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CONSTRUCTION OF WAVE OPERATOR FOR
TWO-DIMENSIONAL KLEIN-GORDON-SCHRÖDINGER

SYSTEMS WITH YUKAWA COUPLING

KAI TSURUTA

Abstract. We prove the existence of the wave operator for the Klein-Gordon-
Schrödinger system with Yukawa coupling. This non-linearity type is below

Strichartz scaling, and therefore classic perturbation methods will fail in any

Strichartz space. Instead, we follow the “first iteration method” to handle
these critical non-linearities.

1. Introduction and Overview

We study the Klein-Gordon-Schrödinger system

i∂tu+
1
2

∆u = ±uv

(�+ 1)v = ±|∂xu|2
(1.1)

on R2 and show that wave operators exist under smallness conditions and a control
assumption on a single frequency band of the “final data”.

A common choice of coupling, known as the Yukawa interaction, is to replace the
non-linearity ±|∂xu|2 with ±|u|2. With the Yukawa coupling, the system describes
the interaction of a complex scalar nucleon field u with a real scalar meson field
v (see [17]). Our method only relies on the precise form of phase functions in
frequency space and not on any conservation laws particular to our choice of non-
linearity; therefore, the same method can be used to construct the wave operator
in the case of Yukawa interaction.

Our purpose in this paper is to construct the wave operators for (1.1). Roughly,
the positive-time wave operator of a non-linear dispersive equation is defined as
follows: Suppose that for a solution ψlin to the dispersive equation with no non-
linearity and initial data ψ+, there exists a unique solution ψ to the non-linear
equation with initial data ψ0 such that ψ behaves as ψlin as t→∞ (this is known
as scattering), then the positive-time wave operator is the map W+ that takes ψ+ to
ψ0. We similarly define the negative-time wave operator W− to consider behavior
as t → −∞. In this paper, we will only construct W+; W− can be constructed
analogously.
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As an explicit example, we discuss the positive-time wave operator for the
Schrödinger equation with non-linearity F (u). Solutions to the linear equation
have the form e

1
2 it∆u+, where u+ is the initial data at t = 0. Suppose there is a

space X such that if for any u+ ∈ X, there is a global strong X solution u to the
non-linear Schrödinger equation with initial data u0, such that

‖u− e 1
2 it∆u+‖X → 0 as t→∞.

Then W+ : X → X is defined by W+(u+) = u0.
In a space where the linear operator is an isometry, one can view the wave

operator problem as an initial value problem in the limiting case t0 = ∞. For
instance, in the case of the Schrödinger equation with non-linearity F (u), the linear
operator is an isometry in any Hs space. In these spaces, we formally expect
solutions to have the form

u(t) = e
1
2 it∆u+ − i

∫ ∞
t

e
1
2 i(t−s)∆F (u)(s)ds, (1.2)

where u+ is the scattered state of u.
The reason one expects a non-linear solution to have this linear behavior as

t→∞ is that if the solutions tend to zero over time, then the non-linearity should
tend to zero even faster as t increases. Intuitively, this means that it should be easier
to establish scattering for a higher degree non-linearity. However, high degree non-
linearities augment the large values of the solution. These large values are usually
the primary difficulty in establishing local well-posedness. Hence, the precise degree
of non-linearity is very important in scattering theory.

Because the Klein-Gordon and Schrödinger equations both have a t−d/2 decay as
t→∞, quadratic non-linearities are something of a critical case in two dimensions.
For example, it has been proven that on R2, one can construct the wave operators
for the Schrödinger equation and the Klein-Gordon equation with power type non-
linearities of the form |φ|p−1φ if p > 2, but not if 1 < p ≤ 2 (see, e.g., [3, 6, 14, 15]).

One explicit difficulty in dealing with quadratic-type non-linearities in two di-
mensions is our inability to use the Strichartz estimates. Perturbation methods
that use the Strichartz estimates require the norm of the non-linearity F (u) in
some conjugate admissible pair space to be bounded by the norm of u in an admis-
sible pair space. However, since quadratic non-linearities fall below two-dimensional
Strichartz scaling, we cannot hope to control F (u) in this way.

Previous results for (1.1) are mostly restricted to the Yukawa interaction and
rely critically on conservation laws. Ozawa and Tsutsumi first studied this problem
with the non-linearities uv and −|u|2 in [8]. They proved the existence of wave
operators under certain smallness conditions on the scattered states, as well as
the assumption that the Fourier support of the scattered state of u was outside
the unit disc. Shimomura[10, 11, 12] improved these results with the same non-
linearities. In [10], the existence of wave operators was established without any
smallness condition on v’s scattered state, but the Fourier support of u’s scattered
state was still required to be outside the unit disc. In [11], the support condition on
û+ was substituted for a smallness condition on v+ and a controllability assumption
on the supports of û+ and v̂+ on a single circle. Finally, in [12], wave operators were
shown to exist without any smallness condition on v+ and no support conditions
other than the controllability assumption of [11]. All results rely on the energy
method and first and second approximations to the asymptotic profiles of u and
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v to construct solutions on the the interval [T,∞) for some large T . Global well-
posedness results were then used to extend the solution to [0,∞). Again, these
results relied critically on the precise form of the non-linearity.

The Cauchy problem for the KGS system was solved in [9] and [16] for the
Yukawa coupling −uv and |u|2. In [9] the Fourier restriction norm method was
used; in [16] the I-method was used. Both papers used Strichartz estimates on
finite intervals and relied on energy and charge conservation to show existence of
global solutions. The ability to use these conservation laws depends delicately on
the non-linearities; hence, the specific choice of −uv and |u|2 was crucial in the
result. In [5], Pecher was able to show local existence without the use of energy
conservation, and thus for a wider variety of Yukawa interactions (±uv and ±|u|2).

1.1. Notation. We now discuss notation and introduce some operators. We use
the Fourier Transform defined by

F(g)(ξ) =
∫

R2
e−2πiξ·xg(x)dx.

Sometimes we will use the notation ĝ to denote F(g). We use the operator

� = ∂tt −∆.

The function 〈·〉, known as the Japanese bracket, is defined for vectors by

〈x〉 =
√

1 + |x|2,

while the operators 〈∇〉, eit∆, and e−it〈∇〉 (known as Fourier multipliers) are defined
by the identities

F(〈∇〉f) =
√

1 + |ξ|2f̂ , F(eit∆f) = e−it|ξ|
2
f̂ , F(e−it〈∇〉f) = e−it

√
1+|ξ|2 f̂ .

We define the Klein-Gordon linear propagators L and L̇ by

F(L(f, g)) = cos(〈ξ〉t)f̂ + 〈ξ〉−1 sin(〈ξ〉t)ĝ

F(L̇(f, g)) = −〈ξ〉−1 sin(〈ξ〉t)f̂ + cos(〈ξ〉t)ĝ.

Let ϕ(r) be a smooth cutoff function on R+ ∪ {0} that is congruent to 1 for r ≤ 1
and supported on [0, 2]. The Littlewood-Paley operators Pk are then defined for
k ∈ Z by

F(Pkf)(ξ) = (ϕ(|ξ|/2k)− ϕ(|ξ|/2k−1))f̂(ξ).

The space Lp = Lp(Rn) for 1 ≤ p <∞ is defined by its norm

‖g‖Lp =
(∫

Rn
|g|p
)1/p

,

while L∞ is the space of all essentially bounded functions. From the Lp spaces, we
define the Sobolev spaces W s,p by the norm

‖g‖W s,p = ‖〈∇〉sg‖Lp

and denote W s,2 as Hs.
We define the Besov Spaces Bsp,q by the norm

‖g‖Bsp,q =
(∑
k∈Z
‖〈2k〉sg‖q

LP

)1/q

.
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We also introduce the Y space, which will be where we require the scattered states
u+ and (v+, v̇+) to be small. Y is defined by the norm

‖g‖Y =
∑

|α+β|≤12

‖xα∂βg‖L2 + ‖g‖W 16,1 + ‖g‖H16 + ‖g‖B6
1,1
.

