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NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS AND
INCLUSIONS OF ARBITRARY ORDER AND MULTI-STRIP

BOUNDARY CONDITIONS

BASHIR AHMAD, SOTIRIS K. NTOUYAS

Abstract. We study boundary value problems of nonlinear fractional differ-
ential equations and inclusions of order q ∈ (m−1, m], m ≥ 2 with multi-strip
boundary conditions. Multi-strip boundary conditions may be regarded as the
generalization of multi-point boundary conditions. Our problem is new in the
sense that we consider a nonlocal strip condition of the form:

x(1) =

n−2X
i=1

αi

Z ηi

ζi

x(s)ds,

which can be viewed as an extension of a multi-point nonlocal boundary con-
dition:

x(1) =

n−2X
i=1

αix(ηi).

In fact, the strip condition corresponds to a continuous distribution of the
values of the unknown function on arbitrary finite segments (ζi, ηi) of the
interval [0, 1] and the effect of these strips is accumulated at x = 1. Such
problems occur in the applied fields such as wave propagation and geophysics.
Some new existence and uniqueness results are obtained by using a variety of
fixed point theorems. Some illustrative examples are also discussed.

1. Introduction

In recent years, boundary value problems for nonlinear fractional differential
equations have been addressed by several researchers. Fractional derivatives pro-
vide an excellent tool for the description of memory and hereditary properties of
various materials and processes, see [28]. These characteristics of the fractional
derivatives make the fractional-order models more realistic and practical than the
classical integer-order models. As a matter of fact, fractional differential equations
arise in many engineering and scientific disciplines such as physics, chemistry, biol-
ogy, economics, control theory, signal and image processing, biophysics, blood flow
phenomena, aerodynamics, fitting of experimental data, etc. [17, 25, 29, 30]. For
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some recent development on the topic, see [1, 2, 3, 12, 15, 16] and the references
therein.

In the first part of this paper, we consider the following nonlinear fractional BVP
of an arbitrary order with multi-strip boundary conditions:

cDqx(t) = f(t, x(t)), 0 < t < 1, m− 1 < q ≤ m, m ≥ 2, m ∈ N,

x(0) = 0, x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0,

x(1) =
n−2∑
i=1

αi

∫ ηi

ζi

x(s)ds, 0 < ζi < ηi < 1, i = 1, 2, . . . , (n− 2),

(1.1)

where cDq denotes the Caputo fractional derivative of order q, f is a given contin-
uous function and αi ∈ R satisfy the condition:

n−2∑
i=1

αi(ηmi − ζmi ) 6= m.

The strip boundary condition in problem (1.1) can be regarded as a multi-point
nonlocal integral boundary condition. Integral boundary conditions have various
applications in applied sciences such as blood flow problems, chemical engineering,
thermoelasticity, underground water flow, population dynamics, etc. For a detailed
description of the integral boundary conditions, we refer the reader to the papers
[6, 18] and references therein. Regarding the application of the strip conditions of
fixed size, we know that such conditions appear in the mathematical modeling of
real world problems, for example, see [7, 13]. Thus, the present idea of nonlocal
strip conditions will be quite fruitful in modeling the strip problems as one can
choose an arbitrary set of strips of desired size, which can be fixed according to the
requirement by fixing the nonlocal parameters involved in the problem. Further-
more, these conditions can be understood in the sense that the controllers at the
end-points of the interval dissipate/absorb energy due to the sensors of finite lengths
(continuous distribution of intermediate points of arbitrary length: subsegments of
the interval) located at the intermediate positions of the interval.

Recently nonlocal problems with several types of integral boundary conditions
have studied in [4, 5, 8, 9, 10, 11, 14, 31].

We prove some new existence and uniqueness results by using a variety of fixed
point theorems. In Theorem 3.1 we prove an existence and uniqueness result by
using Banach’s contraction principle, in Theorem 3.3 we prove the existence of a
solution by means of Krasnoselskii’s fixed point theorem, while in Theorem 3.5 we
prove the existence of a solution via Leray-Schauder nonlinear alternative. The
Leray-Schauder degree theory is used in proving the existence result in Theorem
3.6. In Theorem 3.9 we prove an existence and uniqueness result by applying a
fixed point theorem of Boyd and Wong [19] for nonlinear contractions.

In the second part of the paper, we consider a nonlinear fractional differential
inclusion of an arbitrary order with multi-strip boundary conditions:

cDqx(t) ∈ F (t, x(t)), 0 < t < 1, m− 1 < q ≤ m, m ≥ 2, m ∈ N,

x(0) = 0, x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0,

x(1) =
n−2∑
i=1

αi

∫ ηi

ζi

x(s)ds, 0 < ζi < ηi < 1, i = 1, 2, . . . , (n− 2),

(1.2)
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where cDq denotes the Caputo fractional derivative of order q, and F : [0, 1]×R →
P(R) is a multivalued map, P(R) is the family of all subsets of R.

The aim here is to establish existence results for the problem (1.2), when the
right hand side is convex as well as nonconvex valued. In the first result (Theorem
4.8) we consider the case when the right hand side has convex values, and prove an
existence result via Nonlinear alternative for Kakutani maps. In the second result
(Theorem 4.15), we shall combine the nonlinear alternative of Leray-Schauder type
for single-valued maps with a selection theorem due to Bressan and Colombo for
lower semicontinuous multivalued maps with nonempty closed and decomposable
values, while in the third result (Theorem 4.19), we shall use the fixed point theorem
for contraction multivalued maps due to Covitz and Nadler.

The methods used are standard, however their exposition in the framework of
problems (1.1) and (1.2) is new.

2. Preliminaries from fractional calculus

Let us recall some basic definitions of fractional calculus [25, 30].

Definition 2.1. For function g : [0,∞) → R, at least n-times continuously differ-
entiable, the Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)
(t− s)1−q

ds, q > 0,

provided the integral exists.

Lemma 2.3. For any σ ∈ C([0, 1],R), the unique solution of the boundary value
problem

cDqx(t) = σ(t), 0 < t < 1, m− 1 < q ≤ m, m ≥ 2, m ∈ N,

x(0) = 0, x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0,

x(1) =
n−2∑
i=1

αi

∫ ηi

ζi

x(s)ds, 0 < ζi < ηi < 1, i = 1, 2, . . . , (n− 2),

(2.1)

is given by

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds− mtm−1(

m−
∑n−2
i=1 αi(η

m
i − ζmi )

)
×

[ ∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds−

n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
σ(u)du

)
ds

]
.

