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CONSTRUCTION OF WAVE OPERATOR FOR
TWO-DIMENSIONAL KLEIN-GORDON-SCHRODINGER
SYSTEMS WITH YUKAWA COUPLING

KAI TSURUTA

ABSTRACT. We prove the existence of the wave operator for the Klein-Gordon-
Schrodinger system with Yukawa coupling. This non-linearity type is below
Strichartz scaling, and therefore classic perturbation methods will fail in any
Strichartz space. Instead, we follow the “first iteration method” to handle
these critical non-linearities.

1. INTRODUCTION AND OVERVIEW

We study the Klein-Gordon-Schrédinger system

1
10su + §Au = Fuv (L1)
(O+ 1)v = +[0,ul?

on R? and show that wave operators exist under smallness conditions and a control
assumption on a single frequency band of the “final data”.

A common choice of coupling, known as the Yukawa interaction, is to replace the
non-linearity +|0,u|? with £|u|?. With the Yukawa coupling, the system describes
the interaction of a complex scalar nucleon field u with a real scalar meson field
v (see [I7]). Our method only relies on the precise form of phase functions in
frequency space and not on any conservation laws particular to our choice of non-
linearity; therefore, the same method can be used to construct the wave operator
in the case of Yukawa interaction.

Our purpose in this paper is to construct the wave operators for . Roughly,
the positive-time wave operator of a non-linear dispersive equation is defined as
follows: Suppose that for a solution v;, to the dispersive equation with no non-
linearity and initial data 14, there exists a unique solution % to the non-linear
equation with initial data 1y such that 1) behaves as 1;, as t — oo (this is known
as scattering), then the positive-time wave operator is the map W, that takes ¢ to
1. We similarly define the negative-time wave operator W_ to consider behavior
as t — —oo. In this paper, we will only construct W, ; W_ can be constructed
analogously.
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As an explicit example, we discuss the positive-time wave operator for the
Schrodinger equation with non-linearity F'(u). Solutions to the linear equation
have the form e%”Au_H where uy is the initial data at ¢ = 0. Suppose there is a
space X such that if for any uy € X, there is a global strong X solution u to the
non-linear Schrédinger equation with initial data ug, such that
LitA

||lu—e2"2uy]lx — 0 ast— oo.

Then W, : X — X is defined by W4 (uy) = up.

In a space where the linear operator is an isometry, one can view the wave
operator problem as an initial value problem in the limiting case t; = oo. For
instance, in the case of the Schrodinger equation with non-linearity F'(u), the linear
operator is an isometry in any H® space. In these spaces, we formally expect
solutions to have the form

u(t) = e3Puy —i / e2/=IAF (u)(s)ds, (1.2)
t

where u, is the scattered state of w.

The reason one expects a non-linear solution to have this linear behavior as
t — oo is that if the solutions tend to zero over time, then the non-linearity should
tend to zero even faster as ¢ increases. Intuitively, this means that it should be easier
to establish scattering for a higher degree non-linearity. However, high degree non-
linearities augment the large values of the solution. These large values are usually
the primary difficulty in establishing local well-posedness. Hence, the precise degree
of non-linearity is very important in scattering theory.

Because the Klein-Gordon and Schrédinger equations both have a t~%2 decay as
t — 00, quadratic non-linearities are something of a critical case in two dimensions.
For example, it has been proven that on R?, one can construct the wave operators
for the Schrédinger equation and the Klein-Gordon equation with power type non-
linearities of the form |¢[P~1¢ if p > 2, but not if 1 < p < 2 (see, e.g., [3, 6] 14, [15]).

One explicit difficulty in dealing with quadratic-type non-linearities in two di-
mensions is our inability to use the Strichartz estimates. Perturbation methods
that use the Strichartz estimates require the norm of the non-linearity F(u) in
some conjugate admissible pair space to be bounded by the norm of u in an admis-
sible pair space. However, since quadratic non-linearities fall below two-dimensional
Strichartz scaling, we cannot hope to control F(u) in this way.

Previous results for are mostly restricted to the Yukawa interaction and
rely critically on conservation laws. Ozawa and Tsutsumi first studied this problem
with the non-linearities uv and —|u|? in [8]. They proved the existence of wave
operators under certain smallness conditions on the scattered states, as well as
the assumption that the Fourier support of the scattered state of u was outside
the unit disc. Shimomura[I0, 11} 12] improved these results with the same non-
linearities. In [I0], the existence of wave operators was established without any
smallness condition on v’s scattered state, but the Fourier support of u’s scattered
state was still required to be outside the unit disc. In [I], the support condition on
14 was substituted for a smallness condition on vy and a controllability assumption
on the supports of 4 and 04 on a single circle. Finally, in [12], wave operators were
shown to exist without any smallness condition on v; and no support conditions
other than the controllability assumption of [II]. All results rely on the energy
method and first and second approximations to the asymptotic profiles of v and
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v to construct solutions on the the interval [T, c0) for some large T. Global well-
posedness results were then used to extend the solution to [0,00). Again, these
results relied critically on the precise form of the non-linearity.

The Cauchy problem for the KGS system was solved in [9] and [I6] for the
Yukawa coupling —uv and |u|?>. In [9] the Fourier restriction norm method was
used; in [I6] the I-method was used. Both papers used Strichartz estimates on
finite intervals and relied on energy and charge conservation to show existence of
global solutions. The ability to use these conservation laws depends delicately on
the non-linearities; hence, the specific choice of —uv and |u|? was crucial in the
result. In [5], Pecher was able to show local existence without the use of energy
conservation, and thus for a wider variety of Yukawa interactions (+uv and =+|u|?).

