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OPTIMAL BILINEAR CONTROL OF NONLINEAR HARTREE
EQUATION IN R3

BINHUA FENG, JIAYIN LIU, JUN ZHENG

Abstract. This article concerns with the optimal bilinear control for the

nonlinear Hartree equation in R3, which describes the mean-field limit of many-

body quantum systems. We show the well-posedness of the problem and the
existence of an optimal control. In addition, we derive the first-order optimality

system.

1. Introduction

We are interested in an optimal bilinear control problem for the nonlinear Hartree
equation

iut + ∆u+ λ(
1
|x|
∗ |u|2)u+ φ(t)V (x)u = 0, (t, x) ∈ [0,∞)× R3,

u(0, x) = u0(x),
(1.1)

where u(t, x) is a complex-valued function in (t, x) ∈ [0,∞) × R3, u0 ∈ H1(R3),
λ ∈ R, φ(t) denotes the control parameter and V (x) is a given potential. Equation
(1.1) has many interesting applications in the quantum theory of large systems of
non-relativistic bosonic atoms and molecules. In particular, this equation arises in
the study of mean-field limit of many-body quantum systems; see, e.g., [8, 14] and
the references therein. An essential feature of equation (1.1) is that the convolution
kernel |x|−1 still retains the fine structure of micro two-body interactions of the
quantum system. By contrast, nonlinear Schrödinger equation arises in limiting
regimes where two-body interactions are modeled by a single real parameter in
terms of the scattering length. Especially, nonlinear Schrödinger equation cannot
describe quantum system with long-range interactions such as the physically im-
portant case of the Coulomb potential |x|−1, whose scattering length is infinite, see
[14].

The problem of quantum control via external potentials φ(t)V (x), has attracted
a great deal of attention from physicians, see [4, 10, 11]. From the mathematical
point of view, quantum control problems are a specific example of the optimal
control problems, see [6], which consist in minimizing a cost functional depending
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on the solution of a state equation (here, equation (1.1)) and to characterize the
minimum of the functional by an optimality condition.

Now we begin with a brief recapitulation of some important optimal control re-
sults for Schrödinger equations that have been derived so far. The mathematical
research for optimal bilinear control of systems governed by partial differential equa-
tions has a long history, see [7, 13] for a general overview. However, there are only
a few rigorous mathematical results about optimal bilinear control of Schrödinger
equations. Recently, optimal control problems for linear Schrödinger equations have
been investigated in [2, 3, 12]. Moreover, those results have been tested numerically
in [3, 16]. In particular, a mathematical framework for optimal bilinear control of
abstract linear Schrödinger equations was presented in [12]. In [2], the authors
considered the optimal bilinear control for the linear Schrödinger equations includ-
ing coulombian and electric potentials. For the following nonlinear Schrödinger
equations of Gross-Pitaevskii type:

iut + ∆u− U(x)u− λ|u|αu− φ(t)V (x)u = 0, (t, x) ∈ [0,∞)× RN ,
u(0, x) = u0(x),

(1.2)

where λ ≥ 0; i.e., defocusing nonlinearity, U(x) is a subquadratic potential, con-
sequently restricting initial data u0 ∈ Σ := {u ∈ H1(RN ), xu ∈ L2(RN )}. The
authors in [9] have presented a novel choice for the cost term, which is based on
the corresponding physical work performed throughout the control process. The
proof of the existence of an optimal control relies heavily on the compact embed-
ding Σ ↪→ L2(RN ). In contrast with (1.2), due to absence of U(x)u in (1.1), we
consider equation (1.1) in H1(R3). Therefore, how to overcome the difficulty that
embedding H1(R3) ↪→ L2(R3) is not compact, which is of particular interest, is one
of main technique challenges in this paper.

This article is devoted to the study of (1.1) within the framework of optimal
control, see [15] for a general introduction. The natural candidate for an energy
corresponding to (1.1) is

E(t) =
1
2

∫
R3
|∇u(t, x)|2dx− λ

4

∫
R3

∫
R3

|u(t, y)|2|u(t, x)|2

|x− y|
dy dx

− φ(t)
2

∫
R3
V (x)|u(t, x)|2dx.

(1.3)

Although equation (1.1) enjoys mass conservation, i.e., ‖u(t, ·)‖L2 = ‖u0‖L2 for all
t ∈ R, the energy E(t) is not conserved. Indeed, its evolution is given by

d

dt
E(t) = −1

2
φ′(t)

∫
R3
V (x)|u(t, x)|2dx. (1.4)

Integrating this equality over the compact interval [0, T ], we obtain

E(T )− E(0) = −1
2

∫ T

0

φ′(t)
∫

R3
V (x)|u(t, x)|2 dx dt. (1.5)

Borrowing the idea from [9], we now define our optimal control problem. For
any given T > 0, we consider H1(0, T ) as the real vector space of control parameter
φ. Set

X(0, T ) := L2((0, T ), H1) ∩W 1,2((0, T ), H−1), (1.6)
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and for any initial data u0 ∈ H1, φ0 ∈ R

Λ(0, T ) :=
{

(u, φ) ∈ X(0, T )×H1(0, T ) : u is a solution of (1.1)

with u(0) = u0 and φ(0) = φ0

}
.