For small δ, we introduce the set Aδ, defined as

Aδ = {(ξ, η) | rξ − δ ≤ |ξ| ≤ rξ + δ, rη − δ ≤ |η| ≤ rη + δ},

where the ordered pair (rξ, rη) is the unique solution on R+ to the system

1
2
r2
ξ −

1
2

(rξ − rη)2 − 〈rη〉 = 0

rξ − rη
(

1 +
1
〈rη〉

)
= 0.

This system corresponds to the resonance set of a phase function. We will describe
the meaning of resonance set and the role Aδ plays in our proof later in Subsection
1.3. Roughly, we have that (rξ, rη) ≈ (1.9002, 1.1466).

In this paper, we use the following dispersive estimates on R2 for t > 0:

‖e 1
2 i∆tf‖L∞x . t

−1‖f‖L1
x

‖e−i〈∇〉tPkg‖L∞x . t
−1〈2k〉2‖Pkg‖L1

x
.

We will also use the Coifman-Meyer theorem (see [1, 4]). The version of the theorem
we will use is stated as follows:

Theorem 1.1 (Coifman-Meyer Theorem). Let m(ξ, η) be a bounded function on
R2 × R2. Suppose that

sup
k∈Z
‖m(2k·)P̂0‖H5

ζ
<∞,

where ζ = (ξ, η) and P0 is the k = 0 Littlewood-Paley operator. Then the operator
Tm(ξ, η), defined by

̂Tm(f, g)(ξ) =
∫

R2
m(ξ, η)f̂(ξ − η)ĝ(η)dη,

maps Lp × Lq → Lr, provided 2 ≤ p, q ≤ ∞ and 1
p + 1

q = 1
r .

1.2. Main Results. We may now present our main result:

Theorem 1.2. Suppose we have

supp(û+(η)) ∩ {η : .75 ≤ |η| ≤ .76} = ∅,

and that for a sufficiently small δ > 0,

‖u+‖Y + ‖v+‖Y + ‖v̇+‖Y ≤ δ.

Then there is a unique solution (u, v) to (1.1) such that

‖〈t〉
∫ ∞
t

e
1
2 i(t−s)∆u ·vds‖L∞t H3

x
+‖〈t〉

∫ ∞
t

e−i(t−s)〈∇〉〈∇〉−1(∇u ·∇u)ds‖L∞t H3
x
<∞,

and as t→∞,

‖e 1
2 it∆u+ − u(t)‖H3

x
+ ‖L(v+, v̇+)− v(t)‖H3

x
+ ‖L̇(v+, v̇+)− ∂tv(t)‖H2

x
→ 0.
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In our method of proof, we may relax the support condition on û+ to the as-
sumption

û+(ξ − η)[v+(η) + i〈∇〉−1v̇+(η)] ≡ 0 on Aδ.

One should note that this theorem is established for non-linearities for which it is
impossible to use the energy conservation laws on which previous results have relied
critically.

1.3. Overview of Method. Our method follows the work in [7]. We briefly ex-
plain the steps for the proof as follows:
Step 1: Reformulation We transform the system into one that is first-order in
time by the variable assignment h = v+ i〈∇〉−1∂tv. In terms of h, the system (1.1)
is then transformed to

i∂tu+
1
2

∆u = ±uRe(h)

−i∂th+ 〈∇〉h = ±〈∇〉−1(∇u · ∇u).

We can then reformulate the problem using Duhamel’s formula as:(
u(t)
h(t)

)
=
(

ei
1
2 t∆u+ ± i

∫∞
t
ei

1
2 (t−s)∆u · Re(h)ds

e−it〈∇〉h+ ± i
∫∞
t
e−i(t−s)〈∇〉〈∇〉−1(∇u · ∇u)ds

)
.

Step 2: First Iterate Analysis With the system reformulated, we next look to
show that the natural first iterate of our contraction scheme has a 〈t〉−1 decay in
H3. More specifically, we show the bilinear operators

B1(f, g) =
∫ ∞
t

ei
1
2 (t−s)∆f · Re(g)ds

B2(f, g) =
∫ ∞
t

e−i(t−s)〈∇〉〈∇〉−1(∇f · ∇g)ds

have the following property:∥∥∥B1(ei
1
2 ∆tu+, e

−i〈∇〉th+)
B2(ei

1
2 ∆tu+, e

i 12 ∆tu+)

∥∥∥
H3
x

.
1
〈t〉
.

Establishing this decay on the first iterate comprises the majority of the paper.
The decay estimates are achieved by going to the frequency domain and carefully
analyzing the resonance points for the purpose of using stationary phase methods.

The phase functions to consider are:

φ0(ξ, η) =
1
2
|ξ|2 − 1

2
|ξ − η|2 + 〈η〉,

φ1(ξ, η) =
1
2
|ξ|2 − 1

2
|ξ − η|2 − 〈η〉,

φ2(ξ, η) = 〈ξ〉 − 1
2
|ξ − η|2 +

1
2
|η|2.

We call the sets where ∂ηφi = 0 and φi = 0 the space resonance and time
resonance sets of φi, respectively. Roughly, the method is to integrate by parts in
frequency space away from the space resonance set and to integrate by parts in time
away from the time resonance set. Those points where both ∂ηφi = 0 and φi = 0
comprise the resonance set and cause the greatest difficulty as we cannot integrate
by parts in either variable.
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When i = 0, 2, the resonance set is empty. Thus, with carefully chosen cutoff
functions, we can always integrate by parts in either frequency space or time. The
phase function φ1 is the most problematic and requires the most delicate treatment.
This is due to the existence of a resonant set. We have

∂ηφ1(ξ, η) = ξ − η
(

1 +
1
〈η〉

)
.

Hence, ∂ηφ1(ξ, η) and φ1(ξ, η) are both zero if ξ and η are co-linear and the moduli
of ξ and η solve the system

1
2
|ξ|2 − 1

2
(|ξ| − |η|)2 − 〈|η|〉 = 0 ,

|ξ| − |η|
(

1 +
1
〈|η|〉

)
= 0 .

Hence, the resonance set takes the form

{(ξ, η) : ξ ‖ η, |ξ| = rξ, |η| = rη}.
It is because of this set that we must assume

û+(ξ − η)ĥ+(η) ≡ 0 on Aδ.

The method of stationary phase for oscillatory integrals is well known and many
classical results can be found in [13]. The idea of carefully analyzing resonance
points is presented in [2].
Step 3: Bilinear Estimates We introduce the space X where we construct our
solutions’ non-linear terms by its norm

‖f‖X = ‖〈t〉f‖L∞t H3
x
.

Through the use of Sobolev embedding, we establish the following estimates on the
above-defined bilinear operators:

‖Bi(f, g)‖X . ‖f‖X · ‖g‖X ,
‖Bi(f, g)‖X . ‖〈t〉f‖L∞t W 3,∞([0,∞)×R2) · ‖g‖X ,
‖Bi(f, g)‖X . ‖f‖X · ‖〈t〉g‖L∞t W 3,∞([0,∞)×R2).

These estimates are used to establish our iterative scheme as a contraction.
Step 4: Contraction in the X-Space Finally, we define two iteration schemes
as follows:

u1 = ei
1
2 ∆tu+,

h1 = e−i〈∇〉th+,

and

uk+1 = u1 +B1(uk, hk),

hk+1 = h1 +B2(uk, uk).