1.1. Notation. We now discuss notation and introduce some operators. We use
the Fourier Transform defined by

F@© = [ e g(a)da,
R2
Sometimes we will use the notation § to denote F(g). We use the operator

O=0u —A.

The function (-), known as the Japanese bracket, is defined for vectors by

(r) = V1+ |zl

while the operators (V), €2, and e=*{V) (known as Fourier multipliers) are defined
by the identities

FUVV) = VIFEPS, F(eaf) = e 0 f Femt) f) = emitVIFREE .
We define the Klein-Gordon linear propagators L and L by
F(L(f.9)) = cos((E)t)f + (&) sin((€)1)g
F(L(f,9) = =(&) " sin((€)1)f + cos((€))g-

Let ¢(r) be a smooth cutoff function on R* U {0} that is congruent to 1 for r <1
and supported on [0,2]. The Littlewood-Paley operators Py are then defined for
k€ Z by

F(Pef)(€) = (9(1€1/2") = (1€1/257)) f(©).
The space L = LP(R™) for 1 < p < oo is defined by its norm

» 1/p
lallor = ([ o)™
R’Vl

while L is the space of all essentially bounded functions. From the LP spaces, we
define the Sobolev spaces W*P by the norm
lgliwer = 11{V)*gl| e

and denote W*?2 as H®.
We define the Besov Spaces B, , by the norm

5= (12l

keZ

gl
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We also introduce the Y space, which will be where we require the scattered states
us and (v4,04) to be small. Y is defined by the norm

lolly = >~ [«*0gllez + llgllwres + gl + llglss -
latB|<12
For small 6, we introduce the set As, defined as
As ={mn) [ re =6 <[§] <re+0, ry =0 < |n| <7y + 6},
where the ordered pair (r¢,r,) is the unique solution on R™ to the system
1 1
57"2 - 5( 3 _7'77)2 —(ry) =0

rg—r,,(1+<r1n>> =0.

This system corresponds to the resonance set of a phase function. We will describe
the meaning of resonance set and the role As plays in our proof later in Subsection
Roughly, we have that (r¢, ;) ~ (1.9002, 1.1466).
In this paper, we use the following dispersive estimates on R? for ¢ > 0:
1; _
ez flloee St I fllz
le™" ¥ Pegllree < t71(2%)2 ) Prgll s -

We will also use the Coifman-Meyer theorem (see [I[4]). The version of the theorem

we will use is stated as follows:

Theorem 1.1 (Coifman-Meyer Theorem). Let m(&,7n) be a bounded function on
R? x R?. Suppose that

sup [[m(25) By 5 < oo,
keZ

where ¢ = (£,m) and Py is the k = 0 Littlewood-Paley operator. Then the operator
Tm(§,m), defined by

T = [ mien (e - matmn

maps LP? x LY — L", provided 2 < p,q < oo and % + % =1

1.2. Main Results. We may now present our main result:
Theorem 1.2. Suppose we have
supp(i4 () N {n .75 < |n| < .76} =0,
and that for a sufficiently small § > 0,
lutlly + llvelly + o4y <.

Then there is a unique solution (u,v) to (1.1)) such that
o) [ eH OIS uvdslmg + (0 [ e D) (V- Tapds e < o
t t

and as t — oo,

1, . r .
llex™ A uy —u(®)l sz + I L(vs, 04) = v() 2 + | L(vs, 04) = Opv(t)| 112 — 0.
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In our method of proof, we may relax the support condition on @4 to the as-
sumption

Ay (€ =) (n) + (V) "o ()] =0 on As.
One should note that this theorem is established for non-linearities for which it is

impossible to use the energy conservation laws on which previous results have relied
critically.

1.3. Overview of Method. Our method follows the work in [7]. We briefly ex-
plain the steps for the proof as follows:

Step 1: Reformulation We transform the system into one that is first-order in
time by the variable assignment h = v +4(V)~1d;v. In terms of h, the system
is then transformed to

1
10y + §Au = tuRe(h)
—i0ih + (V)h = £(V) "1 (Vu - Vu).
We can then reformulate the problem using Duhamel’s formula as:

u(t)) '3y £ [ 390y Re(h)ds
ht)) — \e ™ Vhy £ [T e = NV) " (Vu - Vu)ds )

Step 2: First Iterate Analysis With the system reformulated, we next look to
show that the natural first iterate of our contraction scheme has a (t)~! decay in
H?3. More specifically, we show the bilinear operators

Bi(f,9) = /t e'2(=9)A £ Re(g)ds

Balfo) = | T i) ()L f - Tg)ds

t
have the following property:

HBl(eilélAtu_Heiil(V>th+)H - i

By(e'22uy ez ) llms ™ (t)

Establishing this decay on the first iterate comprises the majority of the paper.

