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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO THE GENERALIZED DAMPED BOUSSINESQ EQUATION

YINXIA WANG

Abstract. We consider the Cauchy problem for the n-dimensional gener-
alized damped Boussinesq equation. Based on decay estimates of solutions
to the corresponding linear equation, we define a solution space with time
weighted norms. Under small condition on the initial value, the existence and
asymptotic behavior of global solutions in the corresponding Sobolev spaces
are established by the contraction mapping principle.

1. Introduction

We study the Cauchy problem of the generalized damped Boussinesq equation
in n space dimensions

utt − a∆utt − 2b∆ut − α∆3u + β∆2u−∆u = ∆f(u) (1.1)

with the initial value

t = 0 : u = u0(x), ut = u1(x). (1.2)

Here u = u(x, t) is the unknown function of x = (x1, · · · , xn) ∈ Rn and t > 0,
a, b, α, β are positive constants. The nonlinear term f(u) = O(u1+θ) and θ is a
positive integer.

The first initial boundary value problem for

utt − a∆utt − 2b∆ut − α∆3u + β∆2u−∆u = γ∆(u2) (1.3)

in a unit circle was investigated in [16], where a, b, α, β are positive constants and γ
is a constant. The existence and the uniqueness of strong solution was established
and the solutions were constructed in the form of series in the small parameter
present in the initial conditions. The long-time asymptotics was also obtained in
the explicit form. In [1], the authors considered the initial-boundary value problem
for (1.3) in the unit ball B ⊂ R3, similar results were established. It is well-known
that the equation (1.3) is closely contacted with many wave equations. For example,
the equation (which we call the Bq equation)

utt − uxx + uxxxx = (u2)xx,
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which was derived by Boussinesq in 1872 to describe shallow water waves. The
improved Bq equation(which we call IBq equation) is

utt − uxx − uxxtt = (u2)xx.

A modification of the IBq equation analogous of the MKdV equation yields

utt − uxx − uxxtt = (u3)xx,

which we call the IMBq equation (see [5]). (1.1) is a higher order wave equation. In
[8], we considered the Cauchy problem for the Cahn-Hilliard equation with inertial
term. Combining high frequency, low frequency technique and energy methods,
we obtained global existence and asymptotic behavior of solutions. Wang, Liu
and Zhang [13] investigated a fourth wave equation that is of the regularity-loss
type. Based on the decay property of the solution operators, global existence and
asymptotic behavior of solutions are obtained. For global existence and asymptotic
behavior of solutions to higher order wave equations, we refer to [2]-[3] and [6]-[15]
and references therein.

The main purpose of this paper is to establish global existence and asymptotic
behavior of solutions to (1.1), (1.2) by using the contraction mapping principle.
Firstly, we consider the decay property of the following linear equation

utt − a∆utt − 2b∆ut − α∆3u + β∆2u−∆u = 0. (1.4)

We obtain the following decay estimate of solutions to (1.4) associated with initial
condition (1.2),

‖∂k
xu(t)‖L2 ≤ C(1 + t)−

n
4−

k
2−

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs) (1.5)

(k ≤ s + 2),

‖∂h
xut(t)‖L2 ≤ C(1 + t)−

n
4−

h
2−1(‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs) (1.6)

(h ≤ s) Based on the estimates (1.5) and (1.6), we define a solution space with
time weighted norms. Then global existence and asymptotic behavior of classical
solutions to (1.1), (1.2) are obtained by using the contraction mapping principle.

We give notation which is used in this paper. Let F [u] denote the Fourier
transform of u defined by

û(ξ) = F [u] =
∫

Rn

e−iξ·xu(x)dx,

and we denote its inverse transform by F−1.
For 1 ≤ p ≤ ∞, Lp = Lp(Rn) denotes the usual Lebesgue space with the

norm ‖ · ‖Lp . The usual Sobolev space of s is defined by Hs
p = (I − ∆)−s/2Lp

with the norm ‖f‖Hs
p

= ‖(I − ∆)s/2f‖Lp ; the homogeneous Sobolev space of s is
defined by Ḣs

p = (−∆)−s/2Lp with the norm ‖f‖Hs
p

= ‖(−∆)s/2f‖Lp ; especially
Hs = Hs

2 , Ḣs = Ḣs
2 . Moreover, we know that Hs

p = Lp ∩ Ḣs
p for s ≥ 0.

