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SOLVABILITY OF A SECOND-ORDER SINGULAR
BOUNDARY-VALUE PROBLEM

PETIO S. KELEVEDJIEV

Dedicated to Professor Stepan Tersian on his 60th birthday

Abstract. Using the barrier strips technique, we study the existence of solu-
tions to the boundary-value problem

x′′ = f(t, x, x′), t ∈ (0, 1),

x′(0) = A, x(1) = Bx′(1) + C,

where the scalar function f may be singular at t = 0.

1. Introduction

In this article we give sufficient conditions that guarantee the solvability of the
boundary-value problem (BVP)

x′′ = f(t, x, x′), t ∈ (0, 1),

x′(0) = A, x(1) = Bx′(1) + C,
(1.1)

where f(t, x, p) is a scalar function defined for (t, x, p) ∈ (0, 1] × Dx × Dp, with
Dx, Dp ⊆ R, and f may be unbounded at t = 0.

Our work is motivated by Ferguson and Finlagson [4], Klokov [8] and Vasil’ev
and Klokov [11]. The work [4] is devoted to the solvability of the BVP

x′′ = −k

t
x′ + g(t, x), t ∈ (0, 1), k = 0, 1, 2,

x′(0) = 0, x(1) = Bx′(1) + C,
(1.2)

which arises as a model for processes in chemical reactors. The more general prob-
lem

x′′ = −k

t
x′ + g(t, x, x′), t ∈ (0, 1),

x′(0) = 0, x′(1) = C −Bx(1),
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where k ≥ 0 and g ∈ C([0, 1] × R2) is considered in [8]. In [11], existence and
uniqueness results are given for the problem

x′′ = −a(t)x′ + g(t, x, x′), t ∈ (0, 1),

x′(0) = 0, x(1) = Bx′(1) + C,
(1.3)

where g ∈ C([0, 1]×R2), and a ∈ C((0, 1], [0,+∞)) is such that limt→0+ a(t) = +∞.
The results obtained in [8] and [11] rely on the assumption that the considered
problem has lower and upper solutions.

The literature devoted to the solvability of BVPs for second order ordinary differ-
ential equations with various singularities is too vast. We quote here only Agarwal
and O’Regan [1], Cabada and Pouso [2], De Coster and Habets [3], Heikkilä and
Lakshmikantham [6], Kiguradze [7], O’Regan [9], Rachu̇nková et al [10], Vasil’ev
and Klokov [11] for results, methods and references.

In this paper, we establish firstly an existence result for nonsingular problem
(1.1). It is proved by a combination of the barrier strips technique with a global
existence theorem which is due to Granas et al [5]. Next, we apply the obtained
existence result to construct a sequence {xn} of C2[n−1, 1] solutions to the nonsin-
gular problems

x′′ = f(t, x, x′), t ∈ (0, 1),

x′(n−1) = A, x(1) = Bx′(1) + C, n ∈ N \ {1}.

Finally, using the Arzela-Ascoli theorem, we obtain a C1[0, 1]∩C2(0, 1] solution to
singular problem (1.1) as the limit of an uniformly convergent subsequence of {xn}.

2. Existence of a global solution

Let Λx = x′′+ p(t)x′+ q(t)x, where the functions p and q are continuous on the
interval [a, b], and

V1(x) = a1x(a) + b1x
′(a), V2(x) = a2x(b) + b2x

′(b),

where the constants are such that a2
i + b2

i > 0 for i = 1, 2. Let B0 be the set of
functions satisfying the homogeneous boundary conditions Vi(x) = 0, i = 1, 2, and
C2

B0
[a, b] = C2[a, b] ∩B0.

In this setting, we consider the boundary-value problem

Λx = f(t, x, x′), t ∈ (a, b),

V1(x) = r1, V2(x) = r2,
(2.1)

where f : [a, b]×Dx ×Dp → R, with Dx, Dp ⊆ R, and ri ∈ R, i = 1, 2.
The proof of our theorem guaranteeing the existence of nonsingular problems is

based on the following global existence theorem which is a slight modification of a
well-known result.

Theorem 2.1 ([5, Theorem 5.1]). Assume that:
(i) The map Λ : C2

B0
[a, b] → C[a, b] is one-to-one.