These are then shown to be contractions in X. This is done through induction.
In the process, we use the dispersive estimates of the linear propagators, the first
iterate estimates established in Step 2, and the bilinear estimates from Step 3.

Remark: One should note that because the linear operators for the Schrödinger
and Klein-Gordon equations are isometries in H3, the linear solutions to both
equations do not exist in the space X. In this way, our scheme is very different
from any perturbation methods.
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The remainder of the paper is organized as follows:
In Section 2, we transform (1.1) into a system that is first-order in time. We

then introduce the X space and establish the bilinear estimates on X. Finally,
we prove the Duhamel operators are contractions on X using induction and the
bilinear estimates. Part of this proof relies on the assumption that the first iterate
of our scheme is sufficiently small in X.

In Section 3, which accounts for the bulk of the paper, we prove that the as-
sumption on the smallness of the first iterate is valid if the final data (u+, h+) is
sufficiently small in some suitable space. This is done by resonance analysis and
stationary phase calculations.

2. Reformulation, bilinear estimates, and contraction in the X-space

2.1. Reformulation. In this section, we will show the Duhamel operator maps are
contractions. To this end, we rewrite the system (1.1) into one that is first-order
in time. To do this, we introduce the variable h = v + i〈∇〉−1∂tv. (1.1) is then
transformed to

i∂tu+
1
2

∆u = ±uRe(h)

−i∂th+ 〈∇〉h = ±〈∇〉−1(∇u · ∇u).
(2.1)

If (u, h) are to scatter to free solutions (u+, h+) in H3, then we need

‖u− e 1
2 it∆u+‖H3 + ‖h− e−it〈∇〉h+‖H3 → 0 as t→∞. (2.2)

Because the linear operators e
1
2 it∆ and e−it〈∇〉 are both isometries in H3, (2.2) is

equivalent to

‖e− 1
2 it∆u− u+‖H3 + ‖eit〈∇〉h− h+‖H3 → 0 as t→∞.

Combining this with the Duhamel formulas for u and h, we obtain(
u(t)
h(t)

)
=
(

ei
1
2 t∆u+ ± i

∫∞
t
ei

1
2 (t−s)∆u · Re(h)ds

e−it〈∇〉h+ ± i
∫∞
t
e−i(t−s)〈∇〉〈∇〉−1(∇u · ∇u)ds

)
. (2.3)

Thus, we formally expect solutions to (1.1) to have the form of (2.3). We will find
a pair (u, h)T that satisfies (2.3) and whose non-linear components are in X. The
work of showing that (u, h)T satisfies the conditions of (1.2) is straightforward and
omitted.

2.2. Bilinear Estimates. Based on (2.3), we define the following bilinear opera-
tors:

B1(f, g) =
∫ ∞
t

ei
1
2 (t−s)∆f · Re(g)ds

B2(f, g) =
∫ ∞
t

e−i(t−s)〈∇〉〈∇〉−1(∇f · ∇g)ds.

Through these operators, we define our two iteration schemes:

u1 = ei
1
2 ∆tu+,

h1 = e−i〈∇〉th+,

and

uk+1 = u1 +B1(uk, hk),
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hk+1 = h1 +B2(uk, uk).

To prove these schemes are contractions, we must show the bilinear operators have
particular algebra estimates:

Lemma 2.1. For i = 1, 2, we have

‖Bi(f, g)‖X . ‖f‖X · ‖g‖X , (2.4)

‖Bi(f, g)‖X . ‖〈t〉f‖L∞t W 3,∞([0,∞)×R2) · ‖g‖X , (2.5)

‖Bi(f, g)‖X . ‖f‖X · ‖〈t〉g‖L∞t W 3,∞([0,∞)×R2), (2.6)

where the space X is defined by the norm

‖g‖X = ‖〈t〉g‖L∞t H3
x
.

Proof. This is a matter of direct calculation. For i = 2, by the Minkowski inequality,

‖B2(f, g)‖X .
∥∥∥〈t〉∫ ∞

t

‖∇f · ∇g(s)‖H2ds
∥∥∥
L∞t ([0,∞))

.

Next, by the Hölder inequality and Sobolev embedding,

‖∇f · ∇g(s)‖H2 . ‖∇3f‖2‖∇g‖∞ + ‖∇2f‖4‖∇2g‖4 + ‖∇f‖∞‖∇3g‖2
. 〈s〉−2‖f‖X‖g‖X .

Combining these estimates, we have

‖B2(f, g)‖X . sup
t≥0
〈t〉
∫ ∞
t

〈s〉−2ds · ‖f‖X · ‖g‖X . ‖f‖X‖g‖X .

This completes the proof of (2.4). The proofs for (2.5) and (2.6) and the case i = 1
are similar and we omit them. �

2.3. Contraction in the X-Space. With Lemma (2.1), we may now show our
iteration schemes are contractions in the X space with fixed points satisfying (2.3).
We will use the estimate

‖eitDf‖L∞ .
1
〈t〉
‖f‖B3

1,1
,

whereD = 1
2 t∆ or −〈∇〉. For t > 1, this bound comes from the dispersive estimates

and the inequality

‖f‖L∞ .
∑
k∈Z
‖Pkf‖L∞ .

For t ≤ 1, we use Sobolev embedding. Denote wk+1 = uk+1 − u1 and zk+1 =
hk+1 − h1 for k ≥ 1. We are interested in the differences between successive values
of wk and zk as, by construction, they are also the differences of successive values
of uk and hk, respectively. For k ≥ 2, we have

‖zk+2 − zk+1‖X = ‖B2(u1 + wk+1, u1 + wk+1)−B2(u1 + wk, u1 + wk)‖X
= ‖B2(wk+1 − wk, u1 + wk+1) +B2(u1 + wk, wk+1 − wk)‖X
. ‖wk+1 − wk‖X(‖wk‖X + ‖wk+1‖X + ‖〈t〉u1‖L∞t W 3,∞)

. ‖wk+1 − wk‖X(‖wk‖X + ‖wk+1‖X + ‖u+‖B6
1,1

).
(2.7)
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Similarly,
‖wk+2 − wk+1‖X = ‖B1(u1 + wk+1, h1 + zk+1)−B1(u1 + wk, h1 + zk)‖X

= ‖B1(wk+1 − wk, h1 + zk+1) +B1(u1 + wk, zk+1 − zk)‖X
. ‖wk+1 − wk‖X(‖zk+1‖X + ‖h+‖B6

1,1
)

+ ‖zk+1 − zk‖X(‖wk‖X + ‖u+‖B6
1,1

).
(2.8)

With these estimates, we prove by induction that under suitable conditions on the
final data the iteration scheme is a contraction.

Lemma 2.2. Let wj, zj, and the space X be as defined above. Assume

‖u+‖B6
1,1
, ‖h+‖B6

1,1
≤ δ

and
‖B1(u1, h1)‖X , ‖B2(u1, u1)‖X ≤ δ

for some sufficiently small δ. Then for n ≥ 3, we have

‖wj‖X , ‖zj‖X ≤ δ ·
( n∑
j=0

1
2l
)
, ∀2 ≤ j ≤ n.

Proof. This is a proof by induction on n. For n = 3, we have

‖w3‖X = ‖B1(w2 + u1, z2 + h1)‖X
≤ C0‖w2‖X(‖z2‖X + ‖h+‖B6

1,1
) + ‖z2‖X‖u+‖B6

1,1
+ ‖B1(u1, h1)‖X

≤ C1 · δ2 + δ.