Finally, in this paper, we denote every positive constant by the same symbol C
or c without confusion. [·] is the Gauss symbol.

The article is organized as follows. In Section 2 we derive the solution formula
of our semi-linear problem. We study the decay property of the solution operators
appearing in the solution formula in section 3. Then, in Section 4, we discuss the
linear problem and show the decay estimates. Finally, we prove global existence
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and asymptotic behavior of solutions for the Cauchy problem (1.1), (1.2) in Section
5.

2. Solution formula

The aim of this section is to derive the solution formula for problem (1.1), (1.2).
We first investigate the equation (1.4). Taking the Fourier transform, we have

(1 + a|ξ|2)ûtt + 2b|ξ|2ût + (α|ξ|6 + β|ξ|4 + |ξ|2)û = 0. (2.1)

The corresponding initial value are

t = 0 : û = û0(ξ), ût = û1(ξ). (2.2)

The characteristic equation of (2.1) is

(1 + a|ξ|2)λ2 + 2b|ξ|2λ + α|ξ|6 + β|ξ|4 + |ξ|2 = 0. (2.3)

Let λ = λ±(ξ) be the corresponding eigenvalues of (2.3), we obtain

λ±(ξ) =
−b|ξ|2 ± |ξ|

√
−1− (a + β − b2)|ξ|2 − (α + aβ)|ξ|4 − aα|ξ|6

1 + a|ξ|2
. (2.4)

The solution to the problem (2.1)-(2.2) is given in the form

û(ξ, t) = Ĝ(ξ, t)û1(ξ) + Ĥ(ξ, t)û0(ξ), (2.5)

where

Ĝ(ξ, t) =
1

λ+(ξ)− λ−(ξ)
(eλ+(ξ)t − eλ−(ξ)t) (2.6)

and

Ĥ(ξ, t) =
1

λ+(ξ)− λ−(ξ)
(λ+(ξ)eλ−(ξ)t − λ−(ξ)eλ+(ξ)t). (2.7)

We define G(x, t) and H(x, t) by

G(x, t) = F−1[Ĝ(ξ, t)](x), H(x, t) = F−1[Ĥ(ξ, t)](x),

respectively, where F−1 denotes the inverse Fourier transform. Then, applying
F−1 to (2.5), we obtain

u(t) = G(t) ∗ u1 + H(t) ∗ u0. (2.8)

By the Duhamel principle, we obtain the solution formula to (1.1), (1.2),

u(t) = G(t) ∗ u1 + H(t) ∗ u0 +
∫ t

0

G(t− τ) ∗ (I − a∆)−1∆f(u)(τ)dτ. (2.9)

3. Decay Property

The aim of this section is to establish decay estimates of the solution operators
G(t) and H(t) appearing in the solution formula (2.8).

Lemma 3.1. The solution of problem (2.1), (2.2) satisfies

|ξ|2(1+|ξ|2)|û(ξ, t)|2+|ût(ξ, t)|2 ≤ Ce−cω(ξ)t(|ξ|2(1+|ξ|2)|û0(ξ)|2+|û1(ξ)|2), (3.1)

for ξ ∈ Rn and t ≥ 0, where ω(ξ) = |ξ|2
1+|ξ|2 .
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Proof. Multiplying (2.1) by ¯̂ut and taking the real part yields

1
2

d

dt
{(1 + a|ξ|2)|ût|2 + (α|ξ|6 + β|ξ|4 + |ξ|2)|û|2}+ 2b|ξ|2|ût|2 = 0. (3.2)

Multiplying (2.1) by ¯̂u and taking the real part, we obtain

1
2

d

dt
{b|ξ|2|û|2 +2(1+a|ξ|2)Re(ût

¯̂u)}+(α|ξ|6 +β|ξ|4 + |ξ|2)|û|2−(1+a|ξ|2)|ût|2 = 0.