(2.2)

Proof. It is well known [25] that the general solution of the fractional differential
equation in (2.1) can be written as

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds− c0 − c1t− c2t

2 − · · · − cm−1t
m−1, (2.3)
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where c0, c1, c2, . . . , cm−1 are arbitrary constants. Applying the boundary condi-
tions for the problem (2.1), we find that c0 = 0, . . . , cm−2 = 0, and

cm−1 =
m(

m−
∑n−2
i=1 αi(η

m
i − ζmi )

)[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u, x(u))du

)
ds

]
.

Substituting the values of c0, c1, c2, . . . , cm−1 in (2.3) yields the solution (2.2). �

3. Existence results - the single-valued case

Let C = C([0, 1],R) denote the Banach space of all continuous functions from
[0, 1] → R endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}.

In view of Lemma 2.3, we transform problem (1.1) as

x = F (x). (3.1)

Here the operator F : C → C is defined by

(Fx)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u, x(u))du

)
ds

]
, t ∈ [0, 1],

where

ϑ = m
(
m−

n−2∑
i=1

αi(ηmi − ζmi )
)−1

.

For convenience, let us set

Λ =
1

Γ(q + 1)

[
1 + |ϑ|

{
1 +

n−2∑
i=1

αi(η
q+1
i − ζq+1

i )
q + 1

}]
. (3.2)

3.1. Existence result via Banach’s fixed point theorem.

Theorem 3.1. Assume that f : [0, 1]×R → R is a jointly continuous function and
satisfies the assumption

(A1) |f(t, x)− f(t, y)| ≤ L|x− y|, for all t ∈ [0, 1], L > 0, x, y ∈ R,
with L < 1/Λ, where Λ is given by (3.2). Then the boundary value problem (1.1)
has a unique solution.

Proof. Setting supt∈[0,1] |f(t, 0)| = M and choosing r ≥ ΛM
1−LΛ , we show that FBr ⊂

Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

‖(Fx)(t)‖

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+ |ϑ|tm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds

+
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|f(u, x(u))|du

)
ds

]}
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≤ sup
t∈[0,1]

{ 1
Γ(q)

∫ t

0

(t− s)q−1(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)ds

+ |ϑ|tm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)ds

+
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
(|f(u, x(u))− f(u, 0)|+ |f(u, 0)|)du

)
ds

]}
≤ (Lr +M) sup

t∈[0,T ]

{ 1
Γ(q)

∫ t

0

(t− s)q−1ds

+ |ϑ|tm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
ds+

n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
du

)
ds

]}
≤ (Lr +M)

Γ(q + 1)

[
1 + |ϑ|

{
1 +

n−2∑
i=1

αi(η
q+1
i − ζq+1

i )
q + 1

}]
= (Lr +M) Λ ≤ r.

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

‖(Fx)(t)− (Fy)(t)‖

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+ |ϑ|tm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|f(u, x(u))− f(u, y(u))|du

)
ds

]}
≤ L‖x− y‖ sup

t∈[0,1]

{ 1
Γ(q)

∫ t

0

(t− s)q−1ds

+ |ϑ|tm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
ds+

n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
du

)
ds

]}
≤ L

Γ(q + 1)

[
1 + |ϑ|

{
1 +

n−2∑
i=1

αi(η
q+1
i − ζq+1

i )
q + 1

}]
‖x− y‖ = LΛ‖x− y‖,

where Λ is given by (3.2). Observe that Λ depends only on the parameters involved
in the problem. As L < 1/Λ, therefore F is a contraction. Thus, the conclusion
of the theorem follows by the contraction mapping principle (Banach fixed point
theorem). �

3.2. Existence result via Krasnoselskii’s fixed point theorem.

Lemma 3.2 (Krasnoselskii’s fixed point theorem [26]). Let M be a bounded, closed,
convex, and nonempty subset of a Banach space X. Let A,B be the operators such
that:

(i) Ax+By ∈M whenever x, y ∈M ;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.
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Then there exists z ∈M such that z = Az +Bz.

Theorem 3.3. Let f : [0, 1] × R → R be a jointly continuous function satisfying
the assumption (A1). Moreover we assume that

(A2) |f(t, x)| ≤ µ(t), for all (t, x) ∈ [0, 1]× R, and µ ∈ C([0, 1],R+).
If

L|ϑ|
Γ(q + 1)

(
1 +

n−2∑
i=1

αi(η
q+1
i − ζq+1

i )
q + 1

)
< 1, (3.3)

then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. By the assumption (A2), we can fix

r ≥ |ϑ|‖µ‖
Γ(q + 1)

(
1 +

n−2∑
i=1

αi(η
q+1
i − ζq+1

i )
q + 1

)
,

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(Px)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s, u(s))ds, t ∈ [0, 1],

(Qx)(t) = −ϑtm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u, x(u))du

)
ds

]
, t ∈ [0, 1].

For x, y ∈ Br, we find that

‖Px+Qy‖ ≤ |ϑ|‖µ‖
Γ(q + 1)

(
1 +

n−2∑
i=1

αi(η
q+1
i − ζq+1

i )
q + 1

)
≤ r.

Thus, Px + Qy ∈ Br. It follows from the assumption (A1) together with (3.3)
that Q is a contraction mapping. Continuity of f implies that the operator P is
continuous. Also, P is uniformly bounded on Br as

‖Px‖ ≤ ‖µ‖
Γ(q + 1)

.

Now we prove the compactness of the operator P. In view of (A1), we define

sup
(t,x)∈[0,1]×Br

|f(t, x)| = f.

Consequently we have

‖(Px)(t1)− (Px)(t2)‖

=
∥∥ 1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s))ds+
∫ t2

t1

(t2 − s)q−1f(s, x(s))ds
∥∥

≤ f

Γ(q + 1)
|2(t2 − t1)q + tq1 − tq2|,

which is independent of x and tends to zero as t2 → t1. Thus, P is relatively
compact on Br. Hence, by the Arzelá-Ascoli Theorem, P is compact on Br. Thus
all the assumptions of Lemma 3.2 are satisfied. So by the conclusion of Lemma 3.2,
problem (1.1) has at least one solution on [0, 1]. �
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3.3. Existence result via Leray-Schauder Alternative.

Lemma 3.4 (Nonlinear alternative for single valued maps [23]). . Let E be a
Banach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U .
Suppose that F : U → C is a continuous, compact (that is, F (U) is a relatively
compact subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 3.5. Let f : [0, 1] × R → R be a jointly continuous function. Assume
that:

(A3) There exist a function p ∈ L1([0, 1],R+), and a nondecreasing function
ψ : R+ → R+ such that |f(t, x)| ≤ p(t)ψ(‖x‖), for all (t, x) ∈ [0, 1]× R.

