y0, then it is easy to show that y0 ∈
AP (R, Rn) with mod(y0) ⊂ mod(F ). Indeed, for all |λ| ≤ α we have

lim
T→∞

1
T

∫ T

0

yn(s)e−iλs ds = 0.

Thus

lim
T→∞

1
T

∫ T

0

y0e
−iλs ds = 0,

which implies that y0 ∈ V1. One can easily see that V1 is a Banach space endowed
with the norm ‖ · ‖. The same can be concluded for the spaces X and Y. The proof
is complete. �

Lemma 3.2. Let L : X → Y such that Ly = ẏ. Then L is a Fredholm mapping of
index zero.
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Proof. Clearly, ker L = V2. It remains to prove that Im L = V1. Suppose that
φ ∈ Im L ⊂ Y. Then, there exist φV1 = (φ(1)

1 , φ
(2)
1 , . . . , φ

(n)
1 )T ∈ V1 and φV2 =

(φ(1)
2 , φ

(2)
2 , . . . , φ

(n)
2 )T ∈ V2 such that

φ = φV1 + φV2 .

From the definitions of φ(t) and φV1(t), we deduce that
∫ t

φ(s) ds and
∫ t

φV1(s) ds
are almost periodic functions and thus φV2(t) ≡ (0, 0, . . . , 0)T := 0, which implies
that φ(t) ∈ V1. This tells us that

Im L ⊂ V1.

On the other hand, if ϕ(t) = (ϕ1(t), . . . , ϕn(t))T ∈ V1\{0} then we have
∫ t

0
ϕ(s) ds ∈

AP (R, Rn). Indeed, if λ 6= 0 then we obtain

lim
T→∞

1
T

∫ T

0

[ ∫ t

0

ϕ(s) ds
]
e−iλt dt =

1
iλ

lim
T→∞

1
T

∫ T

0

ϕ(s)e−iλt ds.

It follows that

Λ
[ ∫ t

0

ϕ(s) ds−m
( ∫ t

0

ϕ(s) ds
)]

= Λ(ϕ).

Thus ∫ t

0

ϕ(s) ds−m
( ∫ t

0

ϕ(s) ds
)
∈ V1 ⊂ X.

Note that
∫ t

0
ϕ(s) ds − m(

∫ t

0
ϕ(s) ds) is the primitive of ϕ(t) in X, so we have

ϕ(t) ∈ Im L. Hence, we deduce that V1 ⊂ Im L, which completes the proof of our
claim. Therefore, Im L = V1.

Furthermore, one can easily show that Im L is closed in Y and

dim kerL = n = codim Im L.

Therefore, L is a Fredholm mapping of index zero. The proof is complete. �

Lemma 3.3. Let N : X → Y, P : X → X, Q : Y → Y such that Ny =
(G1y, G2y, . . . , Gny)T , y = (x1, x2, . . . , xn)T ∈ X, where, for i = 1, 2, . . . , n, t ∈ R,

Giy(t) = ri(t)− aii(t) exp{xi(t)}

−
n∑

j=1,j 6=i

aij(t) exp
{
xj

(
t− τj(t, exp{x1(t)}, . . . , exp{xn(t)})

)}
,

Py = m(y), y ∈ X, Qz = m(z), and z ∈ Y. Then N is L-compact on Ω̄, where Ω
is any open bounded subset of X.

Proof. The projections P and Q are continuous such that Im P = kerL and Im L =
ker Q. It is clear that

(I −Q)V2 = {0} and (I −Q)V1 = V1.

Therefore, Im(I −Q) = V1 = Im L. In view of

Im P = kerL and Im L = kerQ = Im(I −Q),

we can conclude that the generalized inverse (of L) KP : Im L → ker P ∩ Dom L
exists and is given by

KP (z) =
∫ t

0

z(s) ds−m
[ ∫ t

0

z(s) ds
]
.
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Thus

QNy = (H1y, H2y, . . . ,Hny)T ,

KP (I −Q)Ny = f [y(t)]−Qf [y(t)],

where

f [y(t)] =
∫ t

0

[Ny(s)−QNy(s)] ds

and

Hiy = m[Giy] = m
[
ri(t)− aii(t) exp{xi(t)}

−
n∑

j=1,j 6=i

aij(t) exp
{
xj

(
t− τj(t, exp{x1(t)}, . . . , exp{xn(t)})

)}]
for i = 1, 2, . . . , n. QN and (I − Q)N are obviously continuous. Now we claim
that KP is also continuous. By our hypothesis, for any ε < 1 and any compact
set S ⊂ C([−σ, 0], Rn), let l(ε, S) be the inclusion interval of E{F, ε, S}. Sup-
pose that {zn(t)} ⊂ Im L = V1 and zn(t) uniformly converges to z0(t). Since∫ t

0
zn(s) ds ∈ Y (n = 0, 1, 2, . . . ), there exists ρ, (0 < ρ < ε) such that E{F, ρ, S} ⊂