(3.3)
Multiplying both sides of (3.2) and (3.3) by (1 + a|ξ|2) and b|ξ|2 respectively, sum-
ming up the products yields

d

dt
E + F = 0, (3.4)

where

E =
1
2
(1 + a|ξ|2)2|ût|2 + (1 + a|ξ|2)(α|ξ|6 + β|ξ|4 + |ξ|2)|û|2 + b2|ξ|4|û|2

+ b|ξ|2(1 + a|ξ|2) Re(ût
¯̂u)

and
F = b|ξ|2(α|ξ|6 + β|ξ|4 + |ξ|2)|û|2 + b|ξ|2(1 + a|ξ|2)|ût|2.

A simple computation implies that

C(1 + |ξ|2)2E0 ≤ E ≤ C(1 + |ξ|2)2E0, (3.5)

where
E0 = |ξ|2(1 + |ξ|2)|û|2 + |ût|2.

Note that F ≥ c|ξ|2E0. It follows from (3.5) that

F ≥ cω(ξ)E, (3.6)

where

ω(ξ) =
|ξ|2

1 + |ξ|2
.

Using (3.4) and (3.6), we obtain

d

dt
E + cω(ξ)E ≤ 0.

Thus E(ξ, t) ≤ e−cw(ξ)tE(ξ, 0), which together with (3.5) proves the desired esti-
mates (3.1). Then the proof is complete. �

Lemma 3.2. Let Ĝ(ξ, t) and Ĥ(ξ, t) be the fundamental solution of (1.4) in the
Fourier space, which are given in (2.6) and (2.7), respectively. Then we have the
estimates

|ξ|2(1 + |ξ|2)|Ĝ(ξ, t)|2 + |Ĝt(ξ, t)|2 ≤ Ce−cω(ξ)t (3.7)

and
|ξ|2(1 + |ξ|2)|Ĥ(ξ, t)|2 + |Ĥt(ξ, t)|2 ≤ C|ξ|2(1 + |ξ|2)e−cω(ξ)t (3.8)

for ξ ∈ Rn and t ≥ 0, where ω(ξ) = |ξ|2
1+|ξ|2 .
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Proof. If û0(ξ) = 0, from (2.5), we obtain

û(ξ, t) = Ĝ(ξ, t)û1(ξ), ût(ξ, t) = Ĝt(ξ, t)û1(ξ).

Substituting the equalities into (3.1) with û0(ξ) = 0, we obtain (3.7). In what
follows, we consider û1(ξ) = 0, it follows from (2.5) that

û(ξ, t) = Ĥ(ξ, t)û0(ξ), ût(ξ, t) = Ĥt(ξ, t)û0(ξ).

Substituting the equalities into (3.1) with û1(ξ) = 0, we obtain the desired estimate
(3.8). The Lemma is proved. �

Lemma 3.3. Let k ≥ 0 and 1 ≤ p ≤ 2. Then we have

‖∂k
xG(t) ∗ φ‖L2 ≤ C(1 + t)−( n

2 ( 1
p−

1
2 )+ k

2 + l
2−

1
2 )‖φ‖Ḣ−l

p
+ Ce−ct‖∂(k−2)+

x φ‖L2 , (3.9)

‖∂k
xH(t) ∗ φ‖L2 ≤ C(1 + t)−( n

2 ( 1
p−

1
2 )+ k

2 + l
2 )‖φ‖Ḣ−l

p
+ Ce−ct‖∂k

xφ‖L2 (3.10)

‖∂k
xGt(t) ∗ φ‖L2 ≤ C(1 + t)−( n

2 ( 1
p−

1
2 )+ k

2 + l
2 )‖φ‖Ḣ−l

p
+ Ce−ct‖∂k

xφ‖L2 , (3.11)