‖z3‖X = ‖B2(w2 + u1, w2 + h1)‖X
≤ C2‖w2‖X(‖u+‖B6

1,1
+ ‖h+‖B6

1,1
) + ‖B2(u1, h1)‖X

≤ C3 · δ2 + δ.

Choosing δ sufficiently small completes the base case. Now consider j = n+ 1. By
equations (2.7) and (2.8), we have

‖wn+1 − wn‖X ≤ C · ‖wn − wn−1‖X · (‖zn‖X + ‖h+‖B6
1,1

)

+ C · ‖zn − zn−1‖X · (‖wn−1‖X + ‖u+‖B6
1,1

)

≤ (C · 3δ)n−2 · (‖w3 − w2‖X + ‖z3 − z2‖X)

≤ (C · 3δ)n−2 · 6δ.

‖zn+1 − zn‖X ≤ C ′ · ‖wn − wn−1‖X(‖wn‖X + ‖wn−1‖X + ‖u+‖B6
1,1

)

≤ (C ′ · 5δ)(C · 6δ)n−1 · ‖w3 − w2‖X
≤ (C ′ · 5δ)(C · 6δ)n−1 · 3δ.

Therefore, for sufficiently small δ,

‖wn+1‖X ≤ ‖wn‖X + δ · 1
2n+1

≤ δ ·
( n+1∑
l=0

1
2l
)
,

‖zn+1‖X ≤ ‖zn‖X + δ · 1
2n+1

≤ δ ·
( n+1∑
l=0

1
2l
)
.
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�

Corollary 2.3. With the hypothesis of Lemma 2.2, wk and zk are Cauchy sequences
in X and therefore have strong limits in X.

Using this corollary, we may show the existence of solutions to (2.3) for positive
time values if we assume small u+ and h+ data in B6

1,1 and that the first iterate
of our scheme is sufficiently small in the X-space. The remainder of the paper will
demonstrate that the latter can be achieved if we assume some suitable norm of
the data u+ and h+ is small.

3. Analysis of the first iterate

The purpose of this section is to prove that under suitable conditions on (u+, h+),
B1(u1, h1) and B2(u1, u1) have a decay of 〈t〉−1 in H3.

By Plancherel’s theorem, it is sufficient to measure an L2 norm in the frequency
domain. By definition, we have(

B1(u1, h1)
B2(u1, u1)

)
=

( ∫∞
t
ei

1
2 (t−s)∆[(ei 12 s∆u+

)
Re
(
e−is〈∇〉h+

)]
ds∫∞

t
e−i(t−s)〈∇〉〈∇〉−1

[
∇
(
ei

1
2 s∆u+

)
· ∇
(
ei

1
2 s∆u+

)]
ds

)
. (3.1)

Hence, in the frequency domain,∥∥(B1(u1, h1)
B2(u1, u1)

)∥∥
H3
x
.
∥∥(〈ξ〉3F(B1(u1, h1))
〈ξ〉3F(B2(u1, u1))

)∥∥
L2
ξ

.
∥∥∥( 〈ξ〉3

∫∞
t

∫
R2 e

isφj(ξ,η)û+(ξ − η)ĝj(η)dηds
〈ξ〉2

∫∞
t

∫
R2 e

isφ2(ξ,η)(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds

)∥∥∥
L2
ξ

.

Where j = 0, 1; the phase functions φ0, φ1, and φ2 take the form

φ0(ξ, η) =
1
2
|ξ|2 − 1

2
|ξ − η|2 + 〈η〉,

φ1(ξ, η) =
1
2
|ξ|2 − 1

2
|ξ − η|2 − 〈η〉,

φ2(ξ, η) = 〈ξ〉 − 1
2
|ξ − η|2 +

1
2
|η|2;

and g0(ξ) = ¯̂
h+(−ξ), g1(ξ) = ĥ+(ξ).

For readability, we will divide the work of establishing the necessary frequency
bounds into several lemmas and propositions.

3.1. Preliminary lemmas.

Lemma 3.1. Let h(ξ, η) be a bounded function, then for all n ∈ N and f, g ∈ Hn,
we have ∫

R2
|h(ξ, η)f̂(ξ − η)ĝ(η)|dη . 1

〈ξ〉n
‖f‖Hnx ‖g‖Hnx .

Proof. First, by the triangle inequality, we have 〈ξ〉 ≤ 〈ξ − η〉+ 〈η〉. Hence, 〈ξ〉n .
〈ξ − η〉n + 〈η〉n. Thus, since h(ξ, η) is assumed to be bounded, we have∫

R2
|h(ξ, η)f̂(ξ − η)ĝ(η)|dη .

∫
R2

∣∣∣ 〈ξ − η〉n + 〈η〉n

〈ξ〉n
f̂(ξ − η)ĝ(η)

∣∣∣dη
=

1
〈ξ〉n

∫
R2
|〈ξ − η〉nf̂(ξ − η)ĝ(η) + 〈η〉nĝ(η)f̂(ξ − η)|dη
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.
1
〈ξ〉n

(‖〈ξ − ·〉nf̂(ξ − ·)ĝ(·)‖L1
η

+ ‖〈·〉nĝ(·)f̂(ξ − ·)‖L1
η
).

By Hölder, we then have∫
R2
|h(ξ, η)f̂(ξ − η)ĝ(η)|dη . 1

〈ξ〉n
(‖f‖Hnx ‖g‖L2

x
+ ‖g‖Hnx ‖f‖L2

x
)

.
1
〈ξ〉n
‖f‖Hnx ‖g‖Hnx .

�

Lemma 3.2 (Short Time Control). Suppose 0 ≤ t ≤ 1 and f, g ∈ H5
x, then for

j = 0, 1, 2;∥∥∥〈ξ〉3 ∫ 1

t

∫
R2
eisφj(ξ,η)f̂(ξ − η)ĝ(η)dηds

∥∥∥
L2
ξ

.
1
〈t〉
‖f‖H5‖g‖H5 .

Proof. Using Lemma 3.1, we have∣∣ ∫ 1

t

∫
R2
eisφj(ξ,η)f̂(ξ − η)ĝ(η)dηds

∣∣ . ∫ 1

t

1
〈ξ〉5
‖f‖H5

x
‖g‖H5

x
ds

.
1
〈ξ〉5
‖f‖H5

x
‖g‖H5

x
.

Hence, ∥∥∥〈ξ〉3 ∫ 1

t

∫
R2
eisφj(ξ,η)f̂(ξ − η)ĝ(η)dηds

∥∥∥
L2
ξ

. ‖f‖H5
x
‖g‖H5

x
‖ 1
〈ξ〉2
‖L2

ξ

.
1
〈t〉
‖f‖H5

x
‖g‖H5

x
.

�

Using Lemma 3.2, it is now sufficient to estimate the first iterate just for the
case t ≥ 1. From henceforth, we will assume t ≥ 1.

In the following lemma, we show how, away from the space resonance set, one
may integrate by parts in time to obtain a 〈t〉−1 decay in H3.

Lemma 3.3 (Decay Away from Space Resonance). Let φ : R2×R2 → R such that
|∂ηφ(ξ, η)| & s−α1 and |∂kηφ(ξ, η)| . 1 for all k ≥ 2. Further, suppose h(ξ, η) is a
smooth function with |∂jηh(ξ, η)| . sj·α2 for all j ≥ 1. If 2α1 + α2 ≤ 2

3 , then∥∥∥〈ξ〉3 ∫ ∞
t

∫
R2
eisφ(ξ,η)h(ξ, η)f̂(ξ − η)ĝ(η)dηds

∥∥∥
L2
ξ

.
1
t
‖f‖Y ‖g‖Y .