The decay estimates are achieved by going to the frequency domain and carefully

analyzing the resonance points for the purpose of using stationary phase methods.
The phase functions to consider are:

bolm) = 1€l ~ Sle —nl? + (),
61(€m) = 1€l ~ Sle —nl? ~ (u),

1 1
$2(&,m) = (§) — §|§ —n* + §|77\2~

We call the sets where 0,¢; = 0 and ¢; = 0 the space resonance and time
resonance sets of ¢;, respectively. Roughly, the method is to integrate by parts in
frequency space away from the space resonance set and to integrate by parts in time
away from the time resonance set. Those points where both J,¢; = 0 and ¢; = 0
comprise the resonance set and cause the greatest difficulty as we cannot integrate
by parts in either variable.
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When i = 0,2, the resonance set is empty. Thus, with carefully chosen cutoff
functions, we can always integrate by parts in either frequency space or time. The
phase function ¢; is the most problematic and requires the most delicate treatment.
This is due to the existence of a resonant set. We have

Mmpr(&,m) = ¢ —77(1 + %)

Hence, 0,¢1(&,n) and ¢1(&,n) are both zero if £ and 7 are co-linear and the moduli
of £ and 7 solve the system

1 1
SI€P = S0l = 1) = {Ial) =0,

= nl(1+ 7o) = 0.

Hence, the resonance set takes the form

{&n): &lln €] =re, Inl =ry}.

It is because of this set that we must assume

i (§=m)hy(n) =0 on As.

The method of stationary phase for oscillatory integrals is well known and many
classical results can be found in [I3]. The idea of carefully analyzing resonance
points is presented in [2].

Step 3: Bilinear Estimates We introduce the space X where we construct our
solutions’ non-linear terms by its norm

1fllx = 1O fll ge 3

Through the use of Sobolev embedding, we establish the following estimates on the
above-defined bilinear operators:

1B:(f,9)lx < [Ifl1x - llgllx,
1Bi(f, 9llx S I fll pgews.ee 0,00y xR2) - [19]lx,
1Bi(f,9)llx S MNfllx - 18 gl Lsows.oo (j0,00) xR2)-
These estimates are used to establish our iterative scheme as a contraction.

Step 4: Contraction in the X-Space Finally, we define two iteration schemes
as follows:

and
Up41 = U1 + Bi(ug, hi),
hi41 = h1 + Ba(ug, u).

These are then shown to be contractions in X. This is done through induction.
In the process, we use the dispersive estimates of the linear propagators, the first
iterate estimates established in Step 2, and the bilinear estimates from Step 3.

Remark: One should note that because the linear operators for the Schrédinger
and Klein-Gordon equations are isometries in H3, the linear solutions to both
equations do not exist in the space X. In this way, our scheme is very different
from any perturbation methods.
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The remainder of the paper is organized as follows:

In Section 2, we transform into a system that is first-order in time. We
then introduce the X space and establish the bilinear estimates on X. Finally,
we prove the Duhamel operators are contractions on X using induction and the
bilinear estimates. Part of this proof relies on the assumption that the first iterate
of our scheme is sufficiently small in X.

In Section 3, which accounts for the bulk of the paper, we prove that the as-
sumption on the smallness of the first iterate is valid if the final data (uy,hy) is
sufficiently small in some suitable space. This is done by resonance analysis and
stationary phase calculations.

2. REFORMULATION, BILINEAR ESTIMATES, AND CONTRACTION IN THE X-SPACE

2.1. Reformulation. In this section, we will show the Duhamel operator maps are
contractions. To this end, we rewrite the system into one that is first-order
in time. To do this, we introduce the variable h = v + (V)" 1d,v. is then
transformed to

1
i0yu + iAu = +uRe(h)

o (2.1)
—i0h + (V)h = (V)" (Vu - Vu).
If (u, h) are to scatter to free solutions (uy,hy) in H3, then we need
u—e2™uy|lgs + |h—e ™ hy|gs — 0 ast— oo. (2.2)

Because the linear operators e and e~ V) are both isometries in H 3, R.2) is
equivalent to

||e_%imu —uy|lgs + €V h —hy||lgs — 0 ast — oo.

Combining this with the Duhamel formulas for v and h, we obtain

u(t)\ '3 By £ [ ei3(98y . Re(h)ds (2.3)
h(t)) — \e ™ VIihy £ [T e t=VNV) 1 (Vu - Vu)ds ) ’

Thus, we formally expect solutions to (|1.1)) to have the form of (2.3)). We will find
a pair (u, h)T that satisfies (2.3 and whose non-linear components are in X. The
work of showing that (u,h)? satisfies the conditions of (1.2)) is straightforward and
omitted.

2.2. Bilinear Estimates. Based on ({2.3)), we define the following bilinear opera-
tors:

Bi(f.9) = /too e'2(=9)A £ Re(g)ds

Balf.o) = [ T N ) (V- Tg)ds.

Through these operators, we define our two iteration schemes:
Uy = ei%Atu_H
hi = e ity

and

Up+1 = u1 + By (ug, hy),
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hr+1 = h1 + Bz(uk,uk).