(A4) There exists a constant M > 0 such that
M

ψ(M)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0
p(s)ds+ |ϑ|

∑n−2
i=1 αi

ηq
i−ζ

q
i

q

∫ ηi

ζi
p(s)ds

] > 1.

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Consider the operator F : C → C with x = F (x), where

(Fx)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u, x(u))du

)
ds

]
, t ∈ [0, 1].

We show that F maps bounded sets into bounded sets in C([0, 1],R). For a positive
number r, let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r} be a bounded set in C([0, 1],R).
Then

|(Fx)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+ |ϑ|tm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|f(u, x(u))|du

)
ds

]
≤

∫ t

0

(t− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds+ |ϑ|tm−1

∫ 1

0

(1− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

+ |ϑ|tm−1
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
p(s)ψ(‖x‖)du

)
ds

≤ ψ(‖x‖)
Γ(q)

∫ 1

0

(t− s)q−1p(s)ds+
|ϑ|ψ(‖x‖)

Γ(q)

∫ 1

0

(1− s)q−1p(s)ds

+
|ϑ|ψ(‖x‖)

Γ(q)

n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1p(u)du
)
ds

≤ ψ(‖x‖)
Γ(q)

∫ 1

0

(t− s)q−1p(s)ds+
|ϑ|ψ(‖x‖)

Γ(q)

∫ 1

0

(1− s)q−1p(s)ds

+
|ϑ|ψ(‖x‖)

Γ(q)

n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1p(u)du
)
ds
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≤ ψ(‖x‖)
Γ(q)

∫ 1

0

p(s)ds+
|ϑ|ψ(‖x‖)

Γ(q)

∫ 1

0

p(s)ds

+
|ϑ|ψ(‖x‖)

Γ(q)

n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

p(s)ds

=
ψ(‖x‖)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

p(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

p(s)ds
]
.

Consequently,

‖Fx‖ ≤ ψ(r)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

p(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

p(s)ds
]
.

Next we show that F maps bounded sets into equicontinuous sets of C([0, 1],R).
Let t′, t′′ ∈ [0, 1] with t′ < t′′ and x ∈ Br, where Br is a bounded set of C([0, 1],R).
Then we obtain

|(Fx)(t′′)− (Fx)(t′)|

=
∣∣∣ 1
Γ(q)

∫ t′′

0

(t′′ − s)q−1f(s, x(s))ds− 1
Γ(q)

∫ t′

0

(t′ − s)q−1f(s, x(s))ds

− ϑ
(
(t′′)m−1 − (t′)m−1

)[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u, x(u))du

)
ds

]∣∣∣
≤

∣∣∣ 1
Γ(q)

∫ t′

0

[(t′′ − s)q−1 − (t′ − s)q−1]ψ(r)p(s)ds
∣∣∣

+
∣∣∣ 1
Γ(q)

∫ t′′

t′
(t′′ − s)q−1ψ(r)p(s)ds

∣∣∣
+

∣∣∣ϑ(
(t′′)m−1 − (t′)m−1

)[ ∫ 1

0

(1− s)q−1

Γ(q)
ψ(r)p(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
ψ(r)p(u)du

)
ds

]∣∣∣.
Obviously the right hand side of the above inequality tends to zero independently
of x ∈ Br′ as t′′− t′ → 0. As F satisfies the above assumptions, therefore it follows
by the Arzelá-Ascoli theorem that F : C([0, 1],R) → C([0, 1],R) is completely
continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma
3.4) once we have proved the boundendness of the set of all solutions to equations
x = λFx for λ ∈ [0, 1].

Let x be a solution. Then, for t ∈ [0, 1], and using the computations in proving
that F is bounded, we have

|x(t)| = |λ(Fx)(t)|

≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+ |ϑ|tm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds
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−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|f(u, x(u))|du

)
ds

]
≤ ψ(‖x‖)

Γ(q)

[
{1 + |ϑ|}

∫ 1

0

p(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

p(s)ds
]
.

Consequently, we have

‖x‖
ψ(‖x‖)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0
p(s)ds+ |ϑ|

∑n−2
i=1 αi

ηq
i−ζ

q
i

q

∫ ηi

ζi
p(s)ds

] ≤ 1.

In view of (A4), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C([0, 1],R) : ‖x‖ < M}.

Note that the operator F : U → C([0, 1],R) is continuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x = λF (x) for
some λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Lemma 3.4), we deduce that F has a fixed point x ∈ U which is a solution of the
problem (1.1). This completes the proof. �

3.4. Existence result via Leray-Schauder degree theory.

Theorem 3.6. Let f : [0, 1]×R → R. Assume that there exist constants 0 ≤ κ < 1
Λ ,

where Λ is given by (3.2) and M > 0 such that |f(t, x)| ≤ κ‖x‖ + M for all
t ∈ [0, 1], x ∈ R. Then the boundary value problem (1.1) has at least one solution.

Proof. In view of the fixed point problem (3.1), we just need to prove the existence
of at least one solution x ∈ R satisfying (3.1). Define a suitable ball BR ⊂ C[0, 1]
with radius R > 0 as

BR = {x ∈ C : ‖x‖ < R},
where R will be fixed later. Then, it is sufficient to show that F : BR → C satisfies

x 6= λFx, ∀x ∈ ∂BR and ∀λ ∈ [0, 1]. (3.4)

Let us set
H(λ, x) = λFx, x ∈ C, λ ∈ [0, 1].

Then, by the Arzelá-Ascoli Theorem, hλ(x) = x−H(λ, x) = x−λFx is completely
continuous. If (3.4) is true, then the following Leray-Schauder degrees are well
defined and by the homotopy invariance of topological degree, it follows that

deg(hλ, BR, 0) = deg(I − λF,BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I,BR, 0) = 1 6= 0, 0 ∈ BR,
where I denotes the unit operator. By the nonzero property of Leray-Schauder
degree, h1(t) = x − λFx = 0 for at least one x ∈ BR. To prove (3.4), we assume
that x = λFx for some λ ∈ [0, 1] and for all t ∈ [0, 1] so that

|x(t)| = |λ(Fx)(t)|

≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+ |ϑ|tm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds

+
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|f(u, x(u))|du

)
ds

]
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≤ (κ‖x‖+M)
{ 1

Γ(q)

∫ t

0

(t− s)q−1ds

+ |ϑ|tm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
ds+

n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
du

)
ds

]}
≤ (κ‖x‖+M)

Γ(q + 1)

[
1 + |ϑ|

{
1 +

n−2∑
i=1

αi(η
q+1
i − ζq+1

i )
q + 1

}]
= (κ‖x‖+M)Λ,

which, on taking norm (supt∈[0,1] |x(t)| = ‖x‖) and solving for ‖x‖, yields

‖x‖ ≤ MΛ
1− κΛ

.