Proof. Define the operatorDφ on a sufficiently smooth scalar-valued function f(ξ, η)
by

Dφf(ξ, η) =
∇ηφ(ξ, η)

is|∇ηφ(ξ, η)|2
· ∇ηf(ξ, η).

By the inequality 2α1 + α2 ≤ 2/3, we have that there exists a natural number
N ≤ 6 such that N(1− 2α1 − α2) ≥ 2. Observe that

DN
φ (eisφ) = eisφ,

so we may integrate by parts N times using Dφ. This yields one principal term and
N boundary terms. The boundary terms each vanish due to the decay assumptions
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on f and g and the assumption that ∂ηφ(ξ, η) is bounded below. Thus, we are only
left to consider the principal term.∣∣∣ ∫ ∞

t

∫
R2
eisφ(ξ,η)h(ξ, η)f̂(ξ − η)ĝ(η)dηds

∣∣∣
=
∣∣∣ ∫ ∞
t

∫
R2
eisφ(ξ,η)(Dt)N [h(ξ, η)f̂(ξ − η)ĝ(η)]dηds

∣∣∣. (3.2)

Let X represent the right-hand side of (3.2). Inductively, one can establish the
bound

X .
∫ ∞
t

∫
R2

1
sN

( 1
|∇ηφ(ξ, η)|2N

+
1

|∇ηφ(ξ, η)|N
)

×
∑
βi≤N

|∂β1
η h(ξ, η)∂β2

η f̂(ξ − η)∂β3 ĝ(η)|dηds.

Hence,

X .
∫ ∞
t

∫
R2

sN ·α2

sN(1−2α1)

∑
β2,β3≤N

|∂β2
η f̂(ξ − η)∂β3

η ĝ(η)|dηds

.
∫ ∞
t

1
s2

1
〈ξ〉5

∑
β2,β3≤N

(‖F−1(∂β2
η f̂)‖H5

x
‖F−1(∂β3

η ĝ)‖H5
x
)

.
1
〈ξ〉5t

∑
β2,β3≤N

(‖F−1(∂β2
η f̂)‖H5

x
‖F−1(∂β3

η ĝ)‖H5
x
).

�

We may preform the same calculations with (ξ− η)f̂(ξ− η) and ηĝ(η) replacing
f̂(ξ − η) and ĝ(η), respectively, to obtain the following corollary:

Corollary 3.4. Let φ(ξ, η) and h(ξ, η) satisfy the conditions of Lemma 3.3. Then∥∥∥〈ξ〉2 ∫ ∞
t

∫
R2
eisφ(ξ,η)h(ξ, η)(ξ − η)f̂(ξ − η)ηĝ(η)dηds

∥∥∥
L2
ξ

.
1
t
‖f‖Y ‖g‖Y .

Now that we have established a 〈t〉−1 decay away from the frequency space reso-
nance set, we will move on to establishing this decay away from the time resonance
set. This will be accomplished by the use of integration in time and the following
lemma:

Lemma 3.5. Let h(ξ, η) be a smooth, bounded function. Suppose that for 0 ≤
γ1, γ2 ≤ 5 we have

|∂γ1ξ ∂
γ2
η h(ξ, η)| . 〈ξ〉5 + 〈η〉5.

Then for j = 0, 1, 2;∥∥∥〈ξ〉3 ∫
R2
eitφj(ξ,η)h(ξ, η)f̂(ξ − η)ĝ(η)dη

∥∥∥
L2
ξ

.
1
t
‖f‖W 15,1

x
‖g‖H15

x
. (3.3)

Proof. Let K denote the left-hand side of (3.3). Then by Plancherel, we see

K = ‖Th(e
1
2 it∆f, eitDjg)‖H3

x
.
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Here, Th is a bilinear operator with symbol h(ξ, η); D0, D1 and D2 are the operators
〈∇〉, −〈∇〉 and −∆/2, respectively. More precisely,

̂Th(f1, f2)(ξ) =
∫
h(ξ, η)f̂1(ξ − η)f̂2(η)dη.

Rewriting, we have

Th(e
1
2 it∆f, eitDjg) =

∫
h(ξ, η)

〈η〉12〈ξ − η〉12
̂e

1
2 it∆〈∇〉12f(ξ − η) ̂eitDj 〈∇〉12g(η)dη

= Th̃(e
1
2 it∆〈∇〉12f, eitDj 〈∇〉12g),

where

h̃(ξ, η) =
h(ξ, η)

〈η〉12〈ξ − η〉12
.

Therefore,

K = ‖Th(e
1
2 it∆f, eitDjg)‖H3

x

.
∑

0≤α≤3

∥∥∥ξα ∫ h̃(ξ, η) ̂e
1
2 it∆〈∇〉12f(ξ − η) ̂eitDj 〈∇〉12g(η)dη

∥∥∥
L2
ξ

.
∑
|α′|≤3

∑
(α1,α2)=α′

∥∥∥(ξ − η)α1ηα2

×
∫
h̃(ξ, η)〈ξ − η〉12ê

1
2 it∆f(ξ − η)〈η〉12êitDjg(η)dη

∥∥∥
L2
ξ

.
∑
|α′|≤3

∑
(α1,α2)=α′

∥∥Th̃(e
1
2 it∆〈∇〉12∂α1f, eitDj 〈∇〉12∂α2g)

∥∥
L2
x
.

Because we have assumed that for 0 < γ1, γ2 ≤ 5,

|∂γ1ξ ∂
γ2
η h(ξ, η)| . 〈ξ〉5 + 〈η〉5,

h̃ is a Coifman-Meyer multiplier. Hence, using the Coifman-Meyer multiplier the-
orem and the dispersive estimate for the Schrödinger’s fundamental solution, we
have ∑

0≤α1,α2≤3

∥∥Th̃(e
1
2 it∆〈∇〉12∂α1f, eitDj 〈∇〉12∂α2g)

∥∥
L2
x

.
∑

0≤α1≤3

∥∥e 1
2 it∆〈∇〉12∂α1f

∥∥
∞‖g‖H15

.
1
t
‖〈∇〉15f‖L1

x
‖g‖H15 .

�

With Lemma 3.5, we may now show how, away from the time resonance set, one
may use integration in time to obtain a 〈t〉−1 decay in H3.

Lemma 3.6 (Decay Away Time Resonance). Let h(ξ, η) satisfy the bounds

|∂αξ ∂βη h(ξ, η)| . 1
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for 0 ≤ α, β ≤ 5. Furthermore, suppose φj(ξ, η) & 1 for j = 0, 1, 2. Then for
f, g ∈ Y, we have∥∥∥〈ξ〉3 ∫ ∞

t

∫
R2
eisφj(ξ,η)h(ξ, η)f̂(ξ − η)ĝ(η)dηds

∥∥∥
L2
ξ

.
1
t
‖f‖Y ‖g‖Y .

Remark: For our purposes, h(ξ, η) will typically be a smooth cutoff function.

Proof. Integration in time yields∣∣∣ ∫ ∞
t

∫
R2
eisφj(ξ,η)h(ξ, η)f̂(ξ − η)ĝ(η)dηds

∣∣∣
. lim
M→∞

∣∣∣ ∫
R2
eiMφj(ξ,η) h(ξ, η)

φj(ξ, η)
f̂(ξ − η)ĝ(η)dη

∣∣∣ (3.4)

+
∣∣∣ ∫

R2
eitφj(ξ,η) h(ξ, η)

φj(ξ, η)
f̂(ξ − η)ĝ(η)dη

∣∣∣. (3.5)

We wish to control both of these terms by using Lemma 3.5. Hence, we must verify
that for 0 ≤ γ1, γ2 ≤ 5,

∂γ1ξ ∂
γ2
η

( h(ξ, η)
φj(ξ, η)

)
. 〈ξ〉5 + 〈η〉5.

