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EXISTENCE OF INFINITELY MANY HOMOCLINIC ORBITS
FOR SECOND-ORDER SYSTEMS INVOLVING
HAMILTONIAN-TYPE EQUATIONS

ADEL DAOUAS, AMMAR MOULAHI

ABSTRACT. We study the second-order differential system
i+ Ad — L(t)u+ VV(t,u) =0,

where A is an antisymmetric constant matrix and L € C(R, ]RNQ). We es-
tablish the existence of infinitely many homoclinic solutions if W is of sub-
quadratic growth as |z| — 400 and L does not satisfy the global positive
definiteness assumption. In the particular case where A = 0, earlier results in
the literature are generalized.

1. INTRODUCTION

Let us consider the second-order differential system
i+ Au — L(t)u+ VV(t,u) =0, (1.1)

where A is an antisymmetric constant matrix with small size in R?Y (see the
estimation [2.2)), L € C(R,RY") is a symmetric matrix valued function and
V € C(R x RV, R) is of class C! in the second variable. We will say that a
solution u of ([I.1)) is homoclinic (to 0) if u € C?(R,RY), u(t) — 0 and u(t) — 0 as
t — Foo.

For the particular case A = 0, (1.1)) is just the Hamiltonian system

i — L(tyu+ VV(t,u) = 0. (1.2)

In recent years, existence and multiplicity of homoclinic solutions for the second
order Hamiltonian system have been investigated by many authors via the
critical point theory, see [I]-[13], [I5]-[21] and references therein. Most of them
treat the superquadratic case under the so-called global Ambrosetti-Rabinowitz
condition; that is, there exists p > 2 such that

0 < uV(t,z) < (VV(t,z),z), forall (t,z) € R x RV\{0}.

Exceptionally, in [5], the author considered, in part of the paper, the case where
the potential is of subquadratic growth as || — 4+00. Moreover, contrary to the
previous works, he removed the global positive definiteness of the matrix L(t) by
assuming
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(L1) for the smallest eigenvalue of L(t), i.e., [(t) = inf|, = (L(t)x, ), there exists
a constant o < 1 such that

IB|t*% — 0o as |t| — oo,

(L2) for some positive constants a,r, one of the following is true:
(i) L € CHR,RN?) and |L/(t)z| < a|L(t)z| for all [¢| > r and all z € RY
with |z| =1, or
(i) L € C2(R,RY") and (aL(t)x — L"(t)z,x) > 0 for all |{| > r and all
r € RN with |z| =1,
where L'(t) = (d/dt)L(t), L" (t) = (d*/dt?)L(t).
Under other suitable conditions he established the existence and multiplicity of
homoclinic solutions for . Later, his results were partially improved in [I7] [I§].

Recently, the authors in [T9, 20], treated the special case where V (¢, z) = a(t)|x|*
with 1 < p < 2 and L(¢) is a positive definite matrix for all ¢ € R. They proved the
existence of a nontrivial homoclinic solution for and respectively; where
the system was considered for the first time. Later, multiplicity of homoclinics
for was studied in [I5] for the same class of Hamiltonians. However, in math-
ematical physics, it is of frequent occurrence in that the global definiteness of
L(t) is not satisfied (see [5] for an example).

As far as the authors know, there is no research concerning the existence and mul-
tiplicity of homoclinic solutions for apart from [20]. In this paper, motivated
by [5 20] mainly, we study the existence of infinitely many homoclinic solutions
for in the case where L does not satisfy the global positive definiteness as-
sumption. Also, the potential V' will be of subquadratic growth as |z| — 400 and
is not necessarily of the form V (¢, 2) = a(t)|x|*. In the first result we assume that
V(t,x) = a(t)W(z) with W € C1(RM,R), a € C(R,R) N L?(R,R) are nonnegative
functions and a # 0. The difficulty in studying this class of nonlinearities comes
essentially from the fact that inf;eg a(t) = 0 and then there is no constant b > 0
such that V (¢, 2) > b|x|” for all ¢t € R, which essential in previous works. Moreover,
in the case where A # 0, we are unable to verify the Palais-Smale condition. To
overcome this obstacle, we use a variant fountain theorem established in [22]. For
our first theorem use the following assumptions:

(L3) 0 ¢ a( — (d?/dt?) + L(t) — A(d/dt)),

(V1) W(0) = 0 and there exist positive constants aq,az,7 and 1 < v < p < 2

such that

ar|z|” < W(x) < aglz|*, for all |z| >,
(V2) there exist positive constants as,w and v € [1,2) such that
W(z) > ag|z|”, for all |z| <w,
(V3) there exist constants ay > 0 and 3 € [1,2) such that
VW (x)] < ag(|z]P~t +1) for all z € RV,

(V4) W is even,
(V5) a € L*(R,R) and meas{t € R : a(t) = 0} = 0.