‖∂k
xHt(t) ∗ φ‖L2 ≤ C(1 + t)−( n

2 ( 1
p−

1
2 )+ k

2 + l
2+ 1

2 )‖φ‖Ḣ−l
p

+ Ce−ct‖∂k+2
x φ‖L2 (3.12)

‖∂k
xG(t) ∗ (I − a∆)−1∆g‖L2 ≤ C(1 + t)−( n

4 + k
2 + 1

2 )‖g‖L1 + Ce−ct‖∂k
xg‖L2 , (3.13)

‖∂k
xGt(t) ∗ (I − a∆)−1∆g‖L2 ≤ C(1 + t)−( n

4 + k
2 +1)‖g‖L1 + Ce−ct‖∂k

xg‖L2 , (3.14)

where (k − 2)+ = max{0, k − 2}.

Proof. Firstly, we prove (3.9). By the Plancherel theorem and (3.7), we obtain

‖∂k
xG(t) ∗ φ‖2

L2

=
∫
|ξ|≤R0

|ξ|2k|Ĝ(ξ, t)|2|φ̂(ξ)|2dξ +
∫
|ξ|≥R0

|ξ|2k|Ĝ(ξ, t)|2|φ̂(ξ)|2dξ

≤ C

∫
|ξ|≤R0

|ξ|2k−2e−c|ξ|2t|φ̂(ξ)|2dξ

+ Ce−ct

∫
|ξ|≥R0

|ξ|2k(|ξ|2(1 + |ξ|2))−1|φ̂(ξ)|2dξ

≤ C‖|ξ|−lφ̂(ξ)‖2
Lp′

( ∫
|ξ|≤R0

|ξ|(2k−2+2l)qe−cq|ξ|2tdξ
)1/q

+ Ce−ct‖∂(k−2)+
x φ‖2

L2 ,

(3.15)

where R0 is a small positive constant and 1
p + 1

p′ = 1, 2
p′ + 1

q = 1. It follows from
Hausdorff-Young inequality that

‖ |ξ|−lφ̂(ξ)‖Lp′ ≤ C‖(−∆)−
l
2 φ‖Lp . (3.16)

By a straight computation, we obtain( ∫
|ξ|≤R0

|ξ|(2k−2+2l)qe−cq|ξ|2tdξ
)1/q

≤ C(1 + t)−( n
2q +k−1+l)

≤ C(1 + t)−(n( 1
p−

1
2 )+k−1+l).

(3.17)

Combining (3.15), (3.16) and (3.17) yields (3.9).
Similarly, using (3.7) and (3.8), respectively, we can prove (3.10)-(3.12).
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In what follows, we prove (3.13). By the Plancherel theorem, (3.7), and
Hausdorff-Young inequality, we have

‖∂k
xG(t) ∗ (I − a∆)−1∆g‖2

L2

=
∫
|ξ|≤R0

|ξ|2k|Ĝ(ξ, t)|2|ξ|4(1 + a|ξ|2)−2|ĝ(ξ)|2dξ

+
∫
|ξ|≥R0

|ξ|2k|Ĝ(ξ, t)|2|ξ|4(1 + |ξ|2)−2|ĝ(ξ)|2dξ

≤ C

∫
|ξ|≤R0

|ξ|2k+2e−c|ξ|2t|ĝ(ξ)|2dξ + Ce−ct

∫
|ξ|≥R0

|ξ|2k|ĝ(ξ)|2dξ

≤ C‖ĝ(ξ)‖2
L∞

∫
|ξ|≤R0

|ξ|2k+2e−c|ξ|2tdξ + Ce−ct‖∂k
xg‖2

L2

≤ C(1 + t)−( n
2 +k+1)‖g‖2

L1 + Ce−ct‖∂k
xg‖2

L2 .

where R0 is a small positive constant. Thus (3.13) follows. Similarly, we can prove
(3.14). Thus we have completed the proof of lemma. �

4. Decay estimate for solutions to the linear equation

Theorem 4.1. Assume that u0 ∈ Hs+2(Rn)∩ Ḣ−1
1 (Rn), u1 ∈ Hs(Rn)∩ Ḣ−2

1 (Rn)
(s ≥ [n

2 ] + 5). Then the classical solution u(x, t) to (1.4) associated with initial
condition (1.2), which is given by the formula (2.8), satisfies the decay estimates

‖∂k
xu(t)‖L2 ≤ C(1 + t)−

n
4−

k
2−

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs) (4.1)

for k ≤ s + 2,

‖∂h
xut(t)‖L2 ≤ C(1 + t)−

n
4−

h
2−1(‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs) (4.2)

for h ≤ s,

‖∂m
x u(t)‖L∞ ≤ C(1+ t)−

n
2−

m
2 −

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs) (4.3)

for m ≤ s + 1− [n
2 ].

Proof. Firstly, we prove (4.1). Using (3.9) and (3.10), we obtain

‖∂k
xu(t)‖L2

≤ ‖∂k
xG(t) ∗ u1‖L2 + C‖∂h

xH(t) ∗ u0‖L2

≤ C(1 + t)−
n
4−

k
2−

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
) + Ce−ct(‖u0‖Hs+2 + ‖u1‖Hs)

≤ C(1 + t)−
n
4−

k
2−

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs).

Similar to the proof of (4.1), using (3.11) and (3.12), we can prove (4.2). In what
follows, we prove (4.3). Using (4.1) and Gagliardo-Nirenberg inequality, it is not
difficult to get (4.3). The Lemma is proved. �

5. Existence of global solution and asymptotic behavior

The purpose of this section is to prove the existence and asymptotic behavior of
global solutions to the Cauchy problem (1.1), (1.2). We need the following Lemma,
which come from [4] (see also [17]).
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Lemma 5.1. Let s and θ be positive integers, δ > 0, p, q, r ∈ [1,∞] satisfy 1
r =

1
p + 1

r , and let k ∈ {0, 1, 2, · · · , s}. Assume that F (v) is a class of Cs and satisfies

|∂l
vF (v)| ≤ Cl,δ|v|θ+1−l, |v| ≤ δ, 0 ≤ l ≤ s, l < θ + 1

and
|∂l

vF (v)| ≤ Cl,δ, |v| ≤ δ, l ≤ s, θ + 1 ≤ l.

If v ∈ Lp ∩W k,q ∩ L∞ and ‖v‖L∞ ≤ δ, then

‖F (v)‖W k,r ≤ Ck,δ‖v‖W k,q‖v‖Lp‖v‖θ−1
L∞ ,

‖∂α
x F (v)‖Lr ≤ Ck,δ‖∂α

x v‖Lq‖v‖Lp‖v‖θ−1
L∞ , |α| ≤ k.

Lemma 5.2. Let s and θ be positive integers, δ > 0, p, q, r ∈ [1,∞] satisfy 1
r = 1

p +
1
r , and let k ∈ {0, 1, 2, · · · , s}. Let F (v) be a function that satisfies the assumptions
of Lemma 5.1. Moreover, assume that

|∂s
vF (v1)− ∂s

vF (v2)| ≤ Cδ(|v1|+ |v2|)max{θ−s,θ}|v1 − v2|, |v1| ≤ δ, |v2| ≤ δ.

If v1, v2 ∈ Lp ∩W k,q ∩L∞ and ‖v1‖L∞ ≤ δ, ‖v2‖L∞ ≤ δ, then for |α| ≤ k, we have

‖∂α
x (F (v1)− F (v2))‖Lr

≤ Ck,δ{(‖∂α
x v1‖Lq + ‖∂α

x v2‖Lq )‖v1 − v2‖Lp

+ (‖v1‖Lp + ‖v2‖Lp)‖∂α
x (v1 − v2)‖Lq}(‖v1‖L∞ + ‖v2‖L∞)θ−1.