Thanks to Lemma 2.5, the set Λ(0, T ) is not empty. We consequently define the
objective functional F = F (u, φ) on Λ(0, T ) by

F (u, φ) := 〈u(T, ·), Au(T, ·)〉2L2 + γ1

∫ T

0

(E′(t))2dt+ γ2

∫ T

0

(φ′(t))2dt, (1.7)

where parameters γ1 ≥ 0 and γ2 > 0, A : H1(R3) → L2(R3) is a bounded linear
operator, essentially self-adjoint on L2(R3) and localizing; i.e., there exists R > 0,
such that for all ψ ∈ H1: suppx∈R3(Aψ(x)) ⊆ B(R).

Therefore, we can define the minimizing problem

F∗ = inf
(u,φ)∈Λ(0,T )

F (u, φ). (1.8)

Firstly, we consider the existence of a minimizer for the above minimizing problem.

Theorem 1.1. Let V ∈W 1,∞(R3). Then, for any T > 0, any initial data u0 ∈ H1,
φ0 ∈ R and any choice of parameters γ1 ≥ 0, γ2 > 0, the optimal control problem
(1.8) has a minimizer (u∗, φ∗) ∈ Λ(0, T ).

Remarks. (1) In contrast with the result in [9], our result holds for both focusing
and defocusing nonlinearities.

(2) Since the embedding H1(R3) ↪→ L2(R3) is not compact, the method in [9]
fails to work in our situation. Fortunately, applying Lemmas 2.1 and 2.2, we derive
the compactness of any minimizing sequence.

Thanks to well-posedness of Hartree equation (1.1), for any given initial data
u0 ∈ H1, we can define a mapping by

u : H1(0, T )→ X(0, T ) : φ 7→ u(φ).

Using this mapping we introduce the unconstrained functional

F : H1(0, T )→ R, φ 7→ F(φ) := F (u(φ), φ).

In the following theorem, we investigate the differentiability of unconstrained func-
tional F , and obtain the first order optimality system.

Theorem 1.2. Let u0 ∈ H2, φ ∈ H1(0, T ) and V ∈ W 2,∞. Then the functional
F(φ) is Gâteaux differentiable and

F ′(φ) = Re
∫

R3
ϕ̄(t, x)V (x)u(t, x)dx− 2

d

dt
(φ′(t)(γ2 + γ1ω

2(t))), (1.9)

in the sense of distributions, where

ω(t) =
∫

R3
V (x)|u(t, x)|2dx, (1.10)

and ϕ ∈ C([0, T ], L2) is the solution of the adjoint equation

iϕt+∆ϕ+φ(t)V (x)ϕ+λ(
1
|x|
∗|u|2)ϕ+λ

1
|x|
∗(ϕū+uϕ̄)u = γ1(φ′(t))2ω(t)V u, (1.11)

subject to the Cauchy initial data ϕ(T ) = 4i〈u(T ), Au(T )〉L2Au(T ).
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As an immediate corollary of Theorem 1.2, we derive the precise characterization
for the critical point φ∗ of functional F . The proof is the same as that of [9,
Corollary 4.8], so we omit it.

Corollary 1.3. Let u∗ be the solution of (1.1) with control φ∗, and ϕ∗ be the
solution of corresponding adjoint equation (4.2). Then φ∗ ∈ C2(0, T ) is a classical
solution of the ordinary differential equation

d

dt
(φ′∗(t)(γ2 + γ1ω

2
∗(t))) =

1
2

Re
∫

R3
ϕ̄∗(t, x)V (x)u∗(t, x)dx. (1.12)

subject to the initial data φ∗(0) = φ0 and φ′∗(T ) = 0.

This article is organized as follows: in Section 2, we present some preliminaries
and some estimates for the Hartree nonlinearity. In section 3, we will show Theorem
1.1. In section 4, we firstly formally derive the adjoint equation and analyze its
well-posedness. Next, the Lipschitz continuity of solution u = u(φ) with respect to
control parameter φ is obtained. Finally, we give the proof of Theorem 1.2.
Notation. Throughout this article, C > 0 will stand for a constant that may
different from line to line, when it does not cause any confusion. Since we exclusively
deal with R3, we often use the abbreviations Lr = Lr(R3), Hs = Hs(R3). Given
any interval I ⊂ R, the norms of mixed spaces Lq(I, Lr(R3)) and Lq(I,Hs(R3)) are
denoted by ‖ · ‖Lq(I,Lr) and ‖ · ‖Lq(I,Hs) respectively. We denote by U(t) := eit4

the free Schrödinger propagator, which is isometric on Hs for every s ≥ 0, see [5].
For simplicity, we denote

g(u)(x) :=
( 1
| · |
∗ |u|2

)
(x) =

∫
R3

|u(y)|2

|x− y|
dy.

2. Preliminaries

We now recall some useful results. First, we recall the following two compactness
lemmas which are vital in this paper, see [5] for detailed presentation.