Theorem 1.1. Assume that L satisfies (L1)—(L3) and V satisfies (V1)—(V5). Then
system (1.1)) has infinitely many homoclinic solutions.

In the particular for the case A = 0, we have the following result.
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Corollary 1.2. Under the assumptions of Theorem system (1.2)) has infinitely
many homoclinic solutions.

Remark 1.3. Consider

Lt)=(t*—1)Iy and V(t,x)= |;|131_t1|
A straightforward computation shows that L and V satisfy the conditions of The-
orem but since infieg V(¢,2) = 0, the assumptions of [5, Theorem 1.2] and
[18, Theorem 1.1] do not hold. So, in some sense, Corollary completes the
corresponding results in [5l [I8] and the one in [21I] for the case 3 = 0. Moreover,
Theorem [L.1] generalizes the result of [20].

2"/ log(1 + [[1/2).

Our second main result concerns a class of nonlinearities with bounded gradient
which cover the functions of the type V(¢,z) = Ln(1 + |z|3/?) and which not
necessarily of the form V(t,x) = a(t)W(x). Homoclinic solutions to for this
class of Hamiltonians was investigated in [5 Theorem 1.3] under the assumption
of positive definiteness of L(t). Here, we omit this condition mainly. Precisely we
have the following assumptions:

(V1) V(t,0) =0 and V(t,x) — oo as |x| — oo uniformly in t € R,
(V2’) there exist constants a;,w > 0 and v € [1,2) such that

V(t,z) > ai|x|”, forall |z] <w,teR,
(V3’) there exists a constant M > 0 such that
|VV(t,z)| < M, forall (t,z) € R x RY,
(V4’) there exist constants ag,r > 0 and § € [1/2,1) such that
|VV(t,x)| < aglz|?, forall |z| <r tE€R,
(V5) V(t,—z) =V (t,z) >0, forall (t,z) € R x RVN.

Theorem 1.4. Assume that L satisfies (L1)—(L3) and V satisfies (V1')—(V5’).
Then system (L.1)) has infinitely many homoclinic solutions.

Corollary 1.5. Under the assumptions of Theorem system (1.2) has infinitely
many homoclinic solutions.

Remark 1.6. Consider the function
V(t,x) =log(1 + [z[*/?).

A straightforward computation shows that V satisfies the conditions of Theorem
but does not satisfy condition (W4) in [I8, Theorem 1.1]. Moreover, since L(t)
is unnecessarily positive definite, Corollary improves the corresponding results
in [5, [18].

2. PRELIMINARY RESULTS

We establish our results by using critical point theory, but we first give some
preliminaries (for details see [5]). We denote by B the selfadjoint extension of the
operator —(d?/dt?) + L(t) with the domain D(B) C L? = L*(R,RY). Let |B| be
the absolute value of B and |B|'/? be the square of |B|. Let E = D(|B|'/?), the
domain of |B|'/2, and define on E the inner product

(uv U)O = (|B|1/2u7 |B|1/21))L2 + (7_1,, U)L2
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and norm )
1/2
[ullo = (u,u)e"",
where (.,.)2 denotes the inner product of L. Then E is a Hilbert space.
It is easy to prove that the spectrum o(B) consists of eigenvalues numbered in
A1 < Ao <--- /00 (counted with their multiplicities), and a corresponding system

of eigenfunctions {e;};en of B forms an orthonormal basis in L2. Define
nT=#{i: <0}, n’=#{i:\=0}, An=n"+n (2.1)
and
E~ =span{e,...,e,}, E°=span{e, 41,...,en} = ker B,
E" =span{eny1, ... }-