Based on the estimates (4.1)-(4.3) of solutions to (1.4) associated with initial
condition (1.2), we define the following solution space

X = {u ∈ C([0,∞);Hs+2(Rn)) ∩ C1([0,∞);Hs(Rn)) : ‖u‖X < ∞},

where

‖u‖X = sup
t≥0

{ ∑
k≤s+2

(1 + t)
n
4 + k

2 + 1
2 ‖∂k

xu(t)‖L2 +
∑
h≤s

(1 + t)
n
4 + h

2 +1‖∂h
xut(t)‖L2},

For R > 0, we define XR = {u ∈ X : ‖u‖X ≤ R}. For m ≤ s + 1 − [n
2 ], using

Gagliardo-Nirenberg inequality, we obtain

‖∂m
x u(t)‖L∞ ≤ C(1 + t)−( n

2 + m
2 + 1

2 )‖u‖X . (5.1)

Theorem 5.3. Assume that u0 ∈ Hs+2(Rn)∩ Ḣ−1
1 (Rn), u1 ∈ Hs(Rn)∩ Ḣ−2

1 (Rn)
(s ≥ [n

2 ] + 5) and integer θ ≥ 2. Let f(u) be a function of class Cs+2 and satisfy
Lemmas 5.1 and 5.2. Put

E0 = ‖u0‖Ḣ−1
1

+ ‖u1‖Ḣ−2
1

+ ‖u0‖Hs+2 + ‖u1‖Hs .

If E0 is suitably small, the Cauchy problem (1.1)-(1.2) has a unique global classical
solution u(x, t) satisfying u ∈ C([0,∞);Hs+2(Rn)), ut ∈ C([0,∞);Hs(Rn)), utt ∈
L∞([0,∞);Hs−2(Rn)). Moreover, the solution satisfies the decay estimate

‖∂k
xu(t)‖L2 ≤ CE0(1 + t)−

n
4−

k
2−

1
2 , (5.2)

‖∂h
xut(t)‖L2 ≤ CE0(1 + t)−

n
4−

h
2−1 (5.3)

for k ≤ s + 2 and h ≤ s.
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Proof. Define the mapping

Ψ(u) = G(t) ∗ u1 + H(t) ∗ u0 +
∫ t

0

G(t− τ) ∗ (I − a∆)−1∆f(u(τ))dτ. (5.4)

Using (3.9)-(3.10), (3.13), Lemma 5.1 and (5.1), for k ≤ s + 2 we obtain

‖∂k
xΨ(u)‖L2

≤ C‖∂k
xG(t) ∗ u1‖L2 + C‖∂k

xH(t) ∗ u0‖L2

+C

∫ t

0

‖∂k
xG(t− τ) ∗ (I − a∆)−1∆f(u(τ))‖L2dτ

≤ C(1 + t)−
n
4−

k
2−

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
) + Ce−ct(‖u0‖Hs+2+‖u1‖Hs )

+C

∫ t/2

0

(1 + t− τ)−
n
4−

k
2−

1
2 ‖f(u)‖L1dτ

+C

∫ t

t/2

(1 + t− τ)−
n
4−

1
2 ‖∂k

xf(u)‖L1dτ

+C

∫ t

0

e−c(t−τ)‖∂k
xf(u)‖L2dτ

≤ C(1 + t)−
n
4−

k
2−

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
) + Ce−ct(‖u0‖Hs+2+‖u1‖Hs )

+C

∫ t/2

0

(1 + t− τ)−
n
4−

k
2−

1
2 ‖u‖2

L2‖u‖θ−1
L∞ dτ

+C

∫ t

t/2

(1 + t− τ)−
n
4−

1
2 ‖∂k

xu‖2
L2‖u‖θ−1

L∞ dτ+C

∫ t

0

e−c(t−τ)‖∂k
xu‖L2‖u‖θ

L∞dτ

≤ C(1 + t)−
n
4−

k
2−

1
2 (‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
) + Ce−ct(‖u0‖Hs+2+‖u1‖Hs )

+CRθ+1

∫ t/2

0

(1 + t− τ)−
n
4−

k
2−

1
2 (1 + τ)−( n

2 +1)(1 + τ)−( n
2 + 1

2 )(θ−1)dτ

+CRθ+1

∫ t

t/2

(1 + t− τ)−
n
4−

1
2 (1 + τ)−

n
2−k−1(1 + τ)−( n

2 + 1
2 )(θ−1)dτ

+CRθ+1

∫ t

0

e−c(t−τ)(1 + τ)−
n
4−

k
2−

1
2 (1 + τ)−( n

2 + 1
2 )θdτ

≤ C(1 + t)−
n
4−

k
2−

1
2 {(‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs) + Rθ+1}.