To prove these schemes are contractions, we must show the bilinear operators have
particular algebra estimates:

Lemma 2.1. Fori=1,2, we have

I1Bi(f.9)llx < Ifllx - llgllx (2.4)
1Bi(f,9)lx < KO fllLgews=((0,00)xR2) - gl X, (2.5)
1Bi(fs9)llx S Ifllx - 18 gll Loows oo (j0,00) xR2)
where the space X is defined by the norm
lgllx = 1E)gl e -
Proof. This is a matter of direct calculation. For i = 2, by the Minkowski inequality,

1Bl <@ [ 195 Taaeas],

Next, by the Holder inequality and Sobolev embedding,
IVF -Vl S IV Fll2lValloo + IV Fllal Vgl + IV FlleoIVg]l2
<721 fxllgllx -

Combining these estimates, we have

1B2(f,9)llx < Sup< >/t (s)72ds - [l fllx - lgllx < I fxllgllx-

This completes the proof of (2.4). The proofs for (2.5) and (2.6 and the case i =1
are similar and we omit them. (]

2.3. Contraction in the X-Space. With Lemma ({2.1)), we may now show our
iteration schemes are contractions in the X space with fixed points satisfying (2.3).
We will use the estimate

i 1
167 flz S 75l e,

where D = %tA or —(V). For ¢ > 1, this bound comes from the dispersive estimates
and the inequality

1l € S UP Al
keZ
For t < 1, we use Sobolev embedding. Denote wit1 = ugy1 — w1 and 241 =
hxt1 — hy for £ > 1. We are interested in the differences between successive values
of wy and z; as, by construction, they are also the differences of successive values
of ug and hg, respectively. For k > 2, we have
llzk12 — 2r1llx = | B2(ur + wrt1,u1 + wig1) — Ba(ur + wg, ur +wi) | x

= || Ba(wry1 — Wi, u1 + wri1) + Ba(ur + we, wer1 — wi)||x

S llwirr — welx (Jwellx + [lwesllx + [[{QuallLgewa.e)

S lwesr = willx (lwellx + llwesallx + llutllps )

(2.7)
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Similarly,
|wk+2 — Wil x = [[B1(ur + wey1, ha + 2k41) — Br(un + wi, ha + 25| x
= || B1(wkt1 — Wi, by + 2pg1) + Bi(uy + we, 2e41 — 21) || x
S lwkr — wellx ([ze41llx + (2 llgg )

+ 2k — zellx (lwell x + llutllss )
(2.8)
With these estimates, we prove by induction that under suitable conditions on the
final data the iteration scheme is a contraction.

Lemma 2.2. Let wj, z;j, and the space X be as defined above. Assume

s s o llhllss, <6
and

[ B1(u1, )l x, [|B2(ur,u1)|x <6
for some sufficiently small 6. Then for n > 3, we have

n

1 ,
lwillxs Nlzllx <6 (Z@) v2<j<n.
7=0

Proof. This is a proof by induction on n. For n = 3, we have
lwsllx = [|Bi(wz + u1, 22 + h1)x
< Collwallx (lz2llx + I+ llsg ) + llz2llxllutllpg | + 1 Br(us, hi)llx
<Cp-6% 4.

l[2sllx = [[Ba(wz + u1, w2 + ha)x
< Callwallx (lutllpg , + I1h4 g, ) + 1 B2(ua, ha)llx
< C3-6°+0.
Choosing ¢ sufficiently small completes the base case. Now consider j =n+ 1. By
equations and , we have
[wns1 —wnllx <C-flwn —wn_1llx - (lznllx + 1At ll5g )
+C - lzn = zn-allx - (lwn-allx + llus s )
<(C-38)"7 - (|lws — wal x + [|lz3 — 22| x)
<(C-38)"2.66.

2n1 = znllx < C"+ flwn — wp—allx (Jwnllx + lwa—1llx + llutllzg )
< (C"-58)(C-68)" 1 - ||wg — wa|x
< (C"-58)(C-65)"1 - 36.
Therefore, for sufficiently small ¢,
1

+

1 n
on+1 ga.(

|wnttllx < [lwnllx +6 -

lng
b2
N~—

n

+
—

N2
N—

1

~

[}
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d

Corollary 2.3. With the hypothesis of Lemmal[2.3, wy and zx, are Cauchy sequences
i X and therefore have strong limits in X.

Using this corollary, we may show the existence of solutions to for positive
time values if we assume small u; and hy data in B?,l and that the first iterate
of our scheme is sufficiently small in the X-space. The remainder of the paper will
demonstrate that the latter can be achieved if we assume some suitable norm of
the data u4 and hy is small.

3. ANALYSIS OF THE FIRST ITERATE

The purpose of this section is to prove that under suitable conditions on (u4, hy),
Bi(u1,hy) and Bo(ug,u;) have a decay of (t)~! in H3.

By Plancherel’s theorem, it is sufficient to measure an L? norm in the frequency
domain. By definition, we have

<Bl (uh hl)) _ (f ftOC 6i%(tis)A [(ei%SA ) Re ( M ) A (31)

B2(u17ul) Ooe—i(t—s)<v><v>—1 [v( i5 1sA +) v( iy 1sA +)]d$
Hence, in the frequency domain,
(0 < 1 (Gt M0
Bs(uq, u1 H3 ~ 3.7:(BQ(U1,U1 Lg
< ( () I} Jga €% &M (€ — ) (n)dnds > |
~ 2117 Jpe €92 (& = )iy (& — n)niy (—n)dnds ) |l

Where j = 0, 1; the phase functions ¢, ¢1, and ¢, take the form
bol€,m) = 3IE = 16—l + (),
b1(6.m) = 3IEP - 31—l — (),
ba(6,m) = (6) = 3l —nl? + ol

and go(€) = b (<€), 91(8) = ha(€).

For readability, we will divide the work of establishing the necessary frequency
bounds into several lemmas and propositions.

