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GROWTH AND OSCILLATION OF DIFFERENTIAL
POLYNOMIALS GENERATED BY COMPLEX DIFFERENTIAL

EQUATIONS

ZINELAÂBIDINE LATREUCH, BENHARRAT BELAÏDI

Abstract. The main purpose of this article is to study the controllability of

solutions to the linear differential equation

f (k) + A(z)f = 0 (k > 2).

We study the growth and oscillation of higher-order differential polynomials

with meromorphic coefficients generated by solutions of the above differential

equation.

1. Introduction and main results

In this article, we assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna’s value distribution theory [6, 13]. In
addition, we will use λ(f) and λ(f) to denote respectively the exponents of con-
vergence of the zero-sequence and distinct zeros of a meromorphic function f , ρ(f)
to denote the order of growth of f . A meromorphic function ϕ(z) is called a small
function with respect to f(z) if T (r, ϕ) = o(T (r, f)) as r → +∞ except possibly
a set of r of finite linear measure, where T (r, f) is the Nevanlinna characteristic
function of f .

Definition 1.1 ([7, 13]). Let f be a meromorphic function. Then the hyper-order
ρ2(f) of f(z) is defined as

ρ2(f) = lim sup
r→+∞

log log T (r, f)
log r

.

Definition 1.2 ([6, 10]). The type of a meromorphic function f of order ρ (0 <
ρ <∞) is defined as

τ(f) = lim sup
r→+∞

T (r, f)
rρ

.
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Definition 1.3 ([4, 13]). Let f be a meromorphic function. Then the hyper-
exponent of convergence of zeros sequence of f(z) is defined as

λ2(f) = lim sup
r→+∞

log logN(r, 1
f )

log r
,

where N(r, 1
f ) is the counting function of zeros of f(z) in {z : |z| < r}. Similarly,

the hyper-exponent of convergence of the sequence of distinct zeros of f(z) is defined
by

λ2(f) = lim sup
r→+∞

log logN(r, 1
f )

log r
,

where N(r, 1
f ) is the counting function of distinct zeros of f(z) in {z : |z| < r}.

For k > 2, consider the complex linear differential equation

f (k) +A(z)f = 0 (1.1)

and the differential polynomial

gf = dkf
(k) + dk−1f

(k−1) + · · ·+ d1f
′ + d0f, (1.2)

where A and dj (j = 0, 1, . . . , k) are meromorphic functions in the complex plane.
Chen [5] studied the fixed points and hyper-order of solutions of second order

linear differential equations with entire coefficients and obtained the following re-
sult.

Theorem 1.4 ([5]). For all non-trivial solutions f of

f ′′ +A(z)f = 0, (1.3)

the following statements hold:
(i) If A is a polynomial with degA = n > 1, then

λ(f − z) = ρ(f) =
n+ 2

2
.

(ii) If A is transcendental and ρ(A) <∞, then

λ(f − z) = ρ(f) =∞,
λ2(f − z) = ρ2(f) = ρ(A).

After him, Wang, Yi and Cai [12] generalized the precedent theorem for the
differential polynomial gf with constant coefficients as follows.

Theorem 1.5 ([12]). For all non-trivial solutions f (1.3), the following statements
hold:

(i) If A is a polynomial with degA = n > 1, then

λ(gf − z) = ρ(f) =
n+ 2

2
.

(ii) If A is transcendental and ρ(A) <∞, then

λ(gf − z) = ρ(f) =∞,
λ2(gf − z) = ρ2(f) = ρ(A).

Theorem A has been generalized from entire to meromorphic solutions for higher
order differential equations by Liu Ming-Sheng and Zhang Xiao-Mei [11] as follows:
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Theorem 1.6 ([11]). Suppose that k > 2 and A(z) is a transcendental meromorphic
function satisfying

δ(∞, A) = lim inf
r→+∞

m(r,A)
T (r,A)

= δ > 0, ρ(A) = ρ < +∞.

Then every meromorphic solution f 6≡ 0 of (1.1) satisfies that f, f ′, f ′′, . . . , f (k)

have infinitely many fixed points and

λ(f (j) − z) = ρ(f) = +∞, (j = 0, 1, . . . , k),

λ2(f (j) − z) = ρ2(f) = ρ (j = 0, 1, . . . , k).