Thus
(1 + t)

n
4 + k

2 + 1
2 ‖∂k

xΨ(u)‖L2 ≤ CE0 + CRθ+1. (5.5)
It follows from (5.4) that

Ψ(u)t = Gt(t) ∗ u1 + Ht(t) ∗ u0 +
∫ t

0

Gt(t− τ) ∗ (I − a∆)−1∆f(u(τ))dτ. (5.6)

Using (3.11)-(3.12), (3.14) Lemma 5.1 and (5.1), for h ≤ s we have

‖∂h
xΨ(u)t‖L2

≤ C‖∂h
xGt(t) ∗ u1‖L2 + C‖∂h

xHt(t) ∗ u0‖L2

+C

∫ t

0

‖∂h
xGt(t− τ) ∗ (I − a∆)−1∆f(u(τ))‖L2dτ
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≤ C(1 + t)−
n
4−

h
2−1(‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
) + Ce−ct(‖u0‖Hs+2 + ‖u1‖Hs)

+C

∫ t/2

0

(1 + t− τ)−
n
4−

h
2−1‖f(u)‖L1dτ

+C

∫ t

t/2

(1 + t− τ)−
n
4−1‖∂h

xf(u)‖L1dτ + C

∫ t

0

e−c(t−τ)‖∂h
xf(u)‖L2dτ

≤ C(1 + t)−
n
4−

h
2−1(‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
) + Ce−ct(‖u0‖Hs+2 + ‖u1‖Hs)

+C

∫ t/2

0

(1 + t− τ)−
n
4−

h
2−1‖u‖2

L2‖u‖θ−1
L∞ dτ

+C

∫ t

t/2

(1 + t− τ)−
n
4−1‖∂h

xu‖2
L2‖u‖θ−1

L∞ dτ + C

∫ t

0

e−c(t−τ)‖∂h
xu‖L2‖u‖θ

L∞dτ

≤ C(1 + t)−
n
4−

h
2−1(‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
) + Ce−ct(‖u0‖Hs+2 + ‖u1‖Hs)

+CRθ+1

∫ t/2

0

(1 + t− τ)−
n
4−

h
2−1(1 + τ)−( n

2 +1)(1 + τ)−( n
2 + 1

2 )(θ−1)dτ

+CRθ+1

∫ t

t/2

(1 + t− τ)−
n
4−1(1 + τ)−

n
2−h−1(1 + τ)−( n

2 + 1
2 )(θ−1)dτ

+CRθ+1

∫ t

0

e−c(t−τ)(1 + τ)−
n
4−

h
2−1(1 + τ)−( n

2 + 1
2 )θdτ

≤ C(1 + t)−
n
4−

h
2−1{(‖u0‖Ḣ−1

1
+ ‖u1‖Ḣ−2

1
+ ‖u0‖Hs+2 + ‖u1‖Hs) + Rθ+1}.

Thus
(1 + t)

n
4 + h

2 +1‖∂h
xΨ(u)t‖L2 ≤ CE0 + CRθ+1. (5.7)

Combining (5.5), (5.7) and taking E0 and R suitably small yields

‖Ψ(u)‖X ≤ R. (5.8)

For ũ, ū ∈ XR, by using (5.4), we have

Ψ(ũ)−Ψ(ū) =
∫ t

0

G(t− τ) ∗ (I − a∆)−1∆[f(ũ)− f(ū)]dτ. (5.9)