Lemma 2.1 ([5]). Let X ↪→ Y be two Banach spaces, I be a bounded, open interval
of R, and (un)n∈N be a bounded sequence in C(Ī , Y ). Assume that un(t) ∈ X for
all (n, t) ∈ N × I and that sup{‖un(t)‖X , (n, t) ∈ N × I} = K < ∞. Assume
further that un is uniformly equicontinuous in Y . If X is reflexive, then there exist
a function u ∈ C(Ī , Y ) which is weakly continuous Ī → X and some subsequence
(unk

)k∈N such that for every t ∈ Ī, unk
(t) ⇀ u(t) in X as k →∞.

Lemma 2.2 ([5]). Let I be a bounded interval in R, and (un)n∈N be a bounded se-
quence in L∞(I,H1

0 )∩W 1,∞(I,H−1). Then, there exist a function u ∈ L∞(I,H1
0 )∩

W 1,∞(I,H−1) and some subsequence (unk
)k∈N such that for every t ∈ Ī, unk

(t) ⇀
u(t) in H1

0 as k →∞.

Lemma 2.3 ([1]). Let r > 0, v ∈ H1 and (vn)n∈N is a bounded sequence in L2. If
vn → 0 in L2

loc, then

∀|x| < r,

∫
R3

v(y)vn(y)
|x− y|

dy → 0 as n→∞.

For (1.1), we need the following lemma dealing with the Hartree nonlinearity
term.

Lemma 2.4. There exists a constant C > 0 such that for every u, v ∈ H2,
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(i) ‖g(u)u− g(v)v‖L2 ≤ C(‖u‖2H1 + ‖v‖2H1)‖u− v‖L2 ;
(ii) ‖g(u)u‖H2 ≤ C‖u‖3H2 ;

(iii) ‖g(u)u− g(v)v‖H2 ≤ C(‖u‖2H2 + ‖v‖2H2)‖u− v‖H2 .

Proof. (i) Applying the Hardy inequality and the Hölder inequality, we have

‖g(u)u− g(v)v‖L2

≤ ‖g(u)(u− v)‖L2 + ‖(g(u)− g(v))v‖L2

≤ ‖g(u)‖L∞‖u− v‖L2 + ‖g(u)− g(v)‖L∞‖v‖L2

≤ C‖u‖L2‖∇u‖L2‖u− v‖L2

+ C sup
x∈R3

(∫
R3

(|u(y)|+ |v(y)|)2

|x− y|2
dy
)1/2

‖v‖L2‖u− v‖L2

≤ C‖u‖2H1‖u− v‖L2 + C(‖∇u‖L2 + ‖∇v‖L2)‖v‖L2‖u− v‖L2

≤ C(‖u‖2H1 + ‖v‖2H1)‖u− v‖L2 .

(2.1)

This prove the first point.
(ii) Using the equivalent norm of H2; i.e., ‖ · ‖H2 = ‖ · ‖L2 + ‖∆ · ‖L2 , we have

‖g(u)u‖H2 ≈ ‖g(u)u‖L2 + ‖4(g(u)u)‖L2 := K1 +K2. (2.2)

For K1. Taking v = 0 in (i), we have

K1 ≤ C‖u‖2H1‖u‖L2 ≤ C‖u‖3H2 .

For K2. It is known that (−∆) in R3 has the Green’s function 1
4π|x| ; i.e., −∆( 1

4π|x| ∗
f) = f . Thus, it follows from the Hardy inequality and the Hölder inequality that

‖4(g(u)u)‖L2 ≤ C‖∆[(−∆)−1|u|2]u‖L2 + C‖∇g(u)∇u‖L2 + C‖g(u)∆u‖L2

≤ C‖|u|2u‖L2 + C‖∇g(u)‖L∞‖∇u‖L2 + C‖g(u)‖L∞‖∆u‖L2

≤ C‖u‖3H2 .

Collecting the estimates on K1 and K2, we obtain the second point.
(iii) Similarly, we write

‖g(u)u− g(v)v‖H2

≤ C‖g(u)u− g(v)v‖L2 + C‖∆[(−∆)−1|u|2]u−∆[(−∆)−1|v|2]v‖L2

+ C‖∇g(u)∇u−∇g(v)∇v‖L2 + C‖g(u)∆u− g(v)∆v‖L2

:= I1 + I2 + I3 + I4,

(2.3)

where

I1 ≤ C(‖u‖2H1 + ‖v‖2H1)‖u− v‖L2 ≤ C(‖u‖2H2 + ‖v‖2H2)‖u− v‖H2 ,

I2 ≤ C‖|u|2u− |v|2v‖L2 ≤ (‖u‖2L∞ + ‖v‖2L∞)‖u− v‖L2

≤ C(‖u‖2H2 + ‖v‖2H2)‖u− v‖H2 ,

I3 ≤ C‖∇(g(u) + g(v))‖L∞‖∇u−∇v‖L2 + C‖∇(g(u)− g(v))‖L∞‖∇u+∇v‖L2

≤ C(‖∇u‖2L2 + ‖∇v‖2L2)‖u− v‖H2 ,

I4 ≤ C‖g(u) + g(v)‖L∞‖∆u−∆v‖L2 + C‖g(u)− g(v)‖L∞‖∆u+ ∆v‖L2

≤ C(‖∇u‖2L2 + ‖∇v‖2L2)‖u− v‖H2 .