Letting R = MΛ
1−κΛ + 1, (3.4) holds. This completes the proof. �

3.5. Existence result via nonlinear contractions.

Definition 3.7. Let E be a Banach space and let F : E → E be a mapping. F is
said to be a nonlinear contraction if there exists a continuous nondecrasing function
Ψ : R+ → R+ such that Ψ(0) = 0 and Ψ(ξ) < ξ for all ξ > 0 with the property:

‖Fx− Fy‖ ≤ Ψ(‖x− y‖), ∀x, y ∈ E.

Lemma 3.8 (Boyd and Wong [19]). Let E be a Banach space and let F : E → E
be a nonlinear contraction. Then F has a unique fixed point in E.

Theorem 3.9. Assume that:
(A5) |f(t, x)− f(t, y)| ≤ h(t) |x−y|

H∗+|x−y| , t ∈ [0, 1], x, y ≥ 0, where h : [0, 1] → R+

is continuous and

H∗ =
∫ 1

0

(1− s)q−1

Γ(q)
h(s)ds+ |ϑ|

[ ∫ 1

0

(1− s)q−1

Γ(q)
h(s)ds

+
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
h(u)du

)
ds

]
.

(3.5)

Then the boundary value problem (1.1) has a unique solution.

Proof. We define the operator F : C → C by

Fx(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds+ ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

+
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u, x(u))du

)
ds

]
, t ∈ [0, 1].

Let a continuous nondecreasing function Ψ : R+ → R+ satisfying Ψ(0) = 0 and
Ψ(ξ) < ξ for all ξ > 0 be defined by

Ψ(ξ) =
H∗ξ

H∗ + ξ
, ∀ξ ≥ 0.

Let x, y ∈ C. Then

|f(s, x(s))− f(s, y(s))| ≤ h(s)
H∗ Ψ(‖x− y‖)
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so that

|Fx(t)− Fy(t)|

≤
∫ t

0

(1− s)q−1

Γ(q)
h(s)

|x(s)− y(s)|
H∗ + |x(s)− y(s)|

ds

+ |ϑ|
∫ 1

0

(1− s)q−1

Γ(q)
h(s)

|x(s)− y(s)|
H∗ + |x(s)− y(s)|

ds

+ |ϑ|
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
h(m)

|x(m)− y(m)|
H∗ + |x(m)− y(m)|

dm
)
ds,

for t ∈ [0, 1]. In view of (3.5), it follows that ‖Fx−Fy‖ ≤ Ψ(‖x− y‖) and hence F
is a nonlinear contraction. Thus, by Lemma 3.8, the operator F has a unique fixed
point in C, which in turn is a unique solution of problem (1.1). �

3.6. Examples. For the forthcoming examples, we consider the following bound-
ary conditions:

x(0) = 0, x′(0) = 0, x′′(0) = 0, x(1) =
3∑
i=1

αi

∫ ηi

ζi

x(s)ds, (3.6)

where ζ1 = 1/16, ζ2 = 5/16, ζ3 = 9/16, η1 = 1/4, η2 = 1/2, η3 = 3/4, α1 = 1/3,
α2 = 2/3, α3 = 1.

Example 3.10. Consider the fractional differential equation
cD7/2x(t) = L

(
cos t+ tan−1 x(t)

)
, 0 < t < 1, (3.7)

subject to the strip boundary conditions (3.6).

Here, q = 7/2, m = 4 and f(t, x) = L
(
cos t+ tan−1 x(t)

)
. Clearly

|f(t, x)− f(t, y)| ≤ L| tan−1 x− tan−1 y| ≤ L|x− y|,

ϑ = m
(
m−

n−2∑
i=1

αi(ηmi − ζmi )
)−1

= 1.0675,

Λ =
1

Γ(q + 1)

[
1 + |ϑ|

{
1 +

3∑
i=1

αi(η
q+1
i − ζq+1

i )
(q + 1)

}]
≈ 34

105
√
π
.

With L < 1
Λ ≈ 105

√
π/34, all the assumptions of Theorem 3.1 are satisfied. Hence,

there exists a unique solution for problem (3.7)-(3.6) on [0, 1].

Example 3.11. Consider the equation

cD7/2x(t) =
1
4π

sin(2πx) +
x2

1 + x2
, 0 < t < 1, (3.8)

subject to the strip boundary conditions (3.6).

Here, q = 7/2, m = 4 and f(t, x) = 1
4π sin(2πx) + x2

1+x2 . Observe that

|f(t, x)| = | 1
4π

sin(2πx) +
x2

1 + x2
| ≤ 1

2
‖x‖+ 1.

with κ = 1
2 < 1

Λ ≈ 105
√
π/34 and M = 1. Thus, the conclusion of Theorem 3.6

applies to problem (3.8)-(3.6).
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Example 3.12. Let us consider the fractional differential equation

cD7/2x(t) =
t|x|

1 + |x|
, 0 < t < 1, (3.9)

subject to the strip boundary conditions (3.6).

Here, q = 7/2, m = 4 and f(t, x) = t|x|
1+|x| . We choose h(t) = (1 + t) and find

that

H∗ =
∫ 1

0

(1− s)q−1

Γ(q)
h(s)ds+ |ϑ|

[ ∫ 1

0

(1− s)q−1

Γ(q)
h(s)ds

+
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
h(u)du

)
ds

]
= 0.222818.

Clearly,

|f(t, x)− f(t, y)| = | t(|x| − |y|)
1 + |x|+ |y|+ |x||y|

| ≤ (1 + t)|x− y|
0.222818 + |x− y|

.

Thus, the conclusion of Theorem 3.9 applies and problem (3.9)-(3.6) has a unique
solution.

4. Existence results - the multi-valued case

Definition 4.1. A function x ∈ C([0, 1],R) with its Caputo derivative of order
q existing on [0, 1] is a solution of the problem (1.2) if there exists a function
f ∈ L1([0, 1],R) such that f(t) ∈ F (t, x(t)) a.e. on [0, 1] and

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u)du

)
ds

]
.