(ii) Each solution x ∈ C2[a, b] to the family of problems

Λx = λf(t, x, x′), t ∈ (a, b),

V1(x) = r1, V2(x) = r2,
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with λ ∈ [0, 1], satisfies the bounds

mi ≤ x(i)(t) ≤ Mi, i = 0, 1, 2, for t ∈ [a, b],

where the constants −∞ < mi,Mi < ∞, i = 0, 1, 2, are independent of λ
and x.

(iii) There is a sufficiently small τ > 0 such that

[m0 − τ,M0 + τ ] ⊆ Dx, [m1 − τ,M1 + τ ] ⊆ Dp

and f(t, x, p) is continuous for (t, x, p) ∈ [a, b] × [m0 − τ,M0 + τ ] × [m1 −
τ,M1 + τ ].

Then (2.1) has at least one solution in C2[a, b].

3. Nonsingular problem

Consider the nonsingular problem

x′′ = f(t, x, x′), t ∈ (a, b),

x′(a) = A, x(b) = Bx′(b) + C,
(3.1)

where f : [a, b]×Dx ×Dp → R, Dx, Dp ⊆ R.
In the next lemma, we use the assumption
(R1) There are constants Li, Fi, i = 1, 2, and a sufficiently small τ > 0 such that

L2 − τ ≥ L1 ≥ A ≥ F1 ≥ F2 + τ,

[m0 − τ,M0 + τ ] ⊆ Dx, [F2, L2] ⊆ Dp,

where

m0 = −max{|L1|, |F1|}(|B|+ b− a) + C,

M0 = max{|L1|, |F1|}(|B|+ b− a) + C,

f(t, x, p) ∈ C
(
[a, b]× [m0 − τ,M0 + τ ]× [F1 − τ, L1 + τ ]

)
,

f(t, x, p) ≤ 0 for (t, x, p) ∈ [a, b]×Dx × [L1, L2],

f(t, x, p) ≥ 0 for (t, x, p) ∈ [a, b]×Dx × [F2, F1].

Our first result shows that the strips [a, b]× [L1, L2] and [a, b]× [F2, F1] are barriers
to the values of all C2[a, b] solutions to the family

x′′ = λf(t, x, x′), t ∈ (a, b),

x′(a) = A, x(b) = Bx′(b) + C,
(3.2)

where λ ∈ [0, 1].

Lemma 3.1. Let (R1) hold and let x ∈ C2[a, b] be a solution to family (3.2) with
λ ∈ [0, 1]. Then

m0 ≤ x(t) ≤ M0, F1 ≤ x′(t) ≤ L1, m2 ≤ x′′(t) ≤ M2

for t ∈ [a, b], where m2 = min f(t, x, p) and M2 = max f(t, x, p) on [a, b]×[m0,M0]×
[F1, L1].

Proof. Suppose that the set

S− = {t ∈ [a, b] : L1 < x′(t) ≤ L2}
is not empty. Then x′(a) = A ≤ L1 and x′ ∈ C[a, b] imply that there exists a
γ ∈ S− such that x′′(γ) > 0. Since x(t) is a solution of the differential equation,
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(t, x(t), x′(t)) ∈ (a, b) × Dx × Dp. In particular, we have (γ, x(γ), x′(γ)) ∈ S− ×
Dx × (L1, L2]. So, we can use (R1) to obtain

x′′(γ) = λf(γ, x(γ), x′(γ)) ≤ 0,

a contradiction. Thus, S− is empty which means

x′(t) ≤ L1 textfort ∈ [a, b].

Further, assuming that the set

S+ = {t ∈ [a, b] : F2 ≤ x′(t) < F1}
is not empty and arguing as in the above part of the proof, we obtain

F1 ≤ x′(t) for t ∈ [a, b].

Now, by the mean value theorem, for each t ∈ [a, b) there exists ξ ∈ (t, b) such that
x(b)−x(t) = x′(ξ)(b− t), from where, using the proved bounds for x′(t), we obtain

m0 ≤ x(t) ≤ M0 for t ∈ [a, b].