This completes the third point. �
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Lemma 2.5. Let u0 ∈ H1 and V ∈ W 1,∞. For any given T > 0, φ ∈ H1(0, T ),
there exists a unique mild solution u ∈ C([0, T ], H1) of (1.1). In addition, u solves

u(t) = U(t)u0 + i

∫ t

0

U(t− s)
(
λ
( 1
|x|
∗ |u(s)|2

)
u(s) + φ(s)V u(s)

)
ds.

Proof. When φ is a constant, Cazenave [5, Remark 4.4.8, Page 102] showed that
(1.1) is locally well-posedness. For our case, since φ ∈ H1(0, T ) ↪→ L∞(0, T ), we
only need to take the L∞ norm of φ when the term φV u has to be estimated in
some norms. Keeping this in mind and applying the method in [5], one can show
the local well-posedness of (1.1). Hence, it suffices to show

‖u(t)‖H1 ≤ C(T, ‖u0‖H1 , ‖φ‖H1(0,T )) for every t ∈ [0, T ]. (2.4)

Indeed, we deduce from (1.4) and the mass conservation that

‖E′‖L2(0,T ) ≤ C‖φ′‖L2(0,T )‖V ‖L∞‖u0‖2L2 .

This yields

E(t) = E(0) +
∫ t

0

E′(s)ds ≤ E(0) +
(
T

∫ T

0

(E′(s))2ds
)1/2

< +∞.

When λ ≤ 0, it follows from (1.3) that

‖∇u(t)‖2L2 ≤ C‖E‖L∞(0,T ) + C‖φ‖L∞(0,T )‖u0‖2L2 ,

which, together with the mass conservation, implies (2.4).
When λ > 0, we deduce from (1.3) and the Hardy inequality that

‖∇u(t)‖2L2 ≤ C‖E‖L∞(0,T ) + C‖φ‖L∞(0,T )‖u0‖2L2 + C‖u0‖2L2‖g(u)(t)‖L∞

≤ C‖E‖L∞(0,T ) + C‖φ‖L∞(0,T )‖u0‖2L2 + C‖u0‖3L2‖∇u(t)‖L2 ,

which, together with the Young inequality with ε, implies (2.4). �

In the next lemma, we recall some regularity results, which can be proved by
applying [5, Theorem 5.3.1 on page 152].

Lemma 2.6. Let u0 ∈ H2 and V ∈W 2,∞. Then the mild solution of (1.1) satisfies
u ∈ L∞((0, T ), H2).

3. Existence of minimizers

Our goal in this section is to prove Theorem 1.1, we proceed in three steps.
Step 1. Estimates on the sequence (un, φn)n∈N. Let φ ∈ H1(0, T ), thanks to
Lemma 2.5, there exists a unique mild solution u ∈ C([0, T ], H1) of (1.1). Hence,
the set Λ(0, T ) is nonempty, and there exists a minimizing sequence (un, φn)n∈N
such that

lim
n→∞

F (un, φn) = F∗.

We deduce from γ2 > 0 that there exists a constant C such that for every n ∈ N∫ T

0

(φ′n(t))2dt ≤ C < +∞.

By using the embedding H1(0, T ) ↪→ C[0, T ] and φn(0) = φ0, we have

φn(t) = φn(0) +
∫ t

0

φ′n(s)ds ≤ φn(0) +
(
T

∫ T

0

(φ′n(s))2ds
)1/2

< +∞,
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for every n ∈ N. This implies the sequence (φn)n∈N is bounded in L∞(0, T ). By
approximation, (φn)n∈N is a bounded sequence in L∞(0, T ), so is in H1(0, T ). Thus,
there exist a subsequence, which we still denote by (φn)n∈N, and φ∗ ∈ H1(0, T ) such
that

φn ⇀ φ∗ in H1(0, T ) and φn → φ∗ in L2(0, T ) as n→∞.
On the other hand, we deduce from (1.4) and the mass conservation that

‖E′n‖L2(0,T ) ≤ C‖φ′n‖L2(0,T )‖V ‖L∞‖u0‖2L2 .

Using the same argument as Lemma 2.5 and En(0) = E(u0), we derive

‖un‖L∞((0,T ),H1) ≤ C. (3.1)

Combining this estimate and the fact that un is the solution of (1.1), we have

‖(un)t‖L∞((0,T ),H−1) ≤ C. (3.2)

Step 2. Passage to the limit. By applying (3.1), (3.2), and Lemma 2.2, we deduce
that there exist u∗ ∈ L∞((0, T ), H1) ∩W 1,∞((0, T ), H−1) and a subsequence, still
denoted by (un)n∈N, such that, for all t ∈ [0, T ],

un(t) ⇀ u∗(t) in H1 as n→∞. (3.3)

From the embedding W 1,∞((0, T ), H−1) ↪→ C0,1([0, T ], H−1) [5, Remark 1.3.11]
and the inequality ‖u‖2L2 ≤ ‖u‖H1‖u‖H−1 , we obtain that for every function u ∈
L∞((0, T ), H1) ∩W 1,∞((0, T ), H−1),

‖u(t)− u(s)‖L2 ≤ C|t− s|1/2, for all t, s ∈ (0, T ).