4.1. The Carathéodory case. In this subsection, we are concerned with the exis-
tence of solutions for the problem (1.2) when the right hand side has convex values.
We first recall some preliminary facts. For a normed space (X, ‖ · ‖), let

Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact},

Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

Definition 4.2. A multi-valued map G : X → P(X) :
(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X;
(ii) is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all

B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} <∞);
(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set

G(x0) is a nonempty closed subset of X, and if for each open set N of X
containing G(x0), there exists an open neighborhood N0 of x0 such that
G(N0) ⊆ N ;

(v) is said to be completely continuous if G(B) is relatively compact for every
B ∈ Pb(X);
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(v) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set
of the multivalued operator G will be denoted by FixG.

Remark 4.3. It is known that, if the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

Definition 4.4. A multivalued map G : [0; 1] → Pcl(R) is said to be measurable if
for every y ∈ R, the function t 7→ d(y,G(t)) = inf{‖y−z‖ : z ∈ G(t)} is measurable.

Definition 4.5. A multivalued map F : [0, 1]× R → P(R) is called Carathéodory
if

(i) t 7→ F (t, x) is measurable for each x ∈ R;
(ii) x 7→ F (t, x) is upper semicontinuous for almost all t ∈ [0, 1];

Further a Carathéodory function F is called L1−Carathéodory if
(iii) for each α > 0, there exists ϕα ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t)

for all ‖x‖ ≤ α and for a. e. t ∈ [0, 1].

For each y ∈ C([0, 1],R), define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]}.
The consideration of this subsection is based on the following lemmas.

Lemma 4.6 (Nonlinear alternative for Kakutani maps [23]). Let E be a Banach
space, C a closed convex subset of E, U an open subset of C and 0 ∈ U . Suppose
that F : U → Pc,cv(C) is a upper semicontinuous compact map; here Pc,cv(C)
denotes the family of nonempty, compact convex subsets of C. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Lemma 4.7 ([27]). Let X be a Banach space. Let F : [0, 1]× R → Pcp,c(R) be an
L1− Carathéodory multivalued map and let Θ be a linear continuous mapping from
L1([0, 1],R) to C([0, 1],R). Then the operator

Θ ◦ SF : C([0, 1],R) → Pcp,c(C([0, 1],R)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C([0, 1],R)× C([0, 1],R).

Theorem 4.8. Assume that (A4) holds. In addition we assume that:
(H1) F : [0, 1] × R → P(R) is Carathéodory and has nonempty compact convex

values;
(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a

function p ∈ L1([0, 1],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, 1]× R.
Then the boundary value problem (1.2) has at least one solution on [0, 1].

Proof. Define an operator Ω : C([0, 1],R) → P(C([0, 1],R)) by

Ω(x)

=
{
h ∈ C([0, 1],R) : h(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s)ds
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−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u)du

)
ds

]
, 0 ≤ t ≤ 1

}
,

for f ∈ SF,x. We will show that Ω satisfies the assumptions of the nonlinear
alternative of Leray-Schauder type. The proof consists of several steps. As a first
step, we show that Ω is convex for each x ∈ C([0, 1],R). For that, let h1, h2 ∈ Ω(x).
Then there exist f1, f2 ∈ SF,x such that for each t ∈ [0, 1], we have

hi(t) =
∫ t

0

(t− s)q−1

Γ(q)
fi(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
fi(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
fi(u)du

)
ds

]
, i = 1, 2.

Let 0 ≤ ω ≤ 1. Then, for each t ∈ [0, 1], we have

[ωh1 + (1− ω)h2](t)

=
∫ t

0

(t− s)q−1

Γ(q)
[ωf1(s) + (1− ω)f2(s)]ds

− ϑtm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
[ωf1(s) + (1− ω)f2(s)]ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
[ωf1(s) + (1− ω)f2(s)]du

)
ds

]
.

Since SF,x is convex (F has convex values), therefore it follows that ωh1+(1−ω)h2 ∈
Ω(x).

Next, we show that Ω maps bounded sets into bounded sets in C([0, 1],R). For
a positive number r, let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r} be a bounded set in
C([0, 1],R). Then, for each h ∈ Ω(x), x ∈ Br, there exists f ∈ SF,x such that

h(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u)du

)
ds

]
.

Then, as in Theorem 3.5,

|h(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s)|ds+ |ϑ|tm−1

∫ 1

0

(1− s)q−1

Γ(q)
|f(s)|ds

+ |ϑ|tm−1
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|f(u)|du

)
ds

≤ ψ(‖x‖)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

p(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

p(s)ds
]
.

Thus,

‖h‖ ≤ ψ(r)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

p(s)ds+ |ϑ|
n−2∑
i=1

αi
ηq1 − ζqi

q

∫ ηi

ζi

p(s)ds
]
.
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Now we show that Ω maps bounded sets into equicontinuous sets of C([0, 1],R).
Let t′, t′′ ∈ [0, 1] with t′ < t′′ and x ∈ Br, where Br is a bounded set of C([0, 1],R).
For each h ∈ Ω(x), we obtain

|h(t′′)− h(t′)| =
∣∣∣ 1
Γ(q)

∫ t′′

0

(t′′ − s)q−1f(s)ds− 1
Γ(q)

∫ t′

0

(t′ − s)q−1f(s)ds

− ϑ
(
(t′′)m−1 − (t′)m−1

)[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u)du

)
ds

]∣∣∣
≤

∣∣∣ 1
Γ(q)

∫ t′

0

[(t′′ − s)q−1 − (t′ − s)q−1]ψ(r)p(s)ds
∣∣∣

+
∣∣∣ 1
Γ(q)

∫ t′′

t′
(t′′ − s)q−1ψ(r)p(s)ds

∣∣∣
+

∣∣∣ϑ(
(t′′)m−1 − (t′)m−1

)[ ∫ 1

0

(1− s)q−1

Γ(q)
ψ(r)p(s)ds

n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
ψ(r)p(u)du

)
ds

]∣∣∣.
Obviously the right hand side of the above inequality tends to zero independently
of x ∈ Br′ as t′′ − t′ → 0. As Ω satisfies the above three assumptions, therefore
it follows by the Arzelá-Ascoli theorem that Ω : C([0, 1],R) → P(C([0, 1],R)) is
completely continuous.
In our next step, we show that Ω has a closed graph. Let xn → x∗, hn ∈ Ω(xn) and
hn → h∗. Then we need to show that h∗ ∈ Ω(x∗). Associated with hn ∈ Ω(xn),
there exists fn ∈ SF,xn such that for each t ∈ [0, 1],

hn(t) =
∫ t

0

(t− s)q−1

Γ(q)
fn(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
fn(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
fn(u)du

)
ds

]
.