Then one has the orthogonal decomposition £ = E~ @ E° @ E* with respect to
the inner product (-,-)o. Now we introduce on E the following inner product and
norm:

(uv U) = (|B|1/2u7 |lg|1/27J)L2 + (uO’ UO)L2
and

lull = (u, )2,

where u = u~ +u’ +ut andv =v~ + 00 +0vt € E= E~ @ E° ¢ E*. Clearly
the norms || - || and || - || are equivalent (see [5]). Furthermore, the decomposition
E = E- ® E° @ E* is orthogonal with respect to the inner products (-,-) and
(+,-)r2. For the rest of this article, || - || will be the norm used on E. The following
fact on E will be needed.

Lemma 2.1 ([B]). Suppose that L(t) satisfies (L1). Then E is continuously em-
bedded in W12(R,RN), and consequently there exists 6 > 0 such that
ullwi2@ryy < Ollull, forallueE,

where ||[ullwrz@ vy = ([ul7a + llall72)"2.

Now, we make the following estimation on the norm of the matrix A,
1
41 < 5 (22)
where | - | is the standard norm of RV".
Moreover, using (V5), we note that a is bounded and can be seen as a weight
function. So, for p > 1, the weighted norm || - || r(4) Will be defined on E by

oo = [ [ atblutoyrar
From [B, Lemmas 2.2 and 2.3], we have the following two lemmas.

Lemma 2.2 ([5]). Suppose that L(t) satisfies (L1). Then E is compactly embedded
in LP for any 1 < p < oo, which implies that there exists a constant C, > 0 such
that

}1/10

llullr < Cpllull, for allu € E. (2.3)

Lemma 2.3 ([5]). Suppose that L(t) satisfies (L1), (L2). Then D(B) is continu-
ously embedded in W2(R,RYN), and consequently, we have

lu(®)] — 0 and |4(t)| — 0 as [t|] — oo,

for all w € D(B).
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Lemma 2.4. Suppose assumption (V5) holds. If qx — q (weakly) in E, then
VV(t,qx) — VV(t,q) in L*(R,RY).

Proof. Assume that g — g in E. By the Banach-Steinhaus Theorem the sequence
(k) ken is bounded in E and by ([2.3)), there exists a constant d; > 0 such that

sup [|gxlle < di, |lgllr= < di. (2.4)
keEN

Since VW is continuous, by (2.4]) there exists a constant dy > 0 such that
VW (aqi(t)] < da,  [VW(q(1))] < da,

for all k € N and ¢t € R. Hence,
IVV(t,qi(t) — VV(t,q(1))| < 2d2a(t).

On the other hand, by Lemma qr — q in L?, passing to a subsequence if nec-
essary, we obtain g — ¢ for almost every ¢ € R. Then, using (V5), the Lebesgue’s
Convergence Theorem gives the conclusion. O

Let E be a Banach space with the norm ||- || and E = &;enX; with dim X; < oo
for any j € N. Set Y, = EszlXj and Zj, = @52, X;. Consider the C'-functional
®) : £ — R defined by

Oy (u) := A(u) — A\B(u), Ae|l,2].
Theorem 2.5 (|22 Theorem 2.2]). Assume that the functional ® defined above
satisfies
(T1) @, maps bounded sets to bounded sets uniformly for A € [1,2]. Moreover,
Dy (—u) = Pa(u) for all (\,u) € [1,2] x E,

(T2) B(u) > 0 for all z € E;B(u) — o0 as |z| — oo on any finite dimensional
subspace of F,

(T3) there exist py, > 1, > 0 such that

ar(A) == inf Dy(u) >0>br(A):= max  Dy(u),
u€ Zy, ||lull=pk u€Yp, [lull=rk

for all A € [1,2], and

di(\) = inf Dy(u) =0 as k — oo, uniformly for A € [1,2].
UEZp,|lull<pr

Then there exist A, — 1,uy, €Y, such that
) v, (ua,) =0, @y, (ur,) — fr € [di(2),br(1)] asn — oo,

Particularly, if {ux,} has a convergent subsequence for every k € N, then ®1 has
infinitely many nontrivial critical points {u} € E\{0} satisfying ®1(ur) — 0~ as
k — oo.