5
3

3.1. Preliminary lemmas.

Lemma 3.1. Let h(&,n) be a bounded function, then for alln € N and f,g € H",
we have

/ (& M FE — gl S 1Ltz gl 1tz
. ©

Proof. First, by the triangle inequality, we have (&) < (£ —n) + (n). Hence, ()" <
(& =)™+ (n)™. Thus, since h(£,n) is assumed to be bounded, we have

[ inemie |dn</ \5 U L

—m)3(n) + ()" §(n) (€ —n)ldn
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< > (16 =" FE = )9O ey + 1G)"GCLFE = )lles)-

By Holder, we then have

/R In(E ) f (€~ maGn)dn < <;>n (1l gl + Nl 1 £1122)

<£>

2 llglley-
O

Lemma 3.2 (Short Time Control). Suppose 0 < t < 1 and f,g € H2, then for

j=0,1,2;
/ [ e em e matmdnds|,
R2

Proof. Using Lemma we have

1 1
isg;(Em) Fle _ o\ A < 1 . i
!/t /R; i n)g(ﬂ)dndS\N/t e I lmzllglszds

1
S 7ol llmsllgllas-
<£>5|| IR

1
2 ®||f||H5||g||H5

Hence,

1
3 565 (&) fe — mVa(n)dnd
) /t /we (€ —m)g(n)dnds

S Wz llgllas ||< >2HL

< s gl -
<t> i x
(|

Using Lemma it is now sufficient to estimate the first iterate just for the
case t > 1. From henceforth, we will assume ¢ > 1.

In the following lemma, we show how, away from the space resonance set, one
may integrate by parts in time to obtain a (t)~! decay in H3.

Lemma 3.3 (Decay Away from Space Resonance). Let ¢ : R? x R? — R such that
|0n@(&,m)| 2 s~ and |8,’7“¢(§,77)| <1 for all k > 2. Further, suppose h(£,n) is a
smooth function with |8jh(§ | < s forall j > 1. If 200 + oz < 2, then

@ [~ [ e e mite - micnmanas| , < Hirllolr.

2

Proof. Define the operator D, on a sufficiently smooth scalar-valued function f(&,n)

by
_ Vae(€n)

By the inequality 2a1 + as < 2/3, we have that there exists a natural number
N < 6 such that N(1 — 2a; — @) > 2. Observe that

D(];/' (eis¢) _ eis¢7
so we may integrate by parts IV times using Dgy. This yields one principal term and
N boundary terms. The boundary terms each vanish due to the decay assumptions



12 K. TSURUTA EJDE-2013/132

on f and g and the assumption that 9,¢(&, n) is bounded below. Thus, we are only
left to consider the principal term.

[ e e — matndnds -

= / ) /R &N (DY (€, ) F(€ ~ m)g(n)]dnds].

Let X represent the right-hand side of (3.2)). Inductively, one can establish the
bound

o 1 1 1
X S/t /RQ ;N(Wn(b(g,n)\w * |V,,¢(§,77)IN)
é‘_

x> 100 h(E ) f(€ —m)0™ y(n)|dnds.
Bi<N

Hence,

oo sN-ag R .
X /}R2 SN(2a1) Z 002 f(€ — n)054(n)|dnds

B2,83<N

AN
r\

1 1 _ 2 _ N
S8 > UFHOF HllaslF 02 9) )
B2,B3<N

Y UF ORIzl F 079 ).

B2,83<N

S

1
()t

N
r\

—~

<

O

We may preform the same calculations with (£ —n)f(£ —n) and ng(n) replacing
f(&—n) and g(n), respectively, to obtain the following corollary:

Corollary 3.4. Let ¢(&,n) and h(§,n) satisfy the conditions of Lemma . Then

€ [~ [ e emnieans —mie ~ mmataanas]| , < 7151 laly-
t 2 €

Now that we have established a (t) ! decay away from the frequency space reso-
nance set, we will move on to establishing this decay away from the time resonance

set. This will be accomplished by the use of integration in time and the following
lemma:

Lemma 3.5. Let h(§,n) be a smooth, bounded function. Suppose that for 0 <
V1,772 < 5 we have

00 052 h(E,m)] S (6)° + (n)®.
Then for j =0,1,2;

7 [ emennien e —matman] , < {1l lollms. (33)

5~
Le

Proof. Let K denote the left-hand side of (3.3]). Then by Plancherel, we see

1. i .
K = ||Th(62”Af, eztDJg)”Hg'
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Here, T}, is a bilinear operator with symbol h(£,n); Do, D1 and D5 are the operators
(V), —=(V) and —A/2, respectively. More precisely,

o —

To(hi o) (€) = / W) Fu(€ — n) Falm)di.

Rewriting, we have
h(&.n) LiA roy itD; (7Y
e (V) F(E = n)ePi (V) 2g(n)dn

Th(eéitAfv eitng) = / (m12(€ —n)
_ T;L(e%itA <v> 12f7 eitDj <V> 129)’
where

h(&,n)

e = e = g

Therefore,
1. i .
K = HTh(ezztAf7 6ztDJg)”Hg

<2 Hfa/ﬁ(f,n)eé“wwf(f—n)e”Dﬂ'/<V\>12g(n)dn‘

0<a<3

s> |e-mene

la’|<3 (a1,2)=0’

2
LE

-

X /ﬁ(&n) (€ — ny12ekit f(e - 77)<77>126“DJ‘9(77)dn‘ L
3

< Z Z HTE(eéitA<v>12aa1 1, eitD; <v>128a29)”L§'

o/ 1<3 (av1,2)=0’

Because we have assumed that for 0 < 71,7 < 5,
08 072 h(&,m)| S (€)° + (n)°,

h is a Coifman-Meyer multiplier. Hence, using the Coifman-Meyer multiplier the-
orem and the dispersive estimate for the Schrédinger’s fundamental solution, we
have

Z HTE(G%“A<V>128alf, eitD; <V>126&29)HL§

0<ay,a2<3

< S0 e yi2om p|| gl

OSOQ S3

1
S I il llglans.

O

With Lemma we may now show how, away from the time resonance set, one
may use integration in time to obtain a (t)~! decay in H3.