Thus we have to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, 1],

h∗(t) =
∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f∗(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f∗(u)du

)
ds

]
.

Let us consider the continuous linear operator Θ : L1([0, 1],R) → C([0, 1],R) given
by

f 7→ Θ(f) =
∫ t

0

(t− s)q−1

Γ(q)
f(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u)du

)
ds

]
.
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Observe that

‖hn(t)− h∗(t)‖

=
∥∥∥∫ t

0

(t− s)q−1

Γ(q)
(fn(s)− f∗(s))ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
(fn(s)− f∗(s))ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
(fn(u)− f∗(u))du

)
ds

]∥∥∥ → 0,

as n→∞. Thus, it follows by Lemma 4.7 that Θ ◦ SF is a closed graph operator.
Further, we have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =
∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f∗(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f∗(u)du

)
ds

]
,

for some f∗ ∈ SF,x∗ .
Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.2).

Then there exists f ∈ L1([0, 1],R) with f ∈ SF,x such that, for t ∈ [0, 1], we have

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
f(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(u)du

)
ds

]
.

In view of (H2), and using the computations in second step above, for each t ∈ [0, 1],
we obtain

|x(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s)|ds+ |ϑ|tm−1

∫ 1

0

(1− s)q−1

Γ(q)
|f(s)|ds

+ |ϑ|tm−1
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|f(u)|du

)
ds

≤ ψ(‖x‖)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

p(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

p(s)ds
]
.

Consequently,

‖x‖
ψ(‖x‖)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0
p(s)ds+ |ϑ|

∑n−2
i=1 αi

ηq
1−ζ

q
i

q

∫ ηi

ζi
p(s)ds

] ≤ 1.

In view of (A4), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C([0, 1],R) : ‖x‖ < M}.

Note that the operator Ω : U → P(C([0, 1],R)) is upper semicontinuous and com-
pletely continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ µΩ(x)
for some µ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder
type (Lemma 4.6), we deduce that Ω has a fixed point x ∈ U which is a solution of
the problem (1.2). This completes the proof. �
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4.2. The lower semi-continuous case. Here, we study the case when F is not
necessarily convex valued. Our strategy to deal with this problems is based on the
nonlinear alternative of Leray Schauder type together with the selection theorem
of Bressan and Colombo [20] for lower semi-continuous maps with decomposable
values.

Definition 4.9. Let X be a nonempty closed subset of a Banach space E and
G : X → P(E) be a multivalued operator with nonempty closed values. G is lower
semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩B 6= ∅} is open for any open set
B in E.

Definition 4.10. Let A be a subset of [0, 1]×R. A is L⊗B measurable if A belongs
to the σ−algebra generated by all sets of the form J × D, where J is Lebesgue
measurable in [0, 1] and D is Borel measurable in R.

Definition 4.11. A subset A of L1([0, 1],R) is decomposable if for all x, y ∈ A
and measurable J ⊂ [0, 1] = J , the function xχJ + yχJ−J ∈ A, where χJ stands
for the characteristic function of J .

Definition 4.12. Let Y be a separable metric space and N : Y → P(L1([0, 1],R))
be a multivalued operator. We say N has a property (BC) if N is lower semi-
continuous (l.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1]×R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0, 1]× R) → P(L1([0, 1],R)) associated with
F as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]},

which is called the Nemytskii operator associated with F .

Definition 4.13. Let F : [0, 1] × R → P(R) be a multivalued function with
nonempty compact values. We say F is of lower semi-continuous type (l.s.c. type)
if its associated Nemytskii operator F is lower semi-continuous and has nonempty
closed and decomposable values.

Lemma 4.14 ([20]). Let Y be a separable metric space and N : Y → P(L1([0, 1],R))
be a multivalued operator satisfying the property (BC). Then N has a continu-
ous selection, that is, there exists a continuous function (single-valued) g : Y →
L1([0, 1],R) such that g(x) ∈ N(x) for every x ∈ Y .

Theorem 4.15. Assume that (H2), (H3) and the following condition holds:

(H4) F : [0, 1]×R → P(R) is a nonempty compact-valued multivalued map such
that
(a) (t, x) 7→ F (t, x) is L ⊗ B measurable,
(b) x 7→ F (t, x) is lower semicontinuous for each t ∈ [0, 1].

Then the boundary value problem (1.2) has at least one solution on [0, 1].

Proof. It follows from (H2) and (H4) that F is of l.s.c. type. Then, by Lemma
4.14, there exists a continuous function f : C([0, 1],R) → L1([0, 1],R) such that
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f(x) ∈ F(x) for all x ∈ C([0, 1],R). Consider the problem
cDqx(t) = f(x(t)), 0 < t < 1, m− 1 < q ≤ m, m ≥ 2, m ∈ N,

x(0) = 0, x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0,

x(1) =
n−2∑
i=1

αi

∫ ηi

ζi

x(s)ds, 0 < ζi < ηi < 1, i = 1, 2, . . . , (n− 2),

(4.1)

in the space C([0, 1],R). It is clear that if x is a solution of the problem (4.1), then
x is a solution to the problem (1.2). In order to transform the problem (4.1) into
a fixed point problem, we define the operator Ω as

Ωx(t) =
{ 1

Γ(q)

∫ t

0

(t− s)q−1f(x(s))ds− ϑtm−1
[ ∫ 1

0

(1− s)q−1

Γ(q)
f(x(s))ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
f(x(u))du

)
ds

]
, 0 ≤ t ≤ 1.

}
It can easily be shown that Ω is continuous and completely continuous. The re-
maining part of the proof is similar to that of Theorem 4.8. So we omit it. This
completes the proof. �

4.3. The Lipschitz case. Now we prove the existence of solutions for the problem
(1.2) with a nonconvex valued right hand side by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler [22].

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Consider
Hd : P(X)× P(X) → R ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X),Hd) is
a metric space and (Pcl(X),Hd) is a generalized metric space (see [24]).

Definition 4.16. A multivalued operator N : X → Pcl(X) is called:

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 4.17 (Covitz-Nadler, [22]). Let (X, d) be a complete metric space. If
N : X → Pcl(X) is a contraction, then FixN 6= ∅.