E{
∫ t

0
zn(s) ds, ε}. Let l(ρ, S) be the inclusion interval of E{F, ρ, S} and

l = max{l(ρ, S), l(ε, S)}.
It is easy to see that l is the inclusion interval of both E{F, ε, S} and E{F, ρ, S}.
Hence, for all t 6∈ [0, l], there exists τt ∈ E{F, ρ, S} ⊂ E{

∫ t

0
zn(s) ds, ε} such that

t + τt ∈ [0, l]. Therefore, by the definition of almost periodic functions we observe
that∥∥∫ t

0

zn(s) ds
∥∥∥

= sup
t∈R

∣∣∣ ∫ t

0

zn(s) ds
∣∣

≤ sup
t∈[0,l]

∣∣∣ ∫ t

0

zn(s) ds
∣∣∣ + sup

t6∈[0,l]

∣∣∣( ∫ t

0

zn(s) ds−
∫ t+τt

0

zn(s) ds
)

+
∫ t+τt

0

zn(s) ds
∣∣∣

≤ 2 sup
t∈[0,l]

∣∣∣ ∫ t

0

zn(s) ds
∣∣∣ + sup

t6∈[0,l]

∣∣∣ ∫ t

0

zn(s) ds−
∫ t+τt

0

zn(s) ds
∣∣∣

≤ 2
∫ t

0

|zn(s)|ds + ε.

(3.2)
By applying (3.2), we conclude that

∫ t

0
z(s) ds (z ∈ Im L) is continuous and conse-

quently KP and KP (I −Q)Ny are also continuous.
From (3.2), we also have that

∫ t

0
z(s) ds and KP (I−Q)Ny are uniformly bounded

in Ω̄. In addition, we can easily conclude that QN(Ω̄) is bounded and KP (I−Q)Ny
is equicontinuous in Ω̄. Hence by the Arzelà-Ascoli theorem, we can immediately
conclude that KP (I −Q)N(Ω̄) is compact. Thus N is L-compact on Ω̄. The proof
is complete. �

Theorem 3.4. If (H1) holds and the following conditions are satisfied:
(H2) m[ri] > 0, i = 1, 2, . . . , n.
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(H3)
∑n

j=1 m[aij ] > 0, i = 1, 2, . . . , n.
(H4) The system of linear algebraic equations

m[ri] =
n∑

j=1

m[aij ]vj , i = 1, 2, . . . , n (3.3)

has a unique solution (v∗1 , v∗2 , . . . , v∗n)T ∈ Rn with v∗i > 0, i = 1, 2, . . . , n.
Then (1.1) has at least one positive almost periodic solution.

Proof. To apply the continuation theorem of coincidence degree theory, we set the
Banach spaces X and Y the same as those in Lemma 3.1 and the mappings L,N, P, Q
the same as those defined in Lemmas 3.2 and 3.3, respectively. Thus, we can obtain
that L is a Fredholm mapping of index zero and N is a continuous operator which is
L-compact on Ω̄. It remains to search for an appropriate open and bounded subset
Ω.

Corresponding to the operator equation Ly = λNy, λ ∈ (0, 1), where y =
(x1, x2, . . . , xn)T , we obtain, for i = 1, 2, . . . , n,

ẋi(t) = λ
[
ri(t)− aii(t) exp{xi(t)} −

n∑
j=1,j 6=i

aij(t)

× exp
{
xj

(
t− τj(t, exp{x1(t)}, . . . , exp{xn(t)})

)}]
.

(3.4)

Suppose that y ∈ X is a solution of (3.4) for a certain λ ∈ (0, 1). For any t0 ∈ R,
we can choose a point τ̃ − t0 ∈ [l, 2l] ∩ E{F, ρ, S), where ρ (0 < ρ < ε) satisfies
E{F, ρ} ⊂ E{y, ε}. Integrating (3.4) from t0 to τ̃ , we obtain

λ

∫ τ̃

t0

[
aii(s) exp{xi(s)}

+
n∑

j=1,j 6=i

aij(s) exp
{
xj

(
s− τj(s, exp{x1(s)}, . . . , exp{xn(s)})

)}]
ds

≤ λ

∫ τ̃

t0

ri(s) ds +
∣∣∣ ∫ τ̃

t0

ẋi(s) ds
∣∣∣ ≤ λ

∫ τ̃

t0

ri(s) ds + ε, i = 1, 2, . . . , n.

(3.5)

Hence, from (3.4) and (3.5), we obtain∫ τ̃

t0

|ẋi(s)|ds ≤ λ

∫ τ̃

t0

ri(s) ds + λ

∫ τ̃

t0

[
aii(s) exp{xi(s)}

+
n∑

j=1,j 6=i

aij(s) exp
{
xj

(
s− τj(s, exp{x1(s)}, . . . , exp{xn(s)})

)}]
ds

≤ 2λ

∫ τ̃

t0

ri(s) ds + ε ≤ 2λ

∫ τ̃

t0

ri(s) ds + 1 := Ai, i = 1, 2, . . . , n.

Therefore, for τ̃ ≥ t0 + l, we can easily have∫ t0+l

t0

|ẋi(t)|dt ≤ Ai, i = 1, 2, . . . , n.