3. PROOF OF THEOREM [I.1]

Let ® be the functional defined on E by
D) = /}R (166 + (L(oyu(e), ut)] it + 5 /}R (Au(t), a(t))dt — /R V(t, u(t))dt
= 5 (1P = 1 1?) + 5 [ autoyanar = [ viuoar

(3.1)
foralu=u" 4+ +ut e E=E- @ E°q Et.
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Lemma 3.1. Under the conditions of Theorem ® € CHE,R) and
' (u)o = /R [(at), 5(0) + (L@u(t), v(1)) | at + /]R (Au(t), o(t))dt
- /]R (VV(t, u(t)), o(t))dt.

forallu=u"+ul+ut,v=0v"+0"+vt in E=E-®E°® E*. Moreover, any
critical point of ® on E is a homoclinic solution of (1.1).

Proof. Rewrite ® = Uy + WUy — U3 where
i) = / (6P + (Lt u(e)]dt, - walu) o= / (Au(t), a(t))dt,

R
Uy (u) = / V(i u(t))dt.
R
It is known [5] that U3 € C'(E,R) and for all u,v € E,
Wi = [ [(@0.50) + (L. o)]a
Also, we have ¥y € C'(E,R), and for all u,v € E,
W) (u)y = / (Au(t), 5(1))dt.
R
Indeed, using Lemma the quadratic form ¥y is continuous and therefore it is
of class C!'. Furthermore, by the use of the antisymmetric property of A, we obtain

the result.
It remains to show that W3 € C*(E,R) and for all ¢,v € E,

Wia)o = [ (VV(t.a(0).o(t)i.

Fix g € E, let ¢1 = sup|y < g~ | VW (2)| and define J(g) : £ — R as follows

Tapo = [ (VV(ta@)ue)it, VoeE.
R
Then J(q) is linear and bounded. Indeed,
[VV(t,q(t))| = a(t)|[VW(q(t))| < c1a(t), VteR
and by (2.3)), we obtain

(@) = | / (VV (£, q(t)). v(t))dt|
<o / a(t)]o(®)|dt (3.2)

< ciflallzf[v]l2
< c1Callall2lv]]-

Moreover, for ¢,v € E, by the Mean Value Theorem, we have

/ V(t,q(t) +v(t))dt — / V(t,q(t))dt = /(VV(t, q(t) + h(t)v(t)),v(t))dt,
R R R
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where h(t) € (0,1). Also, by Lemma [2.4] and the Holder inequality, we have

/vauquw+mwmwxwwMﬁ—/YVV@au»w@»ﬁ
R R (3.3)
=Aawuﬂ@+h@wm—vvw«mm@Mrea

as v — 0 in E. Combining (3.2)) and (3.3) we obtain the result.
Now, we prove that ¥} is continuous. Suppose that ¢ — ¢go in E and note that

@umv—wa%nuiéWWﬁﬂu»—vvundw»mwMt

By Lemma [2.4] and the Holder inequality, we obtain

W3(q)v — W3(go)v — 0, as ¢ — qo.
Now, we check that critical points of ® are homoclinic solutions for (L.1)). In fact, if
u is a critical point of ®, by Lemma[3.1] we have L(t)u(t) — VV (¢, u(t)) is the weak
derivative of @ + Au. Since L € C(R,RY") and V € C'(R x RY R), we see that

U+ Au is continuous and consequently # is continuous which yields u € C?(R, RY);
i.e., u is a classical solution of .

Finally, to prove that (t) — 0 as [t| — oo, note that by Lemmal[2.3]it suffices to
show that any critical point of ® on F is an element of D(B). Indeed, by Lemma
we know that u € W12(R,RY) and hence u(t) — 0 as |t| — oo. Moreover,
since W € C1(RY,R), there exists d > 0 such that

VW (u(t))| <d, VteR. (3.4)
From (|1.1)) and this inequality, we receive
[Bull: = | Ad + VV (t,u)|[7

gz/ |Au(t)|2dt+2d2/ la(t)|2dt.
R R

By (3.5) and the fact |i|,a € L?*(R,R) one sees that ||Bulp: < oo; ie., u €
D(B). O

(3.5)

To apply Theorem [2.5 for proving Theorem [I.I} we define the functionals A, B
and @, on the space F by

1

Aw) = 511+ 5 [ (A i), B = Gl + [ Vo)

5 (1) = A(u) — \B(u)
= 3l + 5 [ (Aute) i)t =2(G10 I + [ Vieuo))

foralu=u"+u’+utin E=E-®E°® E' and X € [1,2]. From Lemma
we know that ®, € C'(E,R) for all A € [1,2]. Let X; = span{e;} for all j € N,
where {e,;n € N} is the system of eigenfunctions given below. Note that ®; = @,
where ® is the functional defined in .