This, together with Lemma 2.4 and (3.1), yields

‖g(un(t))un(t)− g(un(s))un(s)‖L2 ≤ C‖un(t)− un(s)‖L2 ≤ C|t− s|1/2.

This implies (g(un)un)n∈N is a bounded sequence in C0, 12 ([0, T ], L2). Therefore,
from Lemma 2.1 there exist a subsequence, still denoted by (g(un)un)n∈N, and
f ∈ C0, 12 ([0, T ], L2) such that, for all t ∈ [0, T ],

g(un(t))un(t) ⇀ f(t) in L2 as n→∞. (3.4)

On the other hand, it follows from (un, φn) ∈ Λ(0, T ) that for every ω ∈ H1 and
η ∈ D(0, T ),∫ T

0

[−〈iun, ω〉H−1,H1
0
η′(t) + 〈∆un + g(un)un + φn(t)V un, ω〉H−1,H1

0
η(t)]dt = 0.

Applying (3.3), (3.4), and the dominated convergence theorem, we deduce easily
that ∫ T

0

[−〈iu∗, ω〉H−1,H1
0
η′(t) + 〈∆u∗ + f + φ∗(t)V u∗, ω〉H−1,H1

0
η(t)]dt = 0.

This implies that u∗ satisfies

i
d

dt
u∗ + ∆u∗ + f + φ∗(t)V u∗ = 0 for a.e. t ∈ [0, T ]. (3.5)

We next show g(u∗(t))(x)u∗(t, x) = f(t, x) for a.e. (t, x) ∈ [0, T ] × R3. It suffices
to show that for any given t ∈ [0, T ]∫

R3
g(u∗(t))(x)u∗(t, x)ϕ(x)dx =

∫
R3
f(t, x)ϕ(x)dx for any ϕ ∈ C∞c (R3). (3.6)
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Let us prove (3.6) by contradiction. On the contrary, if there exists ϕ0 ∈ C∞c (R3)
such that ∫

R3
g(u∗(t))(x)u∗(t, x)ϕ0(x)dx 6=

∫
R3
f(t, x)ϕ0(x)dx. (3.7)

It follows from (3.4) that∫
R3
g(un(t))(x)un(t, x)ϕ0(x)dx→

∫
R3
f(t, x)ϕ0(x)dx as n→∞. (3.8)

On the other hand, we deduce from (3.3) that there exists a subsequence, which
we still denote by (un)n∈N such that un(t, x) → u∗(t, x) for a.e. x ∈ R3 and
un(t) → u∗(t) in L2

loc(R3). Therefore, it follows from Lemma 2.3 that for every
x ∈ Ω, vn(t, x)→ 0, where Ω is the compact support of ϕ0 and vn defined by

vn(t, x) =
∫

R3

(|un(t, y)|+ |u∗(t, y)|)|un(t, y)− u∗(t, y)|
|x− y|

dy.

By similar estimates as Lemma 2.4, we derive that there exists a constant C such
that |vn(t, x)| ≤ C ∈ L2

loc(R3). Applying the dominated convergence theorem to
the sequence (vn(t))n∈N, we obtain∫

R3
|vn(t, x)|2|ϕ0(x)|2dx =

∫
Ω

|vn(t, x)|2|ϕ0(x)|2dx→ 0 as n→∞.

Combining this, (3.1) and (3.3), we derive∣∣ ∫
R3
g(un(t))(x)un(t, x)ϕ0(x)dx−

∫
R3
g(u∗(t))(x)u∗(t, x)ϕ0(x)dx

∣∣
≤
∫

R3
|g(un(t))(x)(un(t, x)− u∗(t, x))ϕ0(x)| dx

+
∫

R3
|(g(un(t))− g(u∗(t)))(x)u∗(t, x)ϕ0(x)| dx

≤ ‖g(un(t))‖L∞‖un(t)− u∗(t)‖L2(Ω)‖ϕ0‖L2 + ‖u∗(t)‖L2‖vn(t)ϕ0‖L2

→ 0 as n→∞,

(3.9)

which contradicts (3.7) and (3.8).
In summary, u∗ ∈ L∞((0, T ), H1) ∩W 1,∞((0, T ), H−1) and satisfies

i
d

dt
u∗ + ∆u∗ + g(u∗)u∗ + φ∗(t)V u∗ = 0, for a.e. t ∈ [0, T ].