Finally, the bounds for x′′(t) are an elementary consequence of the continuity of
f(t, x, p) on the compact set [a, b]× [m0,M0]× [F1, L1]. �

We are ready to formulate an existence result.

Theorem 3.2. Let (R1) hold. Then nonsingular problem (3.1) has at least one
solution in C2[a, b].

Proof. A combination of the a priori bounds of Lemma 3.1 with Theorem 2.1 gives
the assertion at once. Notice only that (i) of Theorem 2.1 follows from the fact
that for each y ∈ C[a, b] the homogeneous BVP

x′′ = y, x′(a) = 0, x(b)−Bx′(b) = 0

has a unique solution. �

4. Singular problem

Now, we turn our attention to problem (1.1) by considering the case

f(t, x, p) is defined for (t, x, p) ∈ ([0, 1]×Dx ×Dp) \ S, where

Dx, Dp ⊆ R and S = {0} ×X × P for some sets X ⊆ Dx and P ⊆ Dp
(4.1)

which allows f(t, x, p) to be unbounded at t = 0 if (x, p) ∈ X × P .
Now, assume that
(S1) There are constants Li, Fi, i = 1, 2, and a sufficiently small τ > 0 such that

L2 − τ ≥ L1 ≥ A ≥ F1 ≥ F2 + τ,

[m0 − τ,M0 + τ ] ⊆ Dx, [F2, L2] ⊆ Dp,

where

m0 = −K(|B|+ 1) + C, M0 = K(|B|+ 1) + C,

K = max{|L1|, |F1|},
f(t, x, p) ∈ C

(
(0, 1]× [m0 − τ,M0 + τ ]× [F1 − τ, L1 + τ ]

)
,

f(t, x, p) ≤ 0 for (t, x, p) ∈ (0, 1]×Dx × [L1, L2],

f(t, x, p) ≥ 0 for (t, x, p) ∈ (0, 1]×Dx × [F2, F1].
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(S2) The functions ft(t, x, p), fx(t, x, p) and fp(t, x, p) are continuous for (t, x, p)
in (0, 1]× [m0,M0]× [F1, L1], where m0,M0, F1 and L1 are as in (S1).

We are now in position to state the main existence theorem of this paper.

Theorem 4.1. Assume (4.1) is satisfied. Assume also (S1) and (S2) hold. Then
singular BVP (1.1) has at least one C1[0, 1] ∩ C2(0, 1] solution.

Proof. It is easy to see that for each fixed n ∈ N \ {1}, (R1) holds for the corre-
sponding nonsingular BVP

x′′ = f(t, x, x′),

x′(n−1) = A, x(1) = Bx′(1) + C.
(4.2)

Consequently, for each n ∈ N \ {1} we can apply Theorem 3.2 to construct a
sequence {xn} of C2[n−1, 1] solutions to family (4.2).

Further, we introduce a numerical sequence {θi}, i ∈ N , such that θi ∈ (0, 1),
θi+1 < θi for i ∈ N and limi→∞ θi = 0.

In view of Lemma 3.1, for each n ∈ N1 we have the bounds

m0 ≤ xn(t) ≤ M0 for t ∈ [θ1, 1], (4.3)

F1 ≤ x′n(t) ≤ L1 for t ∈ [θ1, 1], (4.4)

independent of n. Also, the continuity of f(t, x, p) on [θ1, 1] × [m0,M0] × [F1, L1]
yields the bound

mθ1 ≤ x′′n(t) ≤ Mθ1 for t ∈ [θ1, 1], (4.5)
independent of n. Thus, we can use (S2) to conclude that x′′′n (t) exists, x′′′n ∈ C[θ1, 1]
and

x′′′n (t) = ft(t, xn(t), x′n(t)) + fx(t, xn(t), x′n(t))x′n(t) + fp(t, xn(t), x′n(t))x′′n(t),

from where it follows that there is a constant Mθ1 , independent of n, such that

|x′′′n (t)| ≤ Mθ1 for t ∈ [θ1, 1] and all n ∈ N1. (4.6)

Bounds (4.3)-(4.6) allow us to apply the Arzela-Ascoli theorem on the sequence
{xn} to conclude that there are a subsequence {x1,nk

}, k ∈ N , nk ∈ N1, and a
function xθ1 ∈ C2[θ1, 1] such that {x1,nk

}, {x′1,nk
} and {x′′1,nk

} converge uniformly
on [θ1, 1] to xθ1 , x′θ1

and x′′θ1
, respectively.