Let L(G) denote a differential subfield of the field M(G) of meromorphic func-
tions in a domain G ⊂ C. If G = C, we simply denote L instead of L(C). Special
case of such differential subfield

Lp+1,ρ ={g meromorphic: ρp+1(g) < ρ},
where ρ is a positive constant. Laine and Rieppo [9] investigated the fixed points
and iterated order of the second order differential equation (1.3) and obtained the
following result.

Theorem 1.7 ([9]). Let A(z) be a transcendental meromorphic function of finite
iterated order ρp(A) = ρ > 0 such that δ(∞, A) = δ > 0, and let f be a transcen-
dental meromorphic solution of equation (1.3). Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ(∞, f) > 0.

Then ρp+1(f) = ρp(A) = ρ. Moreover, let

P [f ] = P (f, f ′, . . . , f (m)) =
m∑
j=0

pjf
(j) (1.4)

be a linear differential polynomial with coefficients pj ∈ Lp+1,ρ, assuming that at
least one of the coefficients pj does vanish identically. Then for the fixed points of
P [f ], we have λp+1(P [f ]− z) = ρ, provided that neither P [f ] nor P [f ]− z vanishes
identically.

Remark 1.8 ([9, p. 904]). In Theorem 1.7, in order to study P [f ], the authors
consider m 6 1. Indeed, if m > 2, we obtain, by repeated differentiation of (1.3),
that f (k) = qk,0f + qk,1f

′, qk,0, qk,1 ∈ Lp+1,ρ for k = 2, . . . ,m. Substitution into
(1.4) yields the required reduction.

The main purpose of this paper is to study the growth and oscillation of the
differential polynomial (1.2) generated by meromorphic solutions of equation (1.1).
The method used in the proofs of our theorems is simple, and different, from the
method in Laine and Rieppo [9]. Before we state our results, we define the sequence
of functions αi,j (j = 0, . . . , k − 1) by

αi,j =

{
α′i,j−1 + αi−1,j−1, for i = 1, . . . , k − 1,
α′0,j−1 −Aαk−1,j−1, for i = 0

(1.5)

and

αi,0 =

{
di, for i = 1, . . . , k − 1,
d0 − dkA, for i = 0.

(1.6)
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We define also

h =

∣∣∣∣∣∣∣∣∣
α0,0 α1,0 . . . αk−1,0

α0,1 α1,1 . . . αk−1,1

...
...

α0,k−1 α1,k−1 . . . αk−1,k−1

∣∣∣∣∣∣∣∣∣ (1.7)

and
ψ(z) = C0ϕ+ C1ϕ

′ + · · ·+ Ck−1ϕ
(k−1), (1.8)

where Cj (j = 0, . . . , k − 1) are finite order meromorphic functions depending on
αi,j and ϕ 6≡ 0 is a meromorphic function with ρ(ϕ) <∞.

Theorem 1.9. Let A(z) be a meromorphic function of finite order. Let dj(z)
(j = 0, 1, . . . , k) be finite order meromorphic functions that are not all vanishing
identically such that h 6≡ 0. If f(z) is an infinite order meromorphic solution of
(1.1) with ρ2(f) = ρ, then the differential polynomial (1.2) satisfies

ρ(gf ) = ρ(f) =∞
and

ρ2(gf ) = ρ2(f) = ρ.

Furthermore, if f is a finite order meromorphic solution of (1.1) such that

ρ(f) > max{ρ(A), ρ(dj) (j = 0, 1, . . . , k)}, (1.9)

then
ρ(gf ) = ρ(f).

Remark 1.10. In Theorem 1.9, if we do not have the condition h 6≡ 0, then the
conclusions of Theorem 1.9 cannot hold. For example, if we take dk = 1, d0 = A and
dj ≡ 0 (j = 1, . . . , k − 1), then h ≡ 0. It follows that gf ≡ 0 and ρ(gf ) = 0. So, if
f(z) is an infinite order meromorphic solution of (1.1), then ρ(gf ) = 0 < ρ(f) =∞,
and if f is a finite order meromorphic solution of (1.1) such that (1.9) holds, then
ρ(gf ) = 0 < ρ(f).

Theorem 1.11. Under the hypotheses of Theorem 1.9, let ϕ(z) 6≡ 0 be a meromor-
phic function with finite order such that ψ(z) is not a solution of (1.1). If f(z) is
an infinite order meromorphic solution of (1.1) with ρ2(f) = ρ, then the differential
polynomial (1.2) satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(f) =∞,
λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(f) = ρ.