By using the classical argument based on Strichartz’s estimate, we can obtain the
uniqueness of the weak solution u∗ of (1.1). Arguing as the proof of [5, Theorem
3.3.9], it follows that u∗ is indeed a mild solution of (1.1) and u∗ ∈ C((0, T ), H1)∩
C1((0, T ), H−1).
Step 3. To conclude that the pair (u∗, φ∗) ∈ Λ(0, T ) is indeed a minimizer of
optimal control problem (1.8), we need to show only that

F∗ = lim
n→∞

F (un, φn) ≥ F (u∗, φ∗). (3.10)

Indeed, in view of the assumption on operator A, there exists R > 0, such that for
every n ∈ N, suppx∈R3(Au(T, x)) ⊆ B(R). Therefore, we deduce from un(T ) →
u∗(T ) in L2

loc and Aun(T ) ⇀ Au∗(T ) in L2 that

|〈un(T ), Aun(T )〉L2 − 〈u∗(T ), Au∗(T )〉L2 |
≤ |〈un(T )− u∗(T ), Aun(T )〉L2 |+ |〈u∗(T ), A(un(T )− u∗(T ))〉L2 | → 0

(3.11)
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as n→∞. By the same argument as in [9, Lemma 2.5], we have

lim inf
n→∞

∫ T

0

(φ′n(t))2ω2
n(t)dt ≥

∫ T

0

(φ′∗(t))
2ω2
∗(t)dt, (3.12)

where

ωn(t) =
∫

R3
V (x)|un(t, x)|2dx, ω∗(t) =

∫
R3
V (x)|u∗(t, x)|2dx.

It follows from the weak lower semicontinuity of the norm that

lim inf
n→∞

∫ T

0

(φ′n(t))2dt ≥
∫ T

0

(φ′∗(t))
2dt. (3.13)

Collecting (3.11)-(3.13), we derive (3.10). This completes the proof.

4. Characterization of a minimizer

To obtain a rigorous characterization of a minimizer (u∗, φ∗) ∈ Λ(0, T ), we need
to derive the first order optimality conditions for our optimal control problem (1.8).
For this aim, we firstly formally calculate the derivative of the objective functional
F (u, φ) and analyze the resulting adjoint problem in the next subsection.

4.1. Derivation and analysis of the adjoint equation. We begin by rewriting
(1.1) in a more abstract form,

P (u, φ) = iut + ∆u+ λg(u)u+ φ(t)V (x)u = 0. (4.1)

Thus, formal computations yield

∂uP (u, φ)ϕ = iϕt + ∆ϕ+ φ(t)V (x)ϕ+ λg(u)ϕ+ λ
1
|x|
∗ (ϕū+ uϕ̄)u,

where ϕ ∈ L2. Similarly, we have

∂φP (u, φ) = V (x)u.

By an analogue argument as [9, Section 3.1], we derive the adjoint equation

iϕt + ∆ϕ+ φ(t)V (x)ϕ+ λg(u)ϕ+ λ
1
|x|
∗ (ϕū+ uϕ̄)u =

δF (u, φ)
δu(t)

,

ϕ(T ) = i
δF (u, φ)
δu(T )

,

(4.2)

where δF (u,φ)
δu(t) and δF (u,φ)

δu(T ) denote the first variation of F (u, φ) with respect to u(t)
and u(T ) respectively. By straightforward computations, we have

δF (u, φ)
δu(t)

= γ1(φ′(t))2(
∫

R3
V (x)|u(t, x)|2dx)V (x)u(t, x)

= γ1(φ′(t))2ω(t)V (x)u(t, x),
(4.3)

in view of the definition (1.10) and

δF (u, φ)
δu(T )

= 4〈u(T ), Au(T )〉L2Au(T ). (4.4)

Thus, equation (4.2) defines a Cauchy problem for ϕ with data ϕ(T ) ∈ L2, one can
solve (4.2) backwards in time.

In the following Proposition, we will analyze the existence of solution to (4.2).
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Proposition 4.1. Let u0 ∈ H2 and V ∈ W 2,∞. Then, for every T > 0, equation
(4.2) admits a unique mild solution ϕ ∈ C([0, T ], L2).

Proof. We sketch the proof, which is similar to [9, Proposition 3.6]. Firstly consider
the homogenous equation ∂uP (u(φ), φ)ϕ = 0. It can be written as

∂tϕ = i∆ϕ+B(t)ϕ,

where

B(t)ϕ := i
(
φ(t)V (x)ϕ+ λg(u)ϕ+ λ

1
|x|
∗ (ϕū+ uϕ̄)u

)
.

In view of the assumption on V and Lemma 2.6, by the same argument as Lemma
2.4, it follows that for every t ∈ [0, T ], B(t) is a bounded linear operator on the real
vector space L2, the corresponding inner product defined by

〈u, v〉L2 = Re
∫

R3
u(x)v̄(x)dx. (4.5)

After some fundamental computations, it follows that for every u, v ∈ L2 such
that 〈B(t)u, v〉L2 = 〈u,B(t)v〉L2 . This implies B∗(t) = B(t) and the same holds
for iB(t). On the other hand, we deduce from u0 ∈ H2 and Lemma 2.5 that
u ∈ L∞((0, T ) × R3). Hence, B ∈ L∞((0, T ),L(L2)). Therefore, following the
argument of [9, Proposition 3.6], we can conclude the proof. �

4.2. Lipschitz continuity with respect to the control. This subsection is
devoted to derive that the solution of (1.1) depends Lipschitz continuously on
the control parameter φ, which is vital for investigating the differentiability of
unconstrained functional F . To begin with, we study the continuous dependence
of the solutions u = u(φ) with respect to the control parameter φ. Our result is as
follows.