Lemma 3.2. Under the assumption (V1), we have B(u) > 0 and B(u) — oo as
lu]l = oo on any finite dimensional subspace of E.
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Proof. Since a and W are nonnegative it is obvious, by the definition of B, that
B(u) > 0. We claim that for any finite dimensional subspace F' C E, there exists
€ > 0 such that

meas ({t € R : a(t)[u(t)]” > €||lul|"}) =€, Vue F\{0}. (3.6)
If not, for any n € N, there exists u,, € F\{0} such that

meas({t € R: a(t)|u,(t)|” > %HunH”}) < %

Let vy, := 2. Then v, € F, ||lv,|| =1 for all n € N and

meas({t € R: a(t)|v,(t)|” > %}) < %, Vn € N. (3.7)

Passing to a subsequence if necessary, we may assume v, — v in E for some vy € F'
since F is of finite dimension. Evidently, ||vo|| = 1. By the equivalence of norms on
F, we have v, — vg in L7 (a); i.e.,

/ a(t)|v, —vo|7dt — 0, asn — oc. (3.8)
R
Moreover, since ||[vo||ze > 0, by (V5) and the definition of || - ||, it is easy to see
that there exists a constant dg > 0 such that

meas({t € R;a(t)|vg(t)|” > do}) > do. (3.9)

For any n € N, let
1 1
A, ={teR:at)|v.(®)] < ﬁ}’ A =R\A, ={t e R:a(t) v, (t)]” > ﬁ}

Set Ag = {t € R: a(t)|vg(t)|” > dp}. Then, for n large enough, by (3.7)) and (3.9)),
we have

meas(A, N Ag) > meas(Ag) — meas(Ay) > 5o — 1/n > /2.

Consequently, for n large enough, there holds

/a(t)\vn _ wpldt > / a()vn — vl dt
R NA

A’"- 0
2 a(t)|ve|7dt — a(t)|v, |7 dt
B 2771( AnnAo (®)leol AnnAo ()lo] )
2 271_1 (80 — 1/n) meas(A,, N Ag)

3
2 51 > 0

This contradicts and therefore holds. For the € given in (3.6). Let
Ay ={t eR:a®)|u(®)|” > €||ul|”}, Vue F\{0}.
Then
meas(Ay) > ¢, Yue F\{0}. (3.10)
Observing that for u € F with |ul| > 7(||a|/L~/€)'/7, there holds
[u(t)] >r, Ve A,. (3.11)
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Combining (3.10)), (3.11) and (V1), for any u € F with ||u| > 7(||a|p~/€)"/7, we

obtain

Bw) = gl P+ [ Vit ule)

> / V(t,u(t))dt

u

2a1/ a(t)|u(t)|dt

u

> ayellul|” meas(Ay) > ar€?||ul|”,
which implies that B(u) — oo as |Ju]] — oo on F. O

Lemma 3.3. Under the assumptions of Theorem[I.1}, there exist a positive integer
ko and a sequence pr — 07 as k — oo such that

ai(N) = inf Dy(u) >0, Vk >k,

UE Zy,||ull=pr

and

di(N) == inf Dy(u) =0 as k — oo, uniformly for A € [1,2],
wEZk,[|lull<pk

where Z, = 52, X;.