Denote
θ̄ = max

1≤i≤n
sup
t∈R

xi(t), θ = min
1≤i≤n

inf
t∈R

xi(t), i = 1, 2, . . . , n.
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In view of (3.4), for i = 1, 2, . . . , n, we obtain

m[ri] = m
[
aii(t) exp{xi(t)}

+
n∑

j=1,j 6=i

aij(t) exp
{
xj

(
t− τj(t, exp{x1(t)}, . . . , exp{xn(t)})

)}]
.

(3.6)

From (3.6), one has

m[ri] ≥
n∑

j=1

m[aij ] exp{θ}, i = 1, 2, . . . , n,

or

θ ≤ ln
m[ri]∑n

j=1 m[aij ]
, i = 1, 2, . . . , n.

Consequently, by Lemma 2.2, for any ε > 0, there exists a ξi
ε such that

xi(t) ≤ xi(ξi
ε) +

∫ t0+l

t0

|ẋi(t)|dt < (θ + ε) + Ai

< ln
m[ri]∑n

j=1 m[aij ]
+ 1 + Ai, i = 1, 2, . . . , n.

(3.7)

Similarly, we obtain

m[ri] ≤
{ n∑

j=1

m[aij ]
}

exp{θ̄}, i = 1, 2, . . . , n,

so

θ̄ ≥ ln
m[ri]∑n

j=1 m[aij ]
, i = 1, 2, . . . , n.

By Lemma 2.2, for any ε > 0, there exists a ηi
ε such that

xi(t) ≥ xi(ηi
ε)−

∫ t0+l

t0

|ẋ1(t)|dt > (θ̄ − ε)−Ai

≥ ln
m[ri]∑n

j=1 m[aij ]
−Ai − 1, i = 1, 2, . . . , n.

(3.8)

It follows from (3.7) and (3.8) that for i = 1, 2, . . . , n,

sup
t∈R

|xi(t)|

≤ max
{∣∣∣ ln

m[ri]∑n
j=1 m[aij ]

+ (Ai + 1)
∣∣∣, ∣∣∣ ln

m[ri]∑n
j=1 m[aij ]

− (Ai + 1)
∣∣∣} := Mi.

(3.9)

Clearly, Mi(i = 1, 2, . . . , n)) are independent of the choice of λ. Take M =
max1≤i≤n{Mi} + K, where K > 0 is taken sufficiently large such that the unique
solution (v∗1 , v∗2 , . . . , v∗n)T of system (3.3) satisfies ‖(v∗1 , v∗2 , . . . , v∗n)T ‖ < M . Next,
take

Ω =
{
y(t) = (x1(t), x2(t), . . . , xn(t))T ∈ X : ‖x‖ < M

}
,

then it is clear that Ω satisfies condition (1) of Lemma 2.2. When y ∈ ∂Ω ∩ ker L,
then y is a constant vector with ‖y‖ = M . Hence

QNy = (H1y, H2y, . . . ,Hny)T 6= 0,
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where

Hiy = m[Giy] = m
[
ri]−

n∑
j=1

m[aij ] exp{xj}, i = 1, 2, . . . , n,

which implies that condition (2) of Lemma 2.1 is satisfied. Furthermore, take
J : Im Q → ker L such that J(z) = z for z ∈ Y. In view of (H4), by a straightforward
computation, we find

deg{JQN, Ω ∩ ker L, 0} = sgn{(−1)n[det(m(aij))]eΣn
i=1v∗i } 6= 0.

Therefore, condition (3) of Lemma 2.1 holds. Hence, Ly = Ny has at least
one solution in Dom L ∩ Ω̄. In other words, (3.1) has at least one almost peri-
odic solution x(t), that is, (1.1) has at least one positive almost periodic solution
(u1(t), . . . , un(t))T . The proof is complete. �

4. An example and simulation

Consider the Lotka-Volterra system

u̇(t) = u(t)
[
3− cos

√
2t− (3− cos t)u(t)− (2 + sin t)v

(
t− τ1(t, u(t), v(t))

)]
,

v̇(t) = v(t)
[
2− sin

√
3t− (1− sin t)v(t)− (3− cos

√
2t)u(t− τ2(t, u(t), v(t))

)]
,

where τi ∈ C(R3, R) (i = 1, 2) are almost periodic in t uniformly for (u, v)T ∈ R2.
One can calculate that m[r1] = 3, m[r2] = 2, m[a11] = 3, m[a22] = 1, m[a12] =

2 m[a21] = 3. It is easy to check that (H1)–(H4) are satisfied. By Theorem
3.4, Equation (1.1) has at least one positive almost periodic solution (u(t), v(t))T .
We take τ1(t, u(t), v(t)) = exp{sin

√
2v(t) + cos

√
3u(t)} cos t and τ2(t, u(t), v(t)) =

exp{sin
√

3v(t) + cos u(t)} sin
√

2t. Figure 1 shows the numerical simulation which
illustrates the effectiveness of our results.
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Figure 1. Population density for the two species u, v
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