Proposition 4.2. Let V ∈W 2,∞, and u, ũ ∈ L∞((0, T ), H2) be two mild solutions
of (1.1) with the same initial data u0 ∈ H2, corresponding to control parameters
φ, φ̃ ∈ H1(0, T ) respectively. Assume

‖φ‖H1(0,T ), ‖φ̃‖H1(0,T ), ‖u(t)‖H2 , ‖ũ(t)‖H2 ≤M,

for some given M > 0. Then, there exist τ = τ(M) > 0 and a constant C = C(M)
such that

‖u− ũ‖L∞(It,H2) ≤ C(‖u(t)− ũ(t)‖H2 + ‖φ− φ̃‖L2(It)), (4.6)

where It := [t, t+ τ ] ∩ [0, T ]. In particular, the solution u(φ) depends continuously
on control parameter φ ∈ H1(0, T ).

Proof. Applying Lemma 2.5, there is a τ > 0 depending only on M , such that u|It

is a fixed point of the operator

Φ(u) := U(· − t)u(t) + i

∫ ·
t

U(· − s)(λg(u(s))u(s) + φ(s)V u(s))ds,

which maps the set

Y = {u ∈ L∞(It, H2), ‖u‖L∞(It,H2) ≤ 2M}

into itself. The same holds for ũ, we consequently obtain

ũ(s)− u(s) = U(s− t)(ũ(t)− u(t))
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+ i

∫ s

t

U(s− r)(λ(g(ũ)ũ− g(u)u) + V (ũφ̃− uφ))(r)dr

where s ∈ [t, t+ τ ]. Taking the H2-norm, it follows from Lemma 2.4 that

‖ũ(s)− u(s)‖H2

≤ ‖ũ(t)− u(t)‖H2 +
∫ s

t

‖(g(ũ)ũ− g(u)u)(r)‖H2dr +
∫ s

t

‖V (ũφ̃− uφ))(r)‖H2dr

≤ ‖ũ(t)− u(t)‖H2 + C(M)
∫ s

t

‖ũ(r)− u(r)‖H2dr

+ C‖V ‖W 2,∞

∫ s

t

(‖ũ(r)− u(r)‖H2 |φ̃(r)|+ ‖u(r)‖H2 |φ̃(r)− φ(r)|)dr

≤C‖ũ(t)− u(t)‖H2 + τ(C(M) + C‖V ‖W 2,∞‖φ̃‖L2(It))‖ũ− u‖L∞(It,H2)

+ C(M)‖V ‖W 2,∞‖φ̃− φ‖L2(It).

This implies

‖ũ− u‖L∞(It,H2) ≤ ‖ũ(t)− u(t)‖H2 + C(M)‖φ̃− φ‖L2(It)

+ C(M)τ‖ũ(s)− u(s)‖L∞(It,H2).

Hence, (4.6) holds by taking τ sufficiently small. Due to ũ(0) = u(0), we deduce
from continuity argument and (4.6) that the mapping φ→ u(φ) is continuous with
respect to φ ∈ H1(0, T ). �

As an immediate result of Proposition 4.2 and the fact that the continuous
function defined on compact sets is bounded, we obtain the following corollary.

Corollary 4.3. Let V ∈ W 2,∞, φ ∈ H1(0, T ), and u = u(φ) ∈ L∞((0, T ), H2) be
the solution of (1.1). Given δφ ∈ H1(0, T ) with δφ(0) = 0 and let u(φ + εδφ) be
the solution of (1.1) with control φ+ εδφ and the same initial data as u(φ). Then,
there exists C <∞ such that

‖u(φ+ εδφ)‖L∞((0,T ),H2) ≤ C ∀ε ∈ [−1, 1].

We are now in the position to show Lipschitz continuity of solution u(φ) with
respect to φ ∈ H1(0, T ). The proof is analogue to that of[9, Proposition 4.5], so
we omit it.

Proposition 4.4. Let V ∈ W 2,∞, φ ∈ H1(0, T ), and u = u(φ) ∈ L∞((0, T ), H2)
be the solution of (1.1). Given δφ ∈ H1(0, T ) with δφ(0) = 0, for every ε ∈ [−1, 1],
let ũ = u(φ+ εδφ) be the solution of (1.1) with control φ+ εδφ and the same initial
data as u(φ). Then, there exists a constant C > 0 such that

‖ũ− u‖L∞((0,T ),H2) ≤ C‖φ̃− φ‖H1(0,T ) = C|ε|‖δφ‖H1(0,T ).

In other words, the mapping φ 7→ u(φ) is Lipschitz continuous with respect to φ for
every fixed direction δφ.

Finally, with Lipschitz continuity of solution u(φ) with respect to control φ at
hand, we can prove Theorem 1.2.