Definition 4.18. A measurable multi-valued function F : [0, 1] → P(X) is said to
be integrably bounded if there exists a function h ∈ L1([0, 1], X) such that for all
v ∈ F (t), ‖v‖ ≤ h(t) for a.e. t ∈ [0, 1].

Theorem 4.19. Assume that the following conditions hold:

(H5) F : [0, 1]× R → Pcp(R) is such that F (·, x) : [0, 1] → Pcp(R) is measurable
for each x ∈ R;

(H6) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x− x̄| for almost all t ∈ [0, 1] and x, x̄ ∈ R with
m ∈ L1([0, 1],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, 1].
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Then the boundary-value problem (1.2) has at least one solution on [0, 1] if

1
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

m(s)ds+ |ϑ|
n−2∑
i=1

αi
ηq1 − ζqi

q

∫ ηi

ζi

m(s)ds
]
< 1.

Proof. We transform the problem (1.2) into a fixed point problem. Consider the
set-valued map Ω : C([0, 1],R) → P(C([0, 1],R)) defined at the beginning of the
proof of Theorem 4.8. It is clear that the fixed point of Ω are solutions of the
problem (1.2).

Note that, by the assumption (H5), since the set-valued map F (·, x) is mea-
surable, it admits a measurable selection f : [0, 1] → R (see [21, Theorem III.6]).
Moreover, from assumption (H6)

|f(t)| ≤ m(t) +m(t)|x(t)|,

i.e. f(·) ∈ L1([0, 1],R). Therefore the set SF,x is nonempty. Also note that since
SF,x 6= ∅, therefore Ω(x) 6= ∅ for any x ∈ C([0, 1],R).

Now we show that the operator Ω satisfies the assumptions of Lemma 4.17. To
show that Ω(x) ∈ Pcl((C[0, 1],R)) for each x ∈ C([0, 1],R), let {un}n≥0 ∈ Ω(x) be
such that un → u (n → ∞) in C([0, 1],R). Then u ∈ C([0, 1],R) and there exists
vn ∈ SF,x such that, for each t ∈ [0, 1], we have

un(t) =
∫ t

0

(t− s)q−1

Γ(q)
vn(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
vn(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
vn(u)du

)
ds

]
.

As F has compact values, we may pass onto a subsequence (if necessary) to obtain
that vn converges to v in L1([0, 1],R). Thus, v ∈ SF,x and for each t ∈ [0, 1],

un(t) → u(t) =
∫ t

0

(t− s)q−1

Γ(q)
v(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
v(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
v(u)du

)
ds

]
.

Hence, u ∈ Ω(x) and Ω(x) is closed.
Next we show that Ω is a contraction on C([0, 1],R); i.e., there exists γ < 1 such

that
Hd(Ω(x),Ω(x̄)) ≤ γ‖x− x̄‖∞ for each x, x̄ ∈ C([0, 1],R).

Let x, x̄ ∈ C([0, 1],R) and h1 ∈ Ω(x). Then there exists v1(t) ∈ F (t, x(t)) such
that, for each t ∈ [0, 1],

h1(t) =
∫ t

0

(t− s)q−1

Γ(q)
v1(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
v1(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
v1(u)du

)
ds

]
.

By (H6), we have

Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t)− x̄(t)|.
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So, there exists w ∈ F (t, x̄(t)) such that

|v1(t)− w| ≤ m(t)|x(t)− x̄(t)|, t ∈ [0, 1].

Define U : [0, 1] → P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)|x(t)− x̄(t)|}.

Since the multivalued operator U(t) ∩ F (t, x̄(t)) is measurable ([21, Proposition
III.4]), there exists a function v2(t) which is a measurable selection for U . So
v2(t) ∈ F (t, x̄(t)) and for each t ∈ [0, 1], we have |v1(t)− v2(t)| ≤ m(t)|x(t)− x̄(t)|.

For each t ∈ [0, 1], let us define

h2(t) =
∫ t

0

(t− s)q−1

Γ(q)
v2(s)ds− ϑtm−1

[ ∫ 1

0

(1− s)q−1

Γ(q)
v2(s)ds

−
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
v2(u)du

)
ds

]
.

Thus,

|h1(t)− h2(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|v1(s)− v2(s)|ds

+ |ϑ|tm−1

∫ 1

0

(1− s)q−1

Γ(q)
|v1(s)− v2(s)|ds

+ |ϑ|tm−1
n−2∑
i=1

αi

∫ ηi

ζi

( ∫ s

0

(s− u)q−1

Γ(q)
|v1(u)− v2(u)|du

)
ds

≤ ‖x− x‖
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

m(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

m(s)ds
]
.

Hence,

‖h1 − h2‖ ≤
1

Γ(q)

[
{1 + |ϑ|}

∫ 1

0

m(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

m(s)ds
]
‖x− x‖.

Analogously, interchanging the roles of x and x, we obtain

Hd(Ω(x),Ω(x̄))

≤ γ‖x− x̄‖

≤ 1
Γ(q)

[
{1 + |ϑ|}

∫ 1

0

m(s)ds+ |ϑ|
n−2∑
i=1

αi
ηqi − ζqi

q

∫ ηi

ζi

m(s)ds
]
‖x− x‖.

Since Ω is a contraction, it follows by Lemma 4.17 that Ω has a fixed point x which
is a solution of (1.2). This completes the proof. �

4.4. Example.

Example 4.20. Consider the strip fractional boundary value problem
cD7/2x(t) ∈ F (t, x(t)), 0 < t < 1,

x(0) = 0, x′(0) = 0, x′′(0) = 0, x(1) =
3∑
i=1

αi

∫ ηi

ζi

x(s)ds,
(4.2)
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Here, q = 7/2, m = 4, ζ1 = 1/16, ζ2 = 5/16, ζ3 = 9/16, η1 = 1/4, η2 = 1/2,
η3 = 3/4, α1 = 1/3, α2 = 2/3, α3 = 1, and F : [0, 1]× R → P(R) is a multivalued
map given by

x→ F (t, x) =
[ |x|3

|x|3 + 3
+ 3t3 + 5,

|x|
|x|+ 1

+ t+ 1
]
.

For f ∈ F , we have

|f | ≤ max
(

|x|3

|x|3 + 3
+ 3t3 + 5,

|x|
|x|+ 1

+ t+ 1
)
≤ 9, x ∈ R.