By the bounds on h(ξ, η) and φj(ξ, η), we have

|∂γ1ξ ∂
γ2
η (h(ξ, η) · φ−1

j (ξ, η))| .
∑

0≤γ1,γ2≤5

|∂γ1ξ ∂
γ2
η (φ−1

j (ξ, η))|.

One can verify that for a multi-index γ with |γ| ≥ 2, |∂γφj(ξ, η)| . 1. Hence,∑
0≤γ1,γ2≤5

|∂γ1ξ ∂
γ2
η (φ−1

j (ξ, η))| . 1 + |∂ξφj(ξ, η)|5 + |∂ηφj(ξ, η)|5

. 1 + |η|5 + |ξ|5.

Thus, we may use Lemma 3.5 to conclude

‖〈ξ〉3(3.5)‖L2
ξ
.

1
t
‖f‖W 15,1

x
‖g‖H15

x
.

Similarly,

‖(3.4)‖L2
ξ
. lim
M→∞

1
M
‖f‖W 12,1

x
‖g‖H12

x
= 0.

Furthermore, one can verify that

‖(3.4)‖H2
ξ
.
∑
|α|≤2

‖xαf‖H5
x
‖g‖H5

x
. ‖f‖Y ‖g‖Y .

By Sobolev embedding, (3.4) is then an L∞ξ function whose L2
ξ-norm is zero. Hence,

it is identically zero for all ξ. �

With these lemmas in place, we are now ready to establish the necessary decay
on B1(u1, h1) and B2(u1, u1). Recall that u1 and h1 are the linear evolutions of u
and h respectively and that in the frequency space, B1(u1, h1) and B2(u1, u1) have
the form

B1(u1, h1) =
∫ ∞
t

∫
R2
eisφj(ξ,η)û+(ξ − η)ĝj(η)dηds
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B2(u1, u1) =
∫ ∞
t

∫
R2
eisφ2(ξ,η)(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds,

where g0(ξ) = ¯̂
h+(−ξ) and g1(ξ) = ĥ+(ξ).

The main idea is to identify the space and time resonance sets of each phase
function φj . Away from the space resonance set, we can establish the 〈t〉−1 decay
using Lemma 3.3; away from the time resonance set, we use Lemma 3.6. Points
where both φj and ∂ηφj are identically zero are in the resonance set. We avoid
difficulties at these points by placing proper assumptions on the support of û+ and
ĥ+.

For the purposes of separating the integration regime based on resonance sets,
we will use the function ϕ, which was defined in Subsection 1.1 and has the property
that ϕ(r) = 1 for 0 ≤ r and ϕ(r) = 0 for r > 2.

Recall that by Lemma 3.2, we need only establish decay for t ≥ 1. Hence, it is
enough to show the H3 norms of B1(u1, h1) and B2(u1, u1) have a t−1 decay.

3.2. Analysis of φ0. We first estimate ‖〈ξ〉3F(B1(u1, h1)‖L2
ξ
. We begin by con-

sidering the case when the phase function is φ0. In this case, one can verify that the
set of (ξ, η) for which φ0(ξ, η) = 0 is disjoint from the set for which ∂ηφ0(ξ, η) = 0.
Thus, with carefully chosen cutoff functions, we can divide the space into several
regimes and integrate by parts on every regime in either time or frequency space.

Proposition 3.7. Let

φ0(ξ, η) =
1
2
|ξ|2 − 1

2
|ξ − η|2 + 〈η〉,

then we have∥∥∥〈ξ〉3 ∫ ∞
t

∫
R2
eisφ0(ξ,η)û+(ξ − η)¯̂h+(−η)dηds

∥∥∥
L2
ξ

.
1
t
‖u+‖Y ‖h+‖Y .

Proof. Dividing the integration regime, we have∫ ∞
t

∫
R2
eisφ0(ξ,η)û+(ξ − η)¯̂h+(−η)dηds (3.6)

= ϕ(A|ξ|)
∫ ∞
t

∫
R2
ϕ(2|η|)eisφ0(ξ,η)û+(ξ − η)¯̂h+(−η)dηds (3.7)

+ ϕ(A|ξ|)
∫ ∞
t

∫
R2

[1− ϕ(2|η|)]eisφ0(ξ,η)û+(ξ − η)¯̂h+(−η)dηds (3.8)

+ [1− ϕ(A|ξ|)]
∫ ∞
t

∫
R2
ϕ(B|η − η0|)eisφ0(ξ,η)û+(ξ − η)¯̂h+(−η)dηds (3.9)

+ [1− ϕ(A|ξ|)]
∫ ∞
t

∫
R2

[1− ϕ(B|η − η0|)]eisφ0(ξ,η)û+(ξ − η)¯̂h+(−η)dηds,

(3.10)

where A and B are large constants and for each ξ, the point η0 is the unique point
in R2 such that

ξ = η0

(
1− 1
〈η0〉

)
.

Note that since
∂ηφ0(ξ, η) = ξ − η

(
1− 1
〈η〉

)
,

we have that for a fixed ξ, η0 is the unique point for which ∂ηφ0(ξ, η) = 0.
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We begin our estimate with (3.7), where |ξ| ≤ 2A−1. On this regime, we have
that |η| ≤ 1. Hence,

|φ0(ξ, η)| ≥ 〈η〉 − |ξ||η| − 1
2
|η|2 ≥ 1− 2

A
− 1

2
≥ 1

4
.

We therefore apply Lemma 3.6 to obtain

‖〈ξ〉3(3.7)‖L2
ξ
.

1
t
‖u+‖Y ‖h+‖Y .

We next consider (3.8). For this term, we have that |ξ| ≤ 2A−1 and we are inte-
grating over a regime where |η| ≥ 1/2. Thus,

|∂ηφ0(ξ, η)| =
∣∣∣ξ − η(1− 1

〈η〉

)∣∣∣
≥ |η|

(
1− 1
〈η〉

)
− |ξ|

≥ 1
2

(
1− 1
〈 12 〉

)
− 2
A

≥ 1
100

.

Using Lemma 3.3 with α1, α2 = 0 and N = 2 yields

‖〈ξ〉3(3.8)‖L2
ξ
.

1
t
‖u+‖Y ‖h+‖Y .

For (3.9), we seek an absolute lower bound on |φ0(ξ, η)| for the purpose of using
Lemma 3.6. Let θ be the angle between η and η0. By making B large relative to
A, we may assume 0 ≤ cos θ. Now we consider two cases:

Case 1: |η| ≤ 2. Then we have

|φ0(ξ, η)| ≥ 〈η〉 − 1
2
|η|2 ≥ 〈η〉 − |η|.

On the closed ball B(0, 2), 〈η〉 − |η| is a strictly positive function. Thus, it attains
an absolute minimum greater than zero. Hence, |φ0(ξ, η)| ≥ δ.

Case 2: |η| > 2. Enlarging B we may assume η0 ≥ 1.99 and |η0| ≥ .99|η|. This
gives

|φ0(ξ, η)| ≥ |η0|
(

1− 1
〈η0〉

)
|η| cos θ − 1

2
|η|2

≥ |η0|
(

1− 1
〈1.99〉

)
|η| cos θ − 1

2
|η|2

≥ .53|η0‖η| cos θ − 1
2
|η|2

≥ |η|(.52 cos θ − .5).

Because |η| has a lower bound, we may, if necessary, again enlarge B so that cos θ ≥
.99. This gives |φ0(ξ, η)| ≥ 1/5. With an absolute lower bound on |φ0(ξ, η)|, we
may now use Lemma 3.6 to conclude

‖〈ξ〉3(3.9)‖L2
ξ
.