Proof. Note that Z, C ET for all k > fi + 1 where 1 is the integer defined in (2.1)).
So, for any k > n + 1 and (A, u) € [1,2] x Zj, we have

1 1 .
Ba(w) 2 3l = 5l il — 2 | Ve ute)as
) R (3.12)
5 (1= 24 lulP =2 [ Vitu(o)
with 1 — §2|A| > 0 by (2.2). On the other hand, by the mean value theorem and
(V3), we have

/V(t,u(t))dt:/(VV(t,o(t)u(t)),u(t))dt
R’ R (3.13)

ga4/Ra(t)\u(t)|ﬁdt+a4/Ra(t)|u(t)|dt

where 6(¢) € (0,1). Since the function a is bounded, by (3.13) there exists ¢; > 0
such that

>

[ vieu®ye < e (juls + ). (3.14)
R
Combining (3.12) and (3.14)), we obtain
1

() = 5 (1= 3|Al) Jull® = 2e1 (Jlull s + ullz1 )- (3.15)

For k € N, define
li(k):=  sup |lullp, lg(k):= sup |ulps.
UEZ,||ul|=1 UEZy,||ul|=1

Since E is compactly embedded into L' and L? respectively,
Li(k) =0, lg(k)—0, ask— oo (3.16)
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Consequently, for any k > 7+ 1, (3.15]) implies

2a(w) > 5 (1= Al = 201 (Bl + hBel), (317

for all (A\,u) € [1,2] x Z. Let

P = %(zg(m + ll(k))7 Vk € N.
From , we obtain
pr — 0 as k — oo, (3.18)
and there exists kg > 7 + 1 such that
p <1, Vk > k. (3.19)

Combining (3.17)-(3.19) and the definition of pg, a straightforward computation
shows that

1—-62%A4
ar(A) = > 104,

inf @y (u) 250, Vk> k.

1
UE Zy, ||ull=px 4

Furthermore, by (3.17), for any k > ko and u € Zy, with |lu|| < pi, we have
Pa(u) = —2¢1 (l»’?(k)l)f + ll(k)l’k)-
Then

0> inf @ > —2¢, (18 (k)P + 11 (k Yk > ko.
_ueZkl,IﬂluHSPk /\(u)_ CI<’8( )pk+ 1( )pk>’ ="

Combining (3.16)) and (3.18]), we obtain

dp(X) == inf ®y(u) = 0 as k — oo, uniformly for A € [1,2].
u€Zp,|lull<pk

O

Lemma 3.4. Under the assumptions of Theorem[I.1] there exists 0 < ry < py for
all k € N such that

b(A) ;= max  ®,(u) <0, VkeN,

u€Yy, |lull=rk
where the sequence {pi }ren is obtained in Lemma and Y}, = @?ZlXj.

Proof. For u =u~ +u® +ut € Y} with |Jul| < o~ where C is the constant given
by (2.3)), one has ||u||~ < w and by (V2), we have

1 1 .
Ba(w) < g + glAllel el — [ Vit ule)a

1 2 2 v
< 5 (1 %140) ull? = aslluly o (3.20)

1 2 2 v
< 5 (1140 [l = 6 ul

where the last inequality is obtained by the equivalence of norms || - ||+ () and || - ||
on the finite dimensional space Y}, and d; > 0 depending on Y. Now, choosing

0 < 7, < min{pg, C’i’ (5;/(2_”)}, Vk € N.
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By (3.20]), a direct computation gives

_ P41,

bp(A):=  max  Py(u) ry <0, VkeN.

uEYk, [lull=rk - 2
(I

Proof of Theorem[I.1. Combining Lemma lemma (3.1) and (3.14), it is

easy to see that ®, maps bounded sets to bounded sets uniformly for A € [1,2].
Moreover, by (V4), ®x(—u) = ®5(u) for all (A, u) € [1,2] x E. Thus the condition
(T1) of Theorem 2.5 holds. Lemma [3.2]shows that the condition (T2) holds, while
Lemma together with Lemma mply that the condition (T3) holds for all
k > ko, where kg is given in Lemma [3.3] Therefore, by Theorem [2.5] for each
k > ko, there exist A\, — 1,uy, €Y, such that

(I)/)\n|yn (U)\n) = O7 (I))\n (’U,)\n) — fk € [dk(2),bk(1)] as n — oQ. (321)

It remains to prove that the sequence {uy, } is bounded. Otherwise, we suppose,
up to a subsequence, that

lua, || = o0, asn — oco. (3.22)
Let u, :=uy, =u, +ud +u} in E=FE~ & E°® ET and assume that

tn/[[unll = w, g /Nl = w®, /]| = w.