Lemma 3.6 (Decay Away Time Resonance). Let h(§,n) satisfy the bounds
0ga (& m)| S 1
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for 0 < «a,8 < 5. Furthermore, suppose ¢;(&,n) 2 1 for j = 0,1,2. Then for
f,9 €Y, we have

2 [ [ e e - matnduds

1
< 71l liglly-

L
Remark: For our purposes, h(£,n) will typically be a smooth cutoff function.

Proof. Integration in time yields

e EDh(e, ) (€ = m)g(m)dnds|

R2
i siMasemy MEM 20
Sﬂiﬁnyéz e §"¢ﬂ€7ﬂf@ mgmym{ (3.4)
ite;(§,m) h g 77) _ d
’/Rz 5 (&, 17)f(g "‘ (3.5)

We wish to control both of these terms by using Lemma Hence, we must verify
that for 0 < 1,72 <5,

h(f n) 5
8’71872 < .
e )N@>+w
By the bounds on h(&,n) and ¢;(&,n), w
070 (W& m) - o EMI S D 100935 (&),
0<~v1,72<5
One can verify that for a multi-index v with |y| > 2, |07¢;(¢,n)| S 1. Hence,
Do 1020 (@ (€D S 1+ 10e65(EmIP +10,6;(€m)°

0<v1,72<5

have

S L+ [nl® + (€

Thus, we may use Lemma. [3.5] to conclude

Bz < *Ilfllwlalllglle

Similarly,
. 1
””Lg S Mhinoo M”f”Wfl”gHHiQ =0.

Furthermore, one can verify that

1BDlnz S D I Flluzlgluz < 1/1vlgly-

|| <2
By Sobolev embedding, (3.4)) is then an Lg° function whose Lg—norm is zero. Hence,
it is identically zero for all €. O

With these lemmas in place, we are now ready to establish the necessary decay
on Bj(u1,h1) and Ba(uy,u1). Recall that u; and hy are the linear evolutions of u
and h respectively and that in the frequency space, Bi(u1, h1) and Ba(uq,u1) have
the form

(o)
Butunh) = [ [ e, (€ = n)g(n)ands
t
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Batunu) = [ [ e~ )i (€ — i (—n)dnds.

where go(£) = hy(=¢) and g1(§) = h (§).

The main idea is to identify the space and time resonance sets of each phase
function ¢;. Away from the space resonance set, we can establish the (t)~1 decay
using Lemma (3.3} away from the time resonance set, we use Lemma [3.6] Points
where both ¢; and 0,¢; are identically zero are in the resonance set. We avoid
difficulties at these points by placing proper assumptions on the support of 4 and
il_i'_.

For the purposes of separating the integration regime based on resonance sets,
we will use the function ¢, which was defined in Subsection[I.I]and has the property
that ¢(r) =1 for 0 < r and ¢(r) = 0 for r > 2.

Recall that by Lemma [3.2] we need only establish decay for ¢ > 1. Hence, it is
enough to show the H3 norms of Bj(uy,h;) and Ba(uy,u;) have a t—1 decay.

3.2. Analysis of ¢y. We first estimate ||<§>3]-'(B1(u1,h1)||L§. We begin by con-
sidering the case when the phase function is ¢g. In this case, one can verify that the
set of (§,n) for which ¢o(&,n) = 0 is disjoint from the set for which 0,¢0(&,n) = 0.
Thus, with carefully chosen cutoff functions, we can divide the space into several
regimes and integrate by parts on every regime in either time or frequency space.

Proposition 3.7. Let
1 1
Po(&,m) = §|§|2 - §|§ — >+ (n),

then we have

H<£>3 /too /R2 eisdo(&mg (¢ — U);L+(*7])dnds’

1
S plusliyllhlly

p
Proof. Dividing the integration regime, we have &
/ N [ e € = b (n)nds (3.6)
—oale) [ [ ot a6~ b (s 37)
o) [ [ 1= el 0 ¢ i (ndnds (3.9

=] [ [ (Bl e ¢~ i (-ndnds (39

1= eAle] [ [ 1 Bl mDle i €~ b ()i,
(3.10)

where A and B are large constants and for each £, the point 7 is the unique point

in R? such that )
§= 770(1 - 7)
(n0)

1
8 d) 55 = 5 - 1--— ’
we have that for a fixed &, 7 is the unique point for which 0,¢0(¢,n) = 0.