Furthermore, if f is a finite order meromorphic solution of (1.1) such that

ρ(f) > max{ρ(A), ρ(ϕ), ρ(dj) (j = 0, 1, . . . , k)}, (1.10)

then
λ(gf − ϕ) = λ(gf − ϕ) = ρ(f).

Corollary 1.12. Let A(z) be a transcendental entire function of finite order and
let dj(z) (j = 0, 1, . . . , k) be finite order entire functions that are not all vanishing
identically such that h 6≡ 0. If f 6≡ 0 is a solution of (1.1), then the differential
polynomial (1.2) satisfies

ρ(gf ) = ρ(f) =∞,
ρ2(gf ) = ρ2(f) = ρ(A) = ρ.
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Corollary 1.13. Under the hypotheses of Corollary 1.12, let ϕ(z) 6≡ 0 be an entire
function with finite order such that ψ(z) 6≡ 0. Then the differential polynomial (1.2)
satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(f) =∞,
λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(f) = ρ(A).

Corollary 1.14. Let A(z) be a nonconstant polynomial and for j = 0, 1, . . . , k
let dj(z) be nonconstant polynomials that are not all vanishing identically such that
h 6≡ 0. If f 6≡ 0 is a solution of (1.1), then the differential polynomial (1.2) satisfies

ρ(gf ) = ρ(f) =
deg(A) + k

k
.

Corollary 1.15. Let A(z) be a transcendental meromorphic function of finite order
ρ(A) > 0 such that δ(∞, A) = δ > 0, and let f 6≡ 0 be a meromorphic solution of
(1.1). Suppose, moreover, that either:

(i) all poles of f are uniformly bounded multiplicity, or
(ii) δ(∞, f) > 0.

Let dj(z) (j = 0, 1, . . . , k) be finite order meromorphic functions that are not all
vanishing identically such that h 6≡ 0. Then the differential polynomial (1.2) satis-
fies ρ(gf ) = ρ(f) =∞ and ρ2(gf ) = ρ2(f) = ρ(A).

Corollary 1.16. Under the hypotheses of Corollary 1.15, let ϕ(z) 6≡ 0 be a mero-
morphic function with finite order such that ψ(z) 6≡ 0. Then the differential poly-
nomial (1.2) satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(f) =∞,
λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(f) = ρ(A).

2. Auxiliary lemmas

Lemma 2.1 ([1, 3]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F (2.1)

with ρ(f) = +∞ and ρ2(f) = ρ, then f satisfies

λ(f) = λ(f) = ρ(f) = +∞,
λ2(f) = λ2(f) = ρ2(f) = ρ.

The following lemma is a special case of the result due to Cao, Chen, Zheng and
Tu [2].

Lemma 2.2. Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic functions.
If f is a meromorphic solution of (2.1) with

max{ρ(Aj) (j = 0, 1, . . . , k − 1), ρ(F )} < ρ(f) < +∞,
then

λ(f) = λ(f) = ρ(f).

By using similar proofs as in [8, Propositions 5.1 and 5.5], we easily obtain the
following lemma.

Lemma 2.3. For all non-trivial solutions f of (1.1) the following statements hold:
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(i) If A is a polynomial with degA = n > 1, then

ρ(f) =
n+ k

k
. (2.2)

(ii) If A is transcendental and ρ(A) <∞, then

ρ(f) =∞ and ρ2(f) = ρ(A). (2.3)

Lemma 2.4 ([1]). Let A(z) be a transcendental meromorphic function of finite
order ρ(A) > 0 such that δ(∞, A) = δ > 0, and let f 6≡ 0 be a meromorphic
solution of (1.1). Suppose, moreover, that either:

(i) all poles of f are uniformly bounded multiplicity, or
(ii) δ(∞, f) > 0.

Then ρ(f) =∞ and ρ2(f) = ρ(A).

We remark that for k = 2, Lemma 2.4 was obtained by Laine and Rieppo in [9].
Using the properties of the order of growth and the definition of the type, we easily
obtain the following result which we omit the proof.