Using (5.9), (3.13) and Lemma 5.2, (5.1), for k ≤ s + 2 we obtain

‖∂k
xΨ(ũ)−Ψ(ū))‖L2

≤
∫ t

0

‖∂k
xG(t− τ) ∗ (I − a∆)−1∆[f(ũ)− f(ū)]‖L2dτ

≤ C

∫ t/2

0

(1 + t− τ)−
n
4−

k
2−

1
2 ‖(f(ũ)− f(ū))‖L1dτ

+C

∫ t

t/2

(1 + t− τ)−
n
4−

1
2 ‖∂k

x(f(ũ)− f(ū))‖L1dτ

+C

∫ t

0

e−c(t−τ)‖∂k
x(f(ũ)− f(ū))‖L2dτ

≤ C

∫ t/2

0

(1 + t− τ)−
n
4−

k
2−

1
2 (‖ũ‖L2 + ‖ū‖L2)‖ũ− ū‖L2

×(‖ũ‖L∞ + ‖ū‖L∞)θ−1dτ
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+C

∫ t

t/2

(1 + t− τ)−
n
4−

1
2 {(‖∂k

x ũ‖L2 + ‖∂k
x ũ‖L2)‖ũ− ū‖L2

+(‖ũ‖L2 + ‖ū‖L2)‖∂k
x(ũ− ū)‖L2}(‖ũ‖L∞ + ‖ū‖L∞)θ−1dτ

+C

∫ t

0

e−c(t−τ){(‖∂k
x ũ‖L2 + ‖∂k

x ũ‖L2)‖ũ− ū‖L∞

+(‖ũ‖L∞ + ‖ū‖L∞)‖∂k
x(ũ− ū)‖L2}(‖ũ‖L∞ + ‖ū‖L∞)θ−1dτ

≤ CRθ‖ũ− ū‖X

∫ t/2

0

(1 + t− τ)−
n
4−

k
2−

1
2 (1 + τ)−( n

2 + 1
2 )θdτ

+CRθ‖ũ− ū‖X

∫ t

t/2

(1 + t− τ)−
n
4−

1
2 (1 + τ)−( θ

2 (n+1)+ k+1
2 )dτ

+CCRθ‖ũ− ū‖X

∫ t

0

e−c(t−τ)(1 + τ)−( n
4 + n

2 θ+ k
2 + 1

2 )dτ

≤ CRθ(1 + t)−
n
4−

k
2−

1
2 ‖ũ− ū‖X ,

which implies

(1 + t)
n
4 + k

2 + 1
2 ‖∂k

x(Ψ(ũ)−Ψ(ū))‖L2 ≤ CRθ‖ũ− ū‖X . (5.10)

Similarly for h ≤ s, from (5.6), (3.14) and (5.1), we have

‖∂h
x (Ψ(ũ)−Ψ(ū))t‖L2 ≤

∫ t

0

‖∂h
xGt(t− τ) ∗ (I − a∆)−1∆[f(ũ)− f(ū)]‖L2dτ

≤ C

∫ t/2

0

(1 + t− τ)−
n
4−

h
2−1‖(f(ũ)− f(ū))‖L1dτ

+C

∫ t

t/2

(1 + t− τ)−
n
4−1‖∂h

x (f(ũ)− f(ū))‖L1dτ

+C

∫ t

0

e−c(t−τ)‖∂h
x (f(ũ)− f(ū))‖L2dτ

≤ CRθ(1 + t)−
n
4−

h
2−1‖ũ− ū‖X ,

which implies

(1 + t)
n
4 + h

2 +1‖∂h
x (Ψ(ũ)−Ψ(ū))t‖L2 ≤ CRθ‖ũ− ū‖X . (5.11)

Using (5.10), (5.11) and taking R suitably small yields

‖Ψ(ũ)−Ψ(ū)‖X ≤ 1
2
‖ũ− ū‖X . (5.12)

From (5.8) and (5.12), we know that Ψ is strictly contracting mapping. Conse-
quently, we conclude that there exists a fixed point u ∈ XR of the mapping Ψ,
which is a classical solution to (1.1), (1.2). This completes the proof. �
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