Note that since
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We begin our estimate with (3.7), where |£] < 2A7. On this regime, we have
that |n| < 1. Hence,

1
[Po(&;m)| = () — [€lIn] — §|77|2 >1-
We therefore apply Lemma. [3.6] to obtain
1
&’ DIz < Tllly 1y

We next consider (3.8). For this term, we have that || < 2A~! and we are inte-
grating over a regime where || > 1/2. Thus,

-5

|t
N —
| =

Ono(€m)] = [€ (1~ %)‘

> ol (1= ) I

)
1

Zﬁ'

Using Lemma [3.3| with o, a2 = 0 and N = 2 yields

1
1 B3z S 7 llutliv by

For (3.9), we seck an absolute lower bound on |¢o(¢, )| for the purpose of using
Lemma [3.6] Let 6 be the angle between 7 and 79. By making B large relative to
A, we may assume 0 < cosf. Now we consider two cases:

Case 1: || < 2. Then we have

Bo& )l > (n) — Il > ) ~ Il

On the closed ball B(0,2), (n) — |n| is a strictly positive function. Thus, it attains
an absolute minimum greater than zero. Hence, |¢o(&,n)| > 6.

Case 2: |n| > 2. Enlarging B we may assume 1y > 1.99 and |n9| > .99|n|. This
gives

1 1
o€ 2 ol (1 = 75 ) nlcosd = 1l
1 1
> |770|<1 - m) n| cos 6 — §|77|2

Y

1
53[0(In| cos 6 —  |n|?
|n|(.52 cos @ — .5).

V

Because |n| has a lower bound, we may, if necessary, again enlarge B so that cos 6 >
.99. This gives |¢o(&,n)] > 1/5. With an absolute lower bound on |¢g(&,n)|, we
may now use Lemma [3.6] to conclude

1
1 BDllzz S Slutllv sy

For (3.10), we wish to show |0,¢0(£,n)| 2 1, with the intent of using Lemma
For this purpose, set 6 as the angle between 79 and 1. We consider several cases:
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Case 1: |0] > 7/2. Then

|On¢o(&,m)| = [€] =

|

Case 2: |n| < 1[¢|. Then

1
[On@o(&,m)] 2 1€] = Inl = 55

Case 3: |n| > 1[¢|, 0 <6 < 7/2. By our assumption on the distance between 7
and ng, we have

B < |nol?® + [n|* — 2|nol|n| cos 6.

Thus, we can bound cosf as

(3.11)

2 2 _ .
0<cosf < |7702|—;0|7|7|77|
for e = B2. Hence,
|0y o (&, m)?
=t (1= )+l (1= =) = 2hllal (1= ) (1= o) cost
(10) (n) {10) ()
2l (1=gms) + (1= ) = (1= ) (1 ) (ol + ol =)
]

j
:(é;—ésﬂmﬁo—@%——wil—ég

i )0 ) o1

Since |z| > |y| implies (y)~! > (x)~!, the term (3.11) is a product of two numbers

with the same sign. Thus,

[Bndol&,m)| 2 e(1 - ﬁ) (1 ﬁ)

26(1_ <A1—1>)(1_ ( } >> <1

24
Hence, we may use Lemma [3.3] with a1, a2 = 0 and N = 2 to obtain

1
1€ BIM 2z S 7 llws Iy 1]y

O

3.3. Analysis of ¢;. We now consider the case where the phase function is ¢;.
In this case, there is a set A C R? x R? on which ¢1(£,n) and 8,¢1(§,n) are both
zero. On this set, we can not integrate by parts in either frequency space or time.
Instead, we place appropriate assumptions on the final data so that Bj(ui,hq) is
identically zero around A.

Proposition 3.8. Let

b1(6.m) = 31E - 31—l — (),
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then the resonance set of ¢y is non-empty and contained in the set As defined in
Subsection[1.1 If

(€ —mhi(n) =0 on 45,
then

1
S 7 lluslly e lly-

H<§>3 /too /}R2 st Emg (¢ — ﬁ)iw(ﬂ)dnds‘

Proof. Note that

2
Lg

1
Id1(&m) =& —n(1+ =)
Recall that As is defined as
As ={(&m) ire =0 < €] <re+0, my =0 < |n| <7y + 6},
where the ordered pair (r¢,r,) is the unique solution on R™ to the system
1 1
57"? - i(rﬁ —7ry)? = () =0
1
Te—T (1 + 7> =0.
3 n <’I“77>

From the form of 9,¢1(§,n) and the definition of r¢ and r,, one can see that if
(€r,mr) is a resonance point of ¢1(&,n), then & is co-linear with 7, [£r| = 7¢, and
Inr| =1y
Let 91 be a smooth cutoff function on R supported on [rg — §/2,7¢ + /2] and
congruent to 1 on [re — /4, r¢ +6/4]. Similarly, let 12 be a smooth cutoff function
on R supported on [r, —6/2,r, + 6/2] and congruent to 1 on [r,, — /4, r, +6/4].
For each &, we also define 1y as the unique point in R? such that

1
— (14 —).
; 770( <770>)
Decomposing, we have
/ T eiseemi, (e — nyh (n)dnds (3.13)
¢t Jr2 " i '
- / / 1 — o(Bln — no)ei** €Mt (¢ — )iy (n)dnds (3.14)
t 2

+f h [ o8l — ml = va(eun(nlet™ i (¢~ s (n)dnds (315)
t R2

[ [ Bl = ma€D () (€ = by (dnds. (316
t
We begin our estimates with (3.14). On its regime, we have

|0n01(&,m)| = ’770(1 T <7Tlo>) B 77(1 * %N
> [ — nol
> L
- B

Hence, we may use Lemma [3.3] with a1, 2 = 0 and N = 2 to establish

1
€ BTz S - lluslly oty

~t
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We now bound (3.15)). To this end, we first consider the values of ¢ at the station-
ary phase points. More precisely, we will first establish a lower bound on ¢1(&, n9).
If |€] > 100, then we have

916 m0)| =16 70 — 3ol — (o)

2 1 1 2
= Il (1+ 7.5 = 1l = )

> Shol? — ) 2 1.
In the case of || < 100, we claim that by enlarging B relative to d, we may assume
0 <[] < re—6/100,
or
re +6/100 < €] < 100.
To see this, assume for contradiction that some & with
|€] € [re +6/100,re — §/100]
is in our integration regime. Then we also have that
Inol € [ry —6/20, 7, 4+ §/20].
Hence, by enlarging B, we may use the term o(B|n — n|) to assume that
|n| € [ry, —8/10, 7, 4+ 6/10].