Thus,

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ 9 = p(t)ψ(‖x‖), x ∈ R,

with p(t) = 1, ψ(‖x‖) = 9. Further, using the condition

M
ψ(M)
Γ(q)

[
{1 + |ϑ|}

∫ 1

0
p(s)ds+ |ϑ|

∑n−2
i=1 αi

ηq
i−ζ

q
i

q

∫ ηi

ζi
p(s)ds

] > 1,

we find that M > 5.6427. Clearly, all the conditions of Theorem 4.8 are satisfied.
So there exists at least one solution of the problem (4.2) on [0, 1].

References

[1] R. P. Agarwal, B. Andrade, C. Cuevas; Weighted pseudo-almost periodic solutions of a class
of semilinear fractional differential equations, Nonlinear Anal. Real World Appl. 11 (2010),
3532-3554.

[2] R. P. Agarwal, Y. Zhou, Y. He; Existence of fractional neutral functional differential equa-
tions, Comput. Math. Appl. 59 (2010), 1095-1100.

[3] A. Aghajani, Y. Jalilian, J. J. Trujillo; On the existence of solutions of fractional integro-
differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 44-69.

[4] B. Ahmad, S. Sivasundaram; On four-point nonlocal boundary value problems of nonlinear
integro-differential equations of fractional order, Appl. Math. Comput. 217 (2010), 480-487.

[5] B. Ahmad, J. J. Nieto; Existence results for a coupled system of nonlinear fractional dif-
ferential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009)
1838-1843.

[6] B. Ahmad, A. Alsaedi, B. Alghamdi; Analytic approximation of solutions of the forced Duffing
equation with integral boundary conditions, Nonlinear Anal. Real World Appl. 9 (2008),
1727-1740.

[7] B. Ahmad, T. Hayat, S. Asghar; Diffraction of a plane wave by an elastic knife-edge adjacent
to a strip, Canad. App. Math. Quart. 9(2001) 303-316.

[8] B. Ahmad, S. K. Ntouyas, A. Alsaedi; New existence results for nonlinear fractional differen-
tial equations with three-point integral boundary conditions, Adv. Differ. Equ. (2011) Art.
ID 107384, 11 pages.

[9] B. Ahmad, S. K. Ntouyas; A four-point integral boundary value problem for fractional dif-
ferential equations of arbitrary order, E. J. Qualitative Theory of Diff. Equ. No. 22 (2011),
15 pages.

[10] B. Ahmad and R.P. Agarwal; On nonlocal fractional boundary value problems, Dynam.
Contin. Discrete Impuls. Systems 18, No 4 (2011), 535-544.

[11] B. Ahmad, J. J. Nieto; Riemann-Liouville fractional integro-differential equations with frac-
tional nonlocal integral boundary conditions, Bound. Value Probl. 2011:36, (2011), 9 pages.

[12] B. Ahmad and S. K. Ntouyas; A note on fractional differential equations with fractional
separated boundary conditions, Abstr. Appl. Anal. 2012, Article ID 818703, 11 pages.

[13] S. Asghar, B. Ahmad, M. Ayub; Diffraction from an absorbing half plane due to a finite
cylindrical source, Acustica-Acta Acustica 82 (1996), 365-367.

[14] Z. B. Bai; On positive solutions of a nonlocal fractional boundary value problem, Nonlinear
Anal. 72 (2010), 916-924.



22 B. AHMAD, S. K. NTOUYAS EJDE-2012/98

[15] K. Balachandran, J. J. Trujillo; The nonlocal Cauchy problem for nonlinear fractional inte-
grodifferential equations in Banach spaces, Nonlinear Anal. 72 (2010) 4587-4593.

[16] D. Baleanu, O. G. Mustafa, R .P. Agarwal; An existence result for a superlinear fractional
differential equation, Appl. Math. Lett. 23 (2010), 1129-1132.

[17] D. Baleanu, K. Diethelm, E. Scalas, J. J.Trujillo; Fractional calculus models and numerical
methods. Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston, 2012.

[18] A. Boucherif; Second-order boundary value problems with integral boundary conditions, Non-
linear Anal. 70 (2009), 364-371.

[19] D. W. Boyd, J. S. W. Wong; On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969),
458-464.

[20] A. Bressan, G. Colombo; Extensions and selections of maps with decomposable values, Studia
Math. 90 (1988), 69-86.

[21] C. Castaing, M. Valadier; Convex Analysis and Measurable Multifunctions, Lecture Notes in
Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

[22] H. Covitz, S. B. Nadler Jr.; Multivalued contraction mappings in generalized metric spaces,
Israel J. Math. 8 (1970), 5-11.

[23] A. Granas, J. Dugundji; Fixed Point Theory, Springer-Verlag, New York, 2003.
[24] M. Kisielewicz; Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Nether-

lands, 1991.
[25] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and Applications of Fractional Differen-

tial Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam,
2006.

[26] M.A. Krasnoselskii; Two remarks on the method of successive approximations, Uspekhi Mat.
Nauk 10 (1955), 123-127.

[27] A. Lasota, Z. Opial; An application of the Kakutani-Ky Fan theorem in the theory of ordinary
differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965),
781-786.

[28] I. Podlubny; Fractional Differential Equations, Academic Press, San Diego, 1999.
[29] J. Sabatier, O. P. Agrawal, J. A. T. Machado (Eds.); Advances in Fractional Calculus:

Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht,
2007.

[30] S.G. Samko, A. A. Kilbas, O. I. Marichev; Fractional Integrals and Derivatives, Theory and
Applications, Gordon and Breach, Yverdon, 1993.

[31] C. Yuan, D. Jiang, D. O’Regan, R. P. Agarwal; Multiple positive solutions to systems of
nonlinear semipositone fractional differential equations with coupled boundary conditions, E.
J. Qualitative Theory of Diff. Equ. No. 13 (2012), pp. 1-17

Bashir Ahmad
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box
80203, Jeddah 21589, Saudi Arabia

E-mail address: bashir qau@yahoo.com

Sotiris K. Ntouyas
Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

E-mail address: sntouyas@uoi.gr


	1. Introduction
	2. Preliminaries from fractional calculus
	3. Existence results - the single-valued case
	3.1. Existence result via Banach's fixed point theorem
	3.2. Existence result via Krasnoselskii's fixed point theorem
	3.3. Existence result via Leray-Schauder Alternative
	3.4. Existence result via Leray-Schauder degree theory
	3.5. Existence result via nonlinear contractions
	3.6. Examples

	4. Existence results - the multi-valued case
	4.1. The Carathéodory case
	4.2. The lower semi-continuous case
	4.3. The Lipschitz case
	4.4. Example

	References