Lemma 2.5. Let f and g be meromorphic functions such that 0 < ρ(f), ρ(g) <∞
and 0 < τ(f), τ(g) <∞. Then

(i) If ρ(f) > ρ(g), then

τ(f + g) = τ(fg) = τ(f). (2.4)

(ii) If ρ(f) = ρ(g) and τ(f) 6= τ(g), then

ρ(f + g) = ρ(fg) = ρ(f) = ρ(g). (2.5)

Lemma 2.6 ([6]). Let f be a meromorphic function and let k > 1 be an integer.
Then

m(r,
f (k)

f
) = S(r, f),

where S(r, f) = O(log T (r, f) + log r), possibly outside of an exceptional set E ⊂
(0,+∞) with finite linear measure. If f is of finite order of growth, then

m(r,
f (k)

f
) = O(log r).

3. Proofs of main results

Proof of Theorem 1.9. Suppose that f is an infinite order meromorphic solution of
(1.1) with ρ2(f) = ρ. By (1.1), we have

f (k) = −Af (3.1)

which implies

gf = dkf
(k) + dk−1f

(k−1) + · · ·+ d0f = dk−1f
(k−1) + · · ·+ (d0 − dkA)f. (3.2)

We can rewrite this euqality as

gf =
k−1∑
i=0

αi,0f
(i), (3.3)
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where αi,0 are defined in (1.6). Differentiating both sides of equation (3.3) and
replacing f (k) with f (k) = −Af , we obtain

g′f =
k−1∑
i=0

α′i,0f
(i) +

k−1∑
i=0

αi,0f
(i+1) =

k−1∑
i=0

α′i,0f
(i) +

k∑
i=1

αi−1,0f
(i)

= α′0,0f +
k−1∑
i=1

α′i,0f
(i) +

k−1∑
i=1

αi−1,0f
(i) + αk−1,0f

(k)

= α′0,0f +
k−1∑
i=1

(α′i,0 + αi−1,0)f (i) − αk−1,0Af

=
k−1∑
i=1

(α′i,0 + αi−1,0)f (i) + (α′0,0 − αk−1,0A)f.

(3.4)

We can rewrite the above equality as

g′f =
k−1∑
i=0

αi,1f
(i), (3.5)

where

αi,1 =

{
α′i,0 + αi−1,0, for i = 1, . . . , k − 1,
α′0,0 −Aαk−1,0, for i = 0.

(3.6)

Differentiating both sides of (3.5) and replacing f (k) with f (k) = −Af , we obtain

g′′f =
k−1∑
i=0

α′i,1f
(i) +

k−1∑
i=0

αi,1f
(i+1) =

k−1∑
i=0

α′i,1f
(i) +

k∑
i=1

αi−1,1f
(i)

= α′0,1f +
k−1∑
i=1

α′i,1f
(i) +

k−1∑
i=1

αi−1,1f
(i) + αk−1,1f

(k)

= α′0,1f +
k−1∑
i=1

(α′i,1 + αi−1,1)f (i) − αk−1,1Af

=
k−1∑
i=1

(α′i,1 + αi−1,1)f (i) + (α′0,1 − αk−1,1A)f

(3.7)

which implies that

g′′f =
k−1∑
i=0

αi,2f
(i), (3.8)

where

αi,2 =

{
α′i,1 + αi−1,1, for i = 1, . . . , k − 1,
α′0,1 −Aαk−1,1, for i = 0.

(3.9)

By using the same method as above we can easily deduce that

g
(j)
f =

k−1∑
i=0

αi,jf
(i), j = 0, 1, . . . , k − 1, (3.10)
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where

αi,j =

{
α′i,j−1 + αi−1,j−1, for i = 1, . . . , k − 1,
α′0,j−1 −Aαk−1,j−1, for i = 0

(3.11)

and

αi,0 =

{
di, for i = 1, . . . , k − 1,
d0 − dkA, for i = 0.

(3.12)

By (3.3)–(3.12), we obtain the system of equations

gf = α0,0f + α1,0f
′ + · · ·+ αk−1,0f

(k−1),

g′f = α0,1f + α1,1f
′ + · · ·+ αk−1,1f

(k−1),

g′′f = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),

. . .

g
(k−1)
f = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1).

(3.13)

By Cramer’s rule, and since h 6≡ 0 we have

f =
1
h

∣∣∣∣∣∣∣∣∣
gf α1,0 . . . αk−1,0

g′f α1,1 . . . αk−1,1

...
...

g
(k−1)
f α1,k−1 . . . αk−1,k−1

∣∣∣∣∣