1
t
‖u+‖Y ‖h+‖Y .

For (3.10), we wish to show |∂ηφ0(ξ, η)| & 1, with the intent of using Lemma 3.3.
For this purpose, set θ as the angle between η0 and η. We consider several cases:
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Case 1: |θ| ≥ π/2. Then

|∂ηφ0(ξ, η)| ≥ |ξ| ≥ 1
A
.

Case 2: |η| ≤ 1
2 |ξ|. Then

|∂ηφ0(ξ, η)| ≥ |ξ| − |η| ≥ 1
2A

.

Case 3: |η| ≥ 1
2 |ξ|, 0 ≤ θ < π/2. By our assumption on the distance between η

and η0, we have
B−2 ≤ |η0|2 + |η|2 − 2|η0||η| cos θ.

Thus, we can bound cos θ as

0 ≤ cos θ ≤ |η0|2 + |η|2 − ε
2|η0||η|

,

for ε = B−2. Hence,

|∂ηφ0(ξ, η)|2

= |η0|2
(

1− 1
〈η0〉

)2

+ |η|2
(

1− 1
〈η〉

)2

− 2|η0||η|
(

1− 1
〈η0〉

)(
1− 1
〈η〉

)
cos θ

& |η0|2
(

1− 1
〈η0〉

)2

+ |η|2
(

1− 1
〈η〉

)2

−
(

1− 1
〈η0〉

)(
1− 1
〈η〉

)(
|η0|2 + |η|2 − ε

)
=
( 1
〈η〉
− 1
〈η0〉

)[
|η0|2

(
1− 1
〈η0〉

)
− |η|2

(
1− 1
〈η〉

)]
(3.11)

+ ε
(

1− 1
〈η0〉

)(
1− 1
〈η〉

)
. (3.12)

Since |x| ≥ |y| implies 〈y〉−1 ≥ 〈x〉−1, the term (3.11) is a product of two numbers
with the same sign. Thus,

|∂ηφ0(ξ, η)| & ε
(

1− 1
〈η0〉

)(
1− 1
〈η〉

)
& ε
(

1− 1
〈A−1〉

)(
1− 1
〈 1

2A 〉

)
& 1.

Hence, we may use Lemma 3.3 with α1, α2 = 0 and N = 2 to obtain

‖〈ξ〉3(3.10)‖L2
ξ
.

1
t
‖u+‖Y ‖h+‖Y .

�

3.3. Analysis of φ1. We now consider the case where the phase function is φ1.
In this case, there is a set A ⊂ R2 × R2 on which φ1(ξ, η) and ∂ηφ1(ξ, η) are both
zero. On this set, we can not integrate by parts in either frequency space or time.
Instead, we place appropriate assumptions on the final data so that B1(u1, h1) is
identically zero around A.

Proposition 3.8. Let

φ1(ξ, η) =
1
2
|ξ|2 − 1

2
|ξ − η|2 − 〈η〉,
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then the resonance set of φ1 is non-empty and contained in the set Aδ defined in
Subsection 1.1. If

û+(ξ − η)ĥ+(η) ≡ 0 on Aδ,

then ∥∥∥〈ξ〉3 ∫ ∞
t

∫
R2
eisφ1(ξ,η)û+(ξ − η)ĥ+(η)dηds

∥∥∥
L2
ξ

.
1
t
‖u+‖Y ‖h+‖Y .

Proof. Note that

∂ηφ1(ξ, η) = ξ − η
(

1 +
1
〈η〉

)
.

Recall that Aδ is defined as

Aδ = {(ξ, η) : rξ − δ ≤ |ξ| ≤ rξ + δ, rη − δ ≤ |η| ≤ rη + δ},
where the ordered pair (rξ, rη) is the unique solution on R+ to the system

1
2
r2
ξ −

1
2

(rξ − rη)2 − 〈rη〉 = 0

rξ − rη
(

1 +
1
〈rη〉

)
= 0.

From the form of ∂ηφ1(ξ, η) and the definition of rξ and rη, one can see that if
(ξR, ηR) is a resonance point of φ1(ξ, η), then ξ is co-linear with η, |ξR| = rξ, and
|ηR| = rη.

Let ψ1 be a smooth cutoff function on R supported on [rξ − δ/2, rξ + δ/2] and
congruent to 1 on [rξ − δ/4, rξ + δ/4]. Similarly, let ψ2 be a smooth cutoff function
on R supported on [rη − δ/2, rη + δ/2] and congruent to 1 on [rη − δ/4, rη + δ/4].

For each ξ, we also define η0 as the unique point in R2 such that

ξ = η0

(
1 +

1
〈η0〉

)
.

Decomposing, we have∫ ∞
t

∫
R2
eisφ1(ξ,η)û+(ξ − η)ĥ+(η)dηds (3.13)

=
∫ ∞
t

∫
R2

[1− ϕ(B|η − η0|)]eisφ1(ξ,η)û+(ξ − η)ĥ+(η)dηds (3.14)

+
∫ ∞
t

∫
R2
ϕ(B|η − η0|)[1− ψ1(|ξ|)ψ2(|η|)]eisφ1(ξ,η)û+(ξ − η)ĥ+(η)dηds (3.15)

+
∫ ∞
t

∫
R2
ϕ(B|η − η0|)ψ1(|ξ|)ψ2(|η|)eisφ1(ξ,η)û+(ξ − η)ĥ+(η)dηds. (3.16)

We begin our estimates with (3.14). On its regime, we have

|∂ηφ1(ξ, η)| =
∣∣∣η0

(
1 +

1
〈η0〉

)
− η
(

1 +
1
〈η〉

)∣∣∣
≥ |η − η0|

≥ 1
B
.

Hence, we may use Lemma 3.3 with α1, α2 = 0 and N = 2 to establish

‖〈ξ〉3(3.14)‖L2
ξ
.

1
t
‖u+‖Y ‖h+‖Y .



EJDE-2013/132 WAVE OPERATORS FOR KGS SYSTEMS 19

We now bound (3.15). To this end, we first consider the values of φ1 at the station-
ary phase points. More precisely, we will first establish a lower bound on φ1(ξ, η0).
If |ξ| > 100, then we have

|φ1(ξ, η0)| = |ξ · η0 −
1
2
|η0| − 〈η0〉|

= |η0|2
(

1 +
1
〈η0〉

)
− 1

2
|η0|2 − 〈η0〉

≥ 1
2
|η0|2 − 〈η0〉 ≥ 1.

In the case of |ξ| ≤ 100, we claim that by enlarging B relative to δ, we may assume

0 ≤ |ξ| ≤ rξ − δ/100,

or
rξ + δ/100 ≤ |ξ| ≤ 100.

To see this, assume for contradiction that some ξ with

|ξ| ∈ [rξ + δ/100, rξ − δ/100]

is in our integration regime. Then we also have that

|η0| ∈ [rη − δ/20, rη + δ/20].

Hence, by enlarging B, we may use the term ϕ(B|η − η0|) to assume that

|η| ∈ [rη − δ/10, rη + δ/10].

But this point must then lie outside our integration regime as 1−ψ1(|ξ|)ψ2(|η|) = 0.
Thus, if |ξ| ≤ 100, then we may also assume that

|ξ| /∈ [rξ − δ/100, rξ + δ/100].