But this point must then lie outside our integration regime as 1—11(|€])¥2(|n|) = 0.
Thus, if |£] < 100, then we may also assume that

€] & [re —6/100,re + §/100].

Furthermore, we know that either ¢1(£,n) or 0,¢1(&,n) is non-zero at a given point
in the regime of . Thus, |¢1(&,1m0)| > 0 for all relevant £. We then have that
#1(&,mp) is a function in & that is continuous and non-zero. This implies that on
the compact set

[0,7¢ — §/100] U [re + 6/100, 100],
@1(&,mo) must attain some absolute lower bound dy. We also have that

181 (€,)| < |10 — ] + ‘% - <Z—>‘ <3

Then, by the Fundamental Theorem of Calculus,

|p1(&,m)| = do — 30 — nol.
Enlarging B, we obtain |¢1(£,n)| > dp/2. Now we may use Lemma to obtain

1
1€ GBIz < - lluslly 1oty

~t

Finally, (3.16) is identically zero by the assumption that @ (¢ — n)hy () = 0 on
As. O
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3.4. Analysis of ¢3. Finally, we estimate ||<£>37(B2(u1,u1))||L§.
Proposition 3.9. Let
1 1
P2(&m) = (§) — §|§ -’ + §|77\2,
then we have

[t [ [ eoemic —nyiet — nmis (nsands|, S Gl
13

Proof. We decompose as follows:

[ e e~ wyiete i (n)ands| (317)
S| [ ] e o As P € ~ misle ~ mnis (-mdnds|  (318)
t R2
s [ ptastil) [ o(-5) e em e~ myisl ~ npni (-n)anas
(3.19)
= / C o N gisoam (6 pyi (6 — i (—
] [ east e [ (1= e(5) ) €~ myie € i (n)nds)
(3.20)
We first consider , where
1
€l >

Since 0y ¢2(&, 1) = &, we may use Corollary with oy = 1/3, ag = 0, and index
N = 6 to obtain

1
16 @Dz < s}
We now move on to estimating (3.19)), where we have

2

and we are integrating over a regime on which
] < 25'/°.

Therefore, we have

1
|p2(&,m)| = (€) — §|§|2 —[&-n
4
A

[\
=

1—
1
5"

v

Though ¢(&,n) has an absolute lower bound, we may not directly use Lemma
since our symbol A is a function of time. Instead, we integrate by parts in time to
obtain

. —-1/3 _
BI9) < [ar )y [ e 26— i (e - i (~in| (321

+ ’ /R2 (& = n)iy (€ = n)niiy (=)
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o gish2 (&, 71)

x| ey O (A5 BleDells™ %) ) s (3.22)

Let t(r) be a smooth function defined for » > 0 such that ¢ (r) = 0 for r < 1/4
and ¥(r) = 1 for r > 1/2. Then we have

zt¢2(5 n)w |¢2(§ 77)‘)90(‘77“_1/3) _

i (€ = )iy (= dn(
Using Lemma we have

‘/ nmmw [b2(&,m)De(In|t=1/3)
R2 ®2(€,m)

S ;||VU+HW15J||VU+||H;5

(& =)y (& = n)nig(— dn’

<= 2.
< 7l

For (3.22)), integrating by parts again yields
eitd2(&,m)
B x| [, ooyt (oA enie™ )

¢2 57
(e n)u+(€ s (~n)dn) (3.23)
+ ‘/ (& = n)iy (€ = n)nay(—n)
R2
00 Lis2(€,m) ) 51/3 . 1/3 i
X/t (62(E,m))2 3‘( (As2[€])e(|nl )d dn‘ (3.24)
Calculating, we have
B.23)
cit2(Em
/3., / -1/
ﬂéﬂ¢@myw23umﬂ%uw1%m Wit (€ — i (<))
citda(Em)
+)/]R? (d2(&, n:)Q@(A|f‘t1/3)|77|t_4/3 /(‘77|t_1/3))(f Ny (€ — )Nty (— d’?‘

A

/‘Qat”3%AEW“)+mu4“'GMtV%N@—nm+@—nma4—mun

1/Ws ) (€ — m)ni (—m)dn

~t
1
< L .
~ t<§>4 ||u+||H15,

Similarly,

B29 < / (€ = m)iar (€ — m)miee (= I/ fdsdn
1
< -
Finally, we bound (3.20), where

2
|§|§m
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and we are integrating over a regime on which
| > s'/°

For this term, we can get the necessary decay by assuming high regularity on u..
More precisely,

@)1z
sl [ / (1= (L) et 0 6 — e — sy (s
2[5 [ e - min e - mis Cnnas],

1
2
@ [ gl sl lugds]

N

A

~S ¥||U+H?‘I;1‘
O
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