By (3.21]), we have
(u:’ Un) - An(“;avn) + /

(At (£), 0 (£))dt — A / (VV(t, un(t)), va(t))dt = 0,
R R

(3.23)
where v,, = v|y,, v = o, s;e;. Using (V3) and Lemmawe can find a constant
d > 0 such that

\/R(vv<t,un(t)),vn(t))dt| ga4Aa(t)|un(t)|ﬂ_1|vn(t)|dt+a44a(t)\vn(t)|dt

< d(llwnlP* + 1) onl

(3.24)
Since 8 — 1 < 1, from (3.22)) and (3.24)), we obtain
1
/(VV(t, un(t)), v (t))dt — 0, asn — oo. (3.25)
l[unl J=

Also, dividing by |Ju,|| in (3.23) and passing to the limit, we obtain

(wh,v) — (w™,v) +/(Aw(t),1}(t))dt =0. (3.26)
R

If w# 0, (3.26) is equivalent to 0 € O'( — (d?/dt?) + L(t) — A(d/dt)) which
contradicts assumption (L3).

If w= 0. From (3.21)), we have

0= A (luall? = [2]7) + [ A r = i )

R (3.27)

— )\n/(VV(Lun)Q\nu:{ — u,, )dt.
R
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Arguing as in (3.24)-(3.25)), we obtain

1
H HQ /(vv(ta Un), )\nu: — u;)dt — 0 asn— oo. (3,28)
Up, R
Combining (3.22)), (3-27) and (3.28)) we obtain
1 . . —
[unl? /R(Aum Antlyh — 1y, )dt — =1 as n — oo. (3.29)

On the other hand, by Lemma ssing if necessary to a subsequence, we have

e
quxp — 0in L% Also, by Lemma the sequence {’\"ﬁu’in”“l} is bounded in L?,

so it is obvious that

1

W/R(Aun,)\na:[un)dtﬂ() as n — 0o.

This is in contradiction with . Therefore, {u,} is bounded and by a standard
argument it possesses a strong convergent subsequence in E (see [I8] 21]).

Now, from the last assertion of Theorem we know that ® = ®; has infinitely
many nontrivial critical points and by Lemma[3.1] system possesses infinitely
many nontrivial homoclinic solutions. This completes the proof. ([l

4. PROOF OF THEOREM [I.4]

The proof is based on the following two lemmas.

Lemma 4.1. Under the conditions of Theoremm ® € CY(E,R) and
&' (u)o = /R [(a(t),o(t)) + (L(t)u(t),v(t))} dt
+/R(Au(t),i1(t))dt—/R(VV(t,u(t)),v(t))dt.

forallu=u"+ul+ut,v=0v"+"+vt in E=E-®E°® E*. Moreover, any
critical point of ® on E is a homoclinic solution of (1.1).

Proof. Using the notation of Lemma we need to prove that U3 € C'(E,R) and
Wa)o = [ (VV(tae). o), Voo e E.

Let u € E, from Lemmal[2.1] we know that u € W2?(R,RY) and hence there exists
To > 0 such that

(B < /2, Vi > T (4.1)
By (<2.3), for any v € E with |[v]| < 55—, we have

[vllzee < 7/2. (4.2)
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Combining (4.1), (4.2) and (V4’), by the mean value theorem and the Holder in-
equality, for any 7' > Ty and v € E with |Jv]| < 55—, we have

‘/DT V(t,u+v) — V(t,u) — (VV(t,u),v ]dt’
—‘/HT / (VV(t,u+ sv) — VV(t,u), 0 ds}dt’

<20z [ (lul + [ol) ol (4.3)
|t|>T

<2as( [ (ul+1olar) ol o,
|t|>T Li=8

B
< 24501 (/| (ful + o) o]

In view of Lemma@ for any € > 0, there exist 0 < §; <

< ﬁ and T, > Ty such
that

B

2a2CL(/ (Ju] + \v\)dt) <e/2, YvekFE, |v]<d. (4.4)

ERRATTP
Define ¥y : WL2([-T,T],RY) — R by
T
(u) = / V(tu)dt, Vue W21, T),RY).

-7

It is known (see, e.g., [14]) that Ur € CYWL2([-T,T],R"N)) for any T > 0.