As a solution of (4.2), each function x1,nk
, nk ∈ N1, is such that

x′′1,nk
(t) = f(t, x1,nk

(t), x′1,nk
(t)) for t ∈ [θ1, 1),

x1,nk
(1) = Bx′1,nk

(1) + C,

from where, keeping in mind (4.3), (4.4) and the continuity of f on the compact
set [θ1, 1]× [m0,M0]× [F1, L1], we obtain

x′′θ1
(t) = f(t, xθ1(t), x

′
θ1

(t)) for t ∈ [θ1, 1),

xθ1(1) = Bx′θ1
(1) + C.

Now consider the sequence {x1,nk
} on the interval [θ2, 1]. Arguing as above, we ex-

tract a subsequence {x2,nk
}, nk ∈ N2 = {n ∈ N : n−1 < θ2}, of {x1,nk

} converging
uniformly on the new interval [θ2, 1] to a new function xθ2(t), which is a C2[θ2, 1]
solution to the differential equation x′′ = f(t, x, x′) on the interval [θ2, 1) with the
property xθ2(1) = Bx′θ2

(1) + C and

xθ2(t) = xθ1(t) for t ∈ [θ1, 1].
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Continuing this process, we establish that for each i ∈ N there is a function xθi(t)
which is a C2[θi, 1] solution of x′′ = f(t, x, x′) on the interval [θi, 1), xθi(1) =
Bx′θi

(1) + C and
xθi+1(t) = xθi(t) for t ∈ [θi, 1].

Moreover, for each i ∈ N there is a subsequence {xi,nk
}, nk ∈ Ni = {n ∈ N :

n−1 < θi}, such that

‖xi,nk
− xθi

‖2 → 0 on the interval [θi, 1], (4.7)

where
‖x‖2 = max

{
max

t∈[θi,1]
|x(t)|, max

t∈[θi,1]
|x′(t)|, max

t∈[θi,1]
|x′′(t)|

}
is the norm in the Banach space C2[θi, 1].

The existence of the sequence {xθi} allows us to conclude that there is a function
x0(t), which is a C2(0, 1] solution of x′′ = f(t, x, x′) on the interval (0, 1), x0(1) =
Bx′0(1) + C,

x0(t) = xθi
(t) for t ∈ [θi, 1]. (4.8)

In what follows we will show in addition that

lim
t→0+

x′0(t) = A. (4.9)

Reasoning by contradiction, assume that there are sufficiently small ε > 0 and
δ0 > 0 such that

x′0(t) /∈ (A− ε, A + ε) for t ∈ (0, δ0). (4.10)
Now, from x′n ∈ C[n−1, 1] and x′n(n−1) = A it follows that for each sufficiently

large n and the chosen ε there exists a sufficiently small δn > 0, depending on n
and ε, such that (n−1, δn) ⊂ (0, δ0) and

x′n(t) ∈ (A− ε/2, A + ε/2) for t ∈ (n−1, δn).

Besides, for each sufficiently large n there exists any i ∈ N such that θi > n−1 and

[θi, θi−1] ⊂ (n−1, δn) ⊂ (0, δ0);

the assumption that the interval [θi, θi−1] does not exist contradicts to the fact
that t = 0 is an accumulation point of the sequence {θi}. In summary, for each
sufficiently large n there exists i ∈ N such that

x′n(t) ∈ (A− ε/2, A + ε/2) for t ∈ [θi, θi−1] ⊂ (0, δ0). (4.11)

But, for each sufficiently large n and its i from (4.7) (θi > n−1 means that n ≡
nk ∈ Ni for any k ∈ N), (4.8) and (4.10) we obtain

x′n(t) /∈ (A− ε, A + ε) for t ∈ [θi, θi−1],

which contradicts (4.11). Thus, (4.9) is true.
Now, we introduce a function x(t) such that

x(t) = x0(t) for t ∈ (0, 1]

and

x′(t) =

{
x′0(t) for t ∈ (0, 1]
A for t = 0 .

