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GENERALIZED BOHL-PERRON PRINCIPLE FOR
DIFFERENTIAL EQUATIONS WITH DELAY IN A BANACH
SPACES

MICHAEL GIL’

ABSTRACT. We consider a linear homogeneous functional differential equation
with delay in a Banach space. It is proved that if the corresponding non-
homogeneous equation, with an arbitrary free term bounded on the positive
half-line and with the zero initial condition, has a bounded solution, then the
considered homogeneous equation is exponentially stable.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Recall that the Bohl-Perron principle states that the homogeneous ordinary dif-
ferential equation (ODE) dy/dt = A(t)y (t > 0) with a variable n x n-matrix A(¢),
bounded on [0,00) is exponentially stable, provided the nonhomogeneous ODE
dz/dt = A(t)x + f(t) with the zero initial condition has a bounded solution for any
bounded vector valued function f [7].

In [I8, Theorem 4.15], the Bohl-Perron principle was generalized to a class of
retarded systems with finite delays; also the asymptotic (not exponential) stability
was proved. The result from [I8] was a considerable development afterwards, cf. the
book [3] and the very interesting papers [4] [5], in which the generalized Bohl-Perron
principle was effectively used for the stability analysis of the first and second order
scalar equations. In particular, in [4] the scalar non-autonomous linear functional
differential equation @(t) + a(t)xz(h(t)) = 0 is considered. The authors give sharp
conditions for exponential stability, which are suitable in the case that the coefficient
function a(t) is periodic, almost periodic or asymptotically almost periodic, as often
encountered in applications. In [5], the authors provide sufficient conditions for the
stability of rather general second-order delay differential equations. In [I5l [16] a
result similar to the Bohl-Perron principle has been derived in terms of the norm of
the space LP, which is called the LP-version of the generalized Bohl-Perron principle.

In this article, we extend the Bohl-Perron principle to a class of functional dif-
ferential equations with delay in a Banach space. In Section 3 below, we show that
our results can be effectively used for the stability analysis. As it is well-known,
the basic method for the stability analysis of functional differential equations is the
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direct Lyapunov method. By this method very strong results are obtained. But
finding Lyapunov’s type functionals for nonautonomous vector equations with de-
lay is usually difficult. In Section 3 we suggest explicit sharp stability conditions,
which supplement the well-known results on stability of equations with delay in a
Banach space; see [11, 2, @] 19| 20, 21] and references given therein.

Let X be a complex Banach space with a norm || - || x and the unit operator I.
Denote by C(w) = C(w, X) the space of continuous functions u defined on a set w C
R with values in X and the finite sup-norm ||-[[¢(w). For a bounded linear operator
T acting from X into a normed space Y we put ||T||x—y = sup,cx ||Tullv /vl x.

Let A(t) be a linear generally unbounded operator in X with a constant dense
domain Dom(A). In X, for a positive constant 1 < oo consider the equation

a(t) = A()y(t) + / "Bt - s)ds + S Byl — het), (L)

where y(t) is a strong derivative of y; Bi(t) (k =1,...,m) are bounded continuous
operator functions on [0, 00); B(t, s) is an operator function defined and bounded
on [0,00) x [0,7], which is continuous in ¢ and integrable in s; 0 < hg(t) < n are
continuous functions. Let the initial condition be

y(t) = o(t)(-n <t <0) (1.2)
for a given ¢ € C(—n,0) N Dom(A). For w € C(—n, 00), put

Ew = /n B(t,s)w(t — s)ds + Y  Br(t)w(t — hi(t)).
0 1

Then takes the form
y(t) = A)y(t) + Ey(t). (1.3)

It is assumed that A(t) generates a strongly continuous evolution family {U(t, s)}
(t > s > 0) of bounded operators in X. That is, U(t, s) is the evolution operator
of the equation

() = A(B)C(1) (1.4)

cf. [6]. Following the Browder terminology [I7], a continuous function y satisfying
t