Furthermore, we know that either φ1(ξ, η) or ∂ηφ1(ξ, η) is non-zero at a given point
in the regime of (3.15). Thus, |φ1(ξ, η0)| > 0 for all relevant ξ. We then have that
φ1(ξ, η0) is a function in ξ that is continuous and non-zero. This implies that on
the compact set

[0, rξ − δ/100] ∪ [rξ + δ/100, 100],

φ1(ξ, η0) must attain some absolute lower bound δ0. We also have that

|∂ηφ1(ξ, η)| ≤ |η0 − η|+
∣∣∣ η0

〈η0〉
− η

〈η〉

∣∣∣ ≤ 3.

Then, by the Fundamental Theorem of Calculus,

|φ1(ξ, η)| ≥ δ0 − 3|η − η0|.

Enlarging B, we obtain |φ1(ξ, η)| ≥ δ0/2. Now we may use Lemma 3.6 to obtain

‖〈ξ〉3(3.15)‖L2
ξ
.

1
t
‖u+‖Y ‖h+‖Y .

Finally, (3.16) is identically zero by the assumption that û+(ξ − η)ĥ+(η) ≡ 0 on
Aδ. �
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3.4. Analysis of φ2. Finally, we estimate ‖〈ξ〉3F(B2(u1, u1))‖L2
ξ
.

Proposition 3.9. Let

φ2(ξ, η) = 〈ξ〉 − 1
2
|ξ − η|2 +

1
2
|η|2,

then we have∥∥∥〈ξ〉2 ∫ ∞
t

∫
R2
eisφ2(ξ,η)(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds

∥∥∥
L2
ξ

.
1
t
‖u+‖2Y .

Proof. We decompose as follows:∣∣∣ ∫ ∞
t

∫
R2
eisφ2(ξ,η)(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds

∣∣∣ (3.17)

.
∣∣∣ ∫ ∞
t

∫
R2
eisφ2(ξ,η)(1− ϕ(As1/3|ξ|))(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds

∣∣∣ (3.18)

+
∣∣∣ ∫ ∞
t

ϕ(As1/3|ξ|)
∫

R2
ϕ
( |η|
s1/3

)
eisφ2(ξ,η)(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds

∣∣∣
(3.19)

+
∣∣∣ ∫ ∞
t

ϕ(As1/3|ξ|)
∫

R2

(
1− ϕ

( |η|
s1/3

))
eisφ2(ξ,η)(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds

∣∣∣.
(3.20)

We first consider (3.18), where

|ξ| ≥ 1
As1/3

.

Since ∂ηφ2(ξ, η) = ξ, we may use Corollary 3.4 with α1 = 1/3, α2 = 0, and index
N = 6 to obtain

‖〈ξ〉2(3.18)‖L2
ξ
.

1
t
‖u+‖2Y .

We now move on to estimating (3.19), where we have

|ξ| ≤ 2
As1/3

and we are integrating over a regime on which

|η| ≤ 2s1/3.

Therefore, we have

|φ2(ξ, η)| ≥ 〈ξ〉 − 1
2
|ξ|2 − |ξ · η|

≥ 1− 1
4
− 4
A

≥ 1
2
.

Though φ2(ξ, η) has an absolute lower bound, we may not directly use Lemma 3.6,
since our symbol h is a function of time. Instead, we integrate by parts in time to
obtain

(3.19) ≤
∣∣∣ϕ(At1/3|ξ|)

∫
R2
eitφ2(ξ,η)ϕ(|η|t−1/3)

φ2(ξ, η)
(ξ − η)û+(ξ − η)η ¯̂u+(−η)dη

∣∣∣ (3.21)

+
∣∣∣ ∫

R2
(ξ − η)û+(ξ − η)η ¯̂u+(−η)
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×
∫ ∞
t

eisφ2(ξ,η)

φ2(ξ, η)
∂s

(
ϕ(As1/3|ξ|)ϕ(|η|s−1/3)

)
dsdη

∣∣∣. (3.22)

Let ψ(r) be a smooth function defined for r ≥ 0 such that ψ(r) = 0 for r < 1/4
and ψ(r) = 1 for r ≥ 1/2. Then we have

(3.21) ≤
∣∣∣ ∫

R2
eitφ2(ξ,η)ψ(|φ2(ξ, η)|)ϕ(|η|t−1/3)

φ2(ξ, η)
(ξ − η)û+(ξ − η)η ¯̂u+(−η)dη

∣∣∣.
Using Lemma 3.5, we have∣∣∣ ∫

R2
eitφ2(ξ,η)ψ(|φ2(ξ, η)|)ϕ(|η|t−1/3)

φ2(ξ, η)
(ξ − η)û+(ξ − η)η ¯̂u+(−η)dη

∣∣∣
.

1
t
‖∇u+‖W 15,1‖∇u+‖H15

x

.
1
t
‖u+‖2Y .

For (3.22), integrating by parts again yields

(3.22) .
∣∣∣ ∫

R2

eitφ2(ξ,η)

(φ2(ξ, η))2
∂t

(
ϕ(A|ξ|t1/3)ϕ(|η|t−1/3)

)
× (ξ − η)û+(ξ − η)η ¯̂u+(−η)dη

∣∣∣ (3.23)

+
∣∣∣ ∫

R2
(ξ − η)û+(ξ − η)η ¯̂u+(−η)

×
∫ ∞
t

eisφ2(ξ,η)

(φ2(ξ, η))2
∂2
s

(
ϕ(As1/3|ξ|)ϕ(|η|s−1/3)

)
dsdη

∣∣∣. (3.24)

Calculating, we have

(3.23)

.
∣∣∣ ∫

R2

eitφ2(ξ,η)

(φ2(ξ, η))2
|ξ|t−2/3ϕ′(A|ξ|t1/3)ϕ(|η|t−1/3))(ξ − η)û+(ξ − η)η ¯̂u+(−η)dη

∣∣∣
+
∣∣∣ ∫

R2

eitφ2(ξ,η)

(φ2(ξ, η))2
ϕ(A|ξ|t1/3)|η|t−4/3ϕ′(|η|t−1/3))(ξ − η)û+(ξ − η)η ¯̂u+(−η)dη

∣∣∣
.
∫

R2

(
|ξ|t−2/3ϕ′(A|ξ|t1/3) + |η|t−4/3ϕ′(|η|t−1/3)

)
|(ξ − η)û+(ξ − η)η ¯̂u+(−η)|dη

.
1
t

∫
R2
|(ξ − η)û+(ξ − η)η ¯̂u+(−η)|dη

.
1

t〈ξ〉4
‖u+‖2H5

x
.

Similarly,

(3.24) .
∫

R2
|(ξ − η)û+(ξ − η)η ¯̂u+(−η)|

∫ ∞
t

1
s2
dsdη

.
1

t〈ξ〉4
‖u+‖2H5

x
.

Finally, we bound (3.20), where

|ξ| ≤ 2
As1/3
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and we are integrating over a regime on which

|η| ≥ s1/3.

For this term, we can get the necessary decay by assuming high regularity on u+.
More precisely,

‖〈ξ〉3(3.20)‖L2
ξ

.
∥∥∥〈ξ〉2 ∫ ∞

t

∫
R2

(
1− ϕ

( |η|
s1/3

))
eisφ2(ξ,η) 〈η〉6

〈η〉6
(ξ − η)û+(ξ − η)η ¯̂u+(−η)dηds

∥∥∥
.
∥∥∥〈ξ〉2 ∫ ∞

t

1
s2

∫
R2
〈η〉7|(ξ − η)û+(ξ − η)¯̂u+(−η)|dηds

∥∥∥
L2
ξ

.
∥∥∥〈ξ〉2 ∫ ∞

t

1
s2〈ξ〉4

‖u+‖H11
x
‖u+‖H5

x
ds
∥∥∥
L2
ξ

.
1
t
‖u+‖2H11

x
.

�
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