Combining this with the fact E is continuously embedded in W12(R,RY) from
Lemman for the ¢ and T, given above, there exists do = d2(u, e, T:) such that

|/ Vit uto) = V(tu) — (VY ), < S, Vo€ B, o] < 6 (45)
Comblnlng ([@3)-(4.5) and taking 6 = min{é;,d2}, we obtain
|/R[V(t,u+v) “V(tu) - (VW (), 0)]dt]| < eloll, Vo e B, o] < 6.
Thus U3 is Fréchet differentiable and
W, (q)v = /R (VV (L q(t), v(t)dt, Vg0 € E.

Next we prove that ¥} is weakly continuous. Let u, — u in F. Again, using
Lemma [2.2] u,, — ug in L? for all 1 < p < co. By the Holder inequality,

15 (un ) — Wi (uo) || 2+ = Sup 1(5(un) — @y (uo))o||

v||=1

= sup ’/R(VV(t,un)—VV(t,uO),U)dt‘

lloll=1
1/3
< sup /|VV(t,un)—VV(t,uO)|3dt) Iells/o]
loli= 1 R

1/3
< Cop( [ 9V () = VV(tuo)dt) T ¥neN,
R
(4.6)
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Since wu, — ug in L', there exists a constant My > 0 such that

llunllpr < My, VneN. (4.7
y (V4’), for any € > 0, there exists 7 > 0 such that
YV (t,u)| < d V3, Vu e R, Jul < 1. (4.8)

2(My"® + luo | 2)

Due to (4.8), the fact that ug € WH2(R,RY) and u, — wug in L™, there exist
T/ > 0 and N; € N such that for all n > N; and [¢| > T

g
IVV (£, un)| < |3,
2(My"? + uo || }2°)

IVV (£, u0)| < £ Juo| /3.

— 1/3 1/3
2(My" + ol 1)
By (4.7) and (4.9), we have
1/3
([ 19Vt - YVt u)lar)
[t|>T!

= 1/3 - 1/3
2(My"" + Jluoll27)
, Vn>N.

(4.9)

(Jlunll35 + lluol|35?) (4.10)

<

N ™

On the other hand, using u,, — wup in L™ and (V3’), by Lebesgue’s Dominated
Convergence Theorem,

T 1/3
(/ [VV(t, up) — VV(t,u0)|3dt> —0 asn— oc.
T/

Thus there exists No € N such that for all n > Ns,
T, 1/3
(/ IVV (t,up) — VV(t,u0)|3dt) <e/2.
Combining the last inequality with (4.10]) and taking N. = max{N7, Ny}, we obtain

1/3
(/ IVV (t,u,) —VV(t,u0)|3dt) <e, Vn>N.. (4.11)
R
Inequality (4.11)) with (4.6)) imply the continuity of ¥4 and therefore U3 € C*(E, R).
The rest of the proof is similar to that of Lemma [3.1} O

Lemma 4.2. Under the assumption (V1’), B(u) > 0 and B(u) — oo as ||u| — oo
on any finite dimensional subspace of E.

Proof. Evidently, B(u) > 0. An argument similar to but easier than the proof of
(3.6) allows to claim that for any finite dimensional subspace F' C F, there exists
€ > 0 such that

meas({t € R;|u(t)| > e||ul|}) > €, Vue F\{0}. (4.12)
By (V1’), for any A > 0, there exists B > 0 such that
V(t,z) > Ale, YteRand |z| > B. (4.13)

where € is given in (4.12). Let
A, ={teR:|ut)] > €|u|}, Yue F\{0}.
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Then by (4.12),

meas(A,) > ¢, Yue F\{0}. (4.14)
Observing that for u € F with ||u|| > B/e, there holds
lu(t)] > B, VteA,. (4.15)
Combining (4.13)-(4.15)), for any v € F with ||u|| > B/e, we have
1
Ba) = gl + [ Vitue)ar
R

> / V(t,u(t))dt

u

> meas(A,)A/e > A,

which implies that B(u) — oo as |ju|| — oo on F. O

To complete the proof of Theorem [1.4] we observe that since (V3’) is the partic-
ular case of (V3) where 8 = 1, then Lemma remains true under the assumption
(V3"). Also, it is obvious that Lemma[3.4]still holds with (V2’) replacing (V2). The
remainder of the proof is analogous to Theorem |1.1
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