() = U000 + | Ult.0)Ey(tr)in (15)
0

and (|1.2) we will be called a mild solution to (1.1f), (1.2). Consider also the non-

homogeneous equation

(t) = A(t)x(t) + Ex(t) + f(t), t>0 (1.6)
with a given function f(¢) € C(0,00), and the zero initial condition
z(t) =0, —n<t<O0. (1.7)

Then a continuous function x satisfying

£(t) = / Ut 0)(Ba(t) + £(t2))dty (18)

and ([L1.7) will be called a mild solution to (1.6, (1.7). Below we show that ,
problems (1.1}, (1.2) and (1.6)), (1.7) have unique mild solutions.
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We will say that (1.1)) is exponentially stable, if there are positive constants
My, €, such that [|y(t)|| < Mie=||¢|lc(—y,0) (¢t > 0) for any mild solution y(t) of

mNE)

We assume that there are positive constants oy and M, such that
U, s)||x < Me=t=%) vt >5>0, (1.9)
A(t)z € C(0,00) for any z € Dom(A). (1.10)
Theorem 1.1. If conditions and hold, and for any f € C(0,00), prob-

lem (1.6), (L.7) has a bounded mild solution on [0,00), then (L.1) is exponentially
stable.

This theorem is proved in the next section.

Suppose 1 < p < oo, then for an exponentially bounded and strongly continuous
evolution family U(t,s) of bounded linear operators acting in X, the following
condition is equivalent to : there exists a constant M, > 0, such that

oo

sup/ WU, 5)zlBedt < My |2|%, V= € X, (L11)
SZO S

cf. [0, p. 75]. Other conditions equivalent to (1.9) can be found in [6, p. 77].

2. PROOFS
It is not difficult to check that for all 7 > 0,
|EBwllco,r < vollwlc(—y,ry forwe C(—n,7), (2.1)

where
n m
w=sup [ 1B(t:5)lxds + 3 [1Bult)]x):

For brevity, in this section, sometimes we use || - [[c(o,7) = | - |+ for 7 > 0. Let us
define the operator V' by

Vw(t) = / t U(t,t1)(Ew)(t)dt,

0

for any integrable function w(t) (¢ > 0) with values in X. According to (1.9) and
it is easy to check that for any finite T and u € C(—n,T) with u(t) = 0 for
t § 0, V satisfies

T
[VFu|r < M’Uo/ \VF= L, dt

S MUO / / ‘Vk 2U|t1dt1dt
T M)
<. (TO‘ 7.

Hence, it follows that

Corollary 2.1. For any continuous f, problem , has a unique mild
solution x(t), which can be represented as

v=S ViR, where fi(t) = /0 Ut 1)/ (b )dt. (2.2)
1
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Lemma 2.2. Under condition (1.10)), if for any f € C(0,00), problem (1.6]), (1.7
has a bounded mild solution on [0, 00), then for any ¢ € C(—n,0)NDom(A) problem

, has a unique mild solution bounded on (0,0c0).
Proof. Put
. $(0) ift>0,
b= o0

o(t) if —n<t<O.
Then d¢(t)/dt = 0 for t > 0. Consider the equation

da(t)/dt = A(t)(x(t) + ¢(0)) + E(x(t) + &(t)) (¢ > 0),

with condition (I.7). According to and (2.1)), A(t)¢(0) + E(t) € C(—n, ).

Due to the hypotheses of this lemma, the latter equation has a solution z € C(0, c0).

Then the function y(t) = z(t) + (t) € C(—n, c0) and satisfies problem (T.1)), (T.2).
As claimed. u

Proof of Theorem[I1. Substituting

y(t) = ye(t)e (2.3)
with an € > 0 in , we obtain
dye(t)/dt = (A(t) + €)ye(t) + Eeye(t) (t > 0), (2.4)

where
Ew(t) = /?7 B(t, s)e“w(t — s)ds + Z MO By (D w(t — hy(t))
0 1

for a continuous w. It is easy to check that E, — E in the operator norm of C(0, co)
as e — 0.

Furthermore, due to we obtain = = G f, where
00 t
G=I-V)"'W=>Y VW, with Wf(t)= / U(t,ty) f(t)dty.
1 0

By the hypothesis of the theorem, we have
x=GfeC(0,00) forany feC(0,00).

So G is defined on the whole space C(0,00). It is closed, since problem ,
has a unique solution. Therefore, G is bounded according to the Closed Graph
theorem [§].

Consider now the equation

Le(t) = (A(t) + el)z(t) + Eexc(t) + f(t) (2.5)
with the zero initial condition. Its mild solution is defined by

2o(t) = /0 Ut 0 (en(t) + Buo(ty)dty) + fo (2.6)

where f; is defined as in (2.2)). For solutions x and z. of (|1.8) and ([2.6)), respectively,
we obtain

x(t) —x(t) = /0 U(t, t1)(exe(t1) + Ecxc(t1) — Fx(ty))dty
= V(xe(t) — () + fe(b),
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where .
ft) = [ Uttt (erelen) + (B~ Byt

Consequently,
v —w = Cf.. (2.7)
However |G|T < ||(A;||C(O,C><>)7 and

n
|(Be = E)w|r < ig}g(/ 1B, s)llx|e” = 1] [w(t = s)|[xds
P 0

+ > e O — 1| Bp(t)w(t — hi (1)) x)
1
< (e — 1)|wl|r.

By (1.9) and (2.1), |V]r < Mwvg/ap. So |fe|lr < |z€|T(e+Mv0aal(e“7 —1)) and

zelr < |2l + 1G]l (0,00 el 7 (€ + Mugag (e — 1)).
Thus, for a sufficiently small €,

|z|r
1GI(e + MGl (0,00 V0t * (€57 = 1))

Letting ' — oo, we obtain z,. € C(0,00). Hence, by Lemma a solution y, of
(2.4) is bounded. Now ([2.3]) proves the exponential stability, as claimed. O

‘xelT S 1_

3. EQUATIONS IN A HILBERT SPACE

In this section we illustrate Theorem in a Hilbert space. Let X = H be a
Hilbert space with a scalar product (.,.), and the norm || - ||z = /(.,.). Let A(t)
map Dom(A) into itself and

Re(A(t
sup RelAlt)z z) < —at) < —ag Vt>0, (3.1)
z€Dom(A) (Zv Z)

where «(t) is a positive continuous function and «q is a positive constant. From

(1.4)) it follows that

%(C(t% (1) = (C(1), (1) + (C(£), C(1)) = 2Re({(t),¢(t) = 2Re(A(t)(1), (1))
Thus p p
7 C@),¢(0) = 2llcO ] ZlICO) |l < —2a(t)(C(1), ¢(2)),

T e®lln < —a®IcOlln.
Solving this inequality with ((s) € Dom(A), we obtain
U, s)|ag <e” Jolmydr < em =) for ¢t > s> 0.
Hence, .
sgp/o WUt ) |ty < .

where

t t
J = Sup/ e~ i D‘(T)detl.
t Jo
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From (|1.8) and ([2.1)) it follows that

2]lc(0,00) < vod [|1Z]lc(0,00) + 1f1ll(0,00)-
Consequently, if

vod < 1, (32)
then ™
| f1llc(0,00)
<
2]l c(0,00) < 1w

Using Theorem [T.1] we arrive at the following result.

Corollary 3.1. Suppose E maps Dom(A) into itself, and conditions (L.10]), ,
and (3.2) hold. Then (1.1) is exponentially stable.

Some additional stability criteria can be found, for instance, in [19, 14, 11]. In
particular, in [19], the authors prove important results on the asymptotic behavior
of solutions for semilinear autonomous functional differential equations with infinite
delay. In [I4], the authors considered equations with unbounded history response.
Article [T1] is devoted to the stability of linear time-variant functional differential
equations in a Hilbert space. The generalized Aizerman-Myshkis problem for ab-
stract differential-delay equations is considered in [12] [13]. A criterion for global
stability of parabolic systems with delay is suggested in [10].
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