Proof of Theorem 1.2. In view of the definition of Gâteaux derivative, let u = u(φ),
ũ = u(φ̃) with φ̃ = φ+ εδφ, we compute

F(φ̃)−F(φ) = J1 + J2 + J3,
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where

J1 := 〈ũ(T ), Aũ(T )〉2L2 − 〈u(T ), Au(T )〉2L2 ,

J2 := γ2

∫ T

0

[
(φ̃′(t))2 − (φ′(t))2

]
dt,

J3 := γ1

∫ T

0

(φ̃′(t))2
(∫

R3
V (x)|φ̃(t, x)|2

)2

dx dt

− γ1

∫ T

0

(φ′(t))2
(∫

R3
V (x)|φ(t, x)|2dx

)2

dt.

With the same computations as [9, Theorem 4.6], we have

J1 = 4〈u(T ), Au(T )〉L2〈ũ(T )− u(T ), Au(T )〉L2 +O(‖φ̃− φ‖2H1(0,T )), (4.7)

J2 = 2γ2

∫ T

0

φ′(t)(φ̃′(t)− φ′(t))dt+O(‖φ̃− φ‖2H1(0,T )), (4.8)

J3 = 2γ1

∫ T

0

(φ̃′(t)− φ′(t))φ′(t)ω2(t)dt

+ 4γ1

∫ T

0

(φ′(t))2ω(t)
(

Re
∫

R3
((¯̃u− ū)V u)(t, x)dx

)
dt+O(‖φ̃− φ‖2H1(0,T )).

(4.9)

We now deal with the second term on the right-hand side in (4.9). Applying the
adjoint equation (4.2), integration by parts, and the assumption ũ(0) = u(0), we
obtain

4γ1

∫ T

0

(φ′(t))2ω(t)
(

Re
∫

R3
((¯̃u− ū)V u)(t, x)dx

)
dt

= Re
∫ T

0

∫
R3
ϕ̄(t, x)(∂uP (u, φ)(ũ− u))(t, x) dx dt

− Re
∫

R3
iϕ̄(T, x)(ũ(T, x)− u(T, x)))dx.

(4.10)

By the definition of the operator ∂uP (u, φ), we obtain

∂uP (u, φ)(ũ− u) = i∂t(ũ− u) + ∆(ũ− u) + V φ(ũ− u) + λ(
1
|x|
∗ ū(ũ− u))u

+ λ(g(u))(ũ− u) + λ(
1
|x|
∗ u(¯̃u− ū))u

= (φ(t)− φ̃(t))V (x)ũ+R(ũ, u),
(4.11)

where

R(ũ, u) = λg(u)u− λg(ũ)ũ− λg(u)(u− ũ)− λ(
1
|x|
∗ [(u− ũ)ū+ u(ū− ¯̃u)])u.

Set f(u) =
(

1
|x| ∗ |u|

2
)
u, it follows from the Taylor formula that

f(u) = f(ũ) + g(u)(u− ũ) +
( 1
|x|
∗ (ū(u− ũ) + u(ū− ¯̃u))

)
u

+ 2
( 1
|x|
∗ (v̄(u− ũ) + v(ū− ¯̃u))

)
(u− ũ) + 2

( 1
|x|
∗ |u− ũ|2

)
v,

(4.12)
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where v = tu + (1 − t)ũ for some t ∈ [0, 1]. Collecting (4.10)-(4.12), Proposition
4.2, by the same discussion as Lemma 2.4, we obtain∫

R3
|ϕ(t, x)|

∣∣( 1
| · |
∗ (v̄(u− ũ) + v(ū− ¯̃u))

)
(u− ũ) +

( 1
| · |
∗ |u− ũ|2

)
v
∣∣(x)dx

≤ C‖ϕ‖L∞((0,T ),L2)

(
‖ 1
|x|
∗ (v̄(u− ũ) + v(ū− ¯̃u))‖L∞‖u− ũ‖L2

+ ‖ 1
|x|
∗ |u− ũ|2‖L∞‖v‖L2

)
≤ C‖ϕ‖L∞((0,T ),L2)‖u− ũ‖2H1

= O(‖φ̃− φ‖2H1(0,T )).
(4.13)

On the other hand, from Proposition 4.4 we deduce that

(φ(t)− φ̃(t))V (x)ũ = (φ(t)− φ̃(t))V (x)u+ (φ(t)− φ̃(t))V (x)(ũ− u)

= (φ(t)− φ̃(t))V (x)u+O(‖φ̃− φ‖2H1(0,T )).
(4.14)

By (4.11), (4.13), (4.14) and the fact ϕ(T ) = 4i〈u(T ), Au(T )〉L2Au(T ), we obtained
that the expression (4.10) is equal to∫ T

0

(φ̃(t)− φ(t)) Re
∫

R3
ϕ̄(t, x)V (x)u(t, x)dxdt+O(‖φ̃− φ‖2H1(0,T ))

− 4〈u(T ), Au(T )〉L2〈ũ(T )− u(T ), Au(T )〉L2 .

(4.15)

Collecting (4.7)-(4.9) and (4.15), we obtain (1.9) by letting ε→ 0. This completes
the proof. �
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