Because of (4.9), x′(t) is continuous on [0, 1], which means x(t) is also continuous
on [0, 1], from where it follows that x(t) is a C1[0, 1] ∩C2(0, 1] solution to singular
BVP (1.1). �
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As an application of the above theorem, we will establish existence results for
singular problems (1.2) and (1.3). The first result concerns (1.2).

Corollary 4.2. Assume that:
(i) g(t, x) is bounded; i.e., there is a constant M > 0 such that

|g(t, x)| ≤ M for (t, x) ∈ [0, 1]×Dx.

(ii) There is a τ > 0 such that [m0 − τ,M0 + τ ] ⊆ Dx and

f(t, x) ∈ C([0, 1]× [m0 − τ,M0 + τ ]),

where m0 = −M(|B|+ 1)/k + C and M0 = M(|B|+ 1)/k + C.
(iii) gt, gx are continuous for (t, x) ∈ (0, 1]× [−M/k − τ,M/k + τ ].

Then (1.2) with k = 1, 2 has at least one solution in C1[0, 1] ∩ C2(0, 1].

Proof. It is easy to check that (S1) and (S2) hold for F1 = −M/k, F2 = −M/k−1,
L1 = M/k and L2 = M/k + 1 and τ = 0.5. So we can apply Theorem 4.1 to
conclude that the assertion is true. �

The following two results concern problem (1.3).

Corollary 4.3. Assume g(t, x, p) satisfies (S1) and (S2). Then (1.3) has at least
one solution in C1[0, 1] ∩ C2(0, 1].

Proof. Since a(t) ≥ 0 for t ∈ (0, 1], the function f(t, x, p) = −a(t)p + g(t, x, p)
satisfies (S1) and (S2) for the same constants Li, Fi, i = 1, 2, for which g satisfies
them. Thus, the assertion follows from Theorem 4.1. �

Corollary 4.4. Assume that
(i) g(t, x, p) is bounded; i.e., there is a constant M > 0 such that

|g(t, x, p)| ≤ M for (t, x, p) ∈ [0, 1]×Dx ×Dp

and a(t) ≥ h > 0 for t ∈ (0, 1].
(ii) There is a τ > 0 such that

[m0 − τ,M0 + τ ] ⊆ Dx, [−M/h− τ,M/h + τ ] ⊆ Dp,

g(t, x, p) ∈ C([0, 1]× [m0 − τ,M0 + τ ]× [−M/h− τ,M/h + τ ]),

where m0 = −M(|B|+ 1)/h + C and M0 = M(|B|+ 1)/h + C.
(iii) gt(t, x, p), gx(t, x, p) and gp(t, x, p) are continuous for (t, x, p) ∈ [0, 1] ×

[m0 − τ,M0 + τ ]× [−M/h− τ,M/h + τ ].
Then (1.3) has at least one solution in C1[0, 1] ∩ C2(0, 1].

Proof. We can choose, for example, F1 = −M/h, F2 = −M/h − τ, L1 = M/h
and L2 = M/h + τ to see that (S1) and (S2) hold and so the assertion is true by
Theorem 4.1. �

5. Examples

As a first example, we have the boundary-value problem

x′′ = x′ln(t) +
(x′ + 3)(x′ − 4)√

100− x2
, t ∈ (0, 1),

x′(0) = 2, x(1) = x′(1),
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which is solvable in C1[0, 1] ∩ C2(0, 1], by Theorem 4.1, since (S1) and (S2) hold
for F2 = −4, F1 = −3, L1 = 3, L2 = 4 and τ = 0.1.

As a second example, we have the boundary-value problem

x′′ = −2t−1x′ +
√

25− x2 + 1, t ∈ (0, 1),

x′(0) = 0, x(1) = 0.5x′(1)− 1,

which has a C1[0, 1] ∩ C2(0, 1] solution by Corollary 4.2.
As a third example, we have boundary-value problem

x′′ = −15t−1x′ +
√

25− x2
√

9− x′2 + cos 5t, t ∈ (0, 1),

x′(0) = 0, x(1) = −2x′(1) + 1,

which has a C1[0, 1] ∩ C2(0, 1] solution by Corollary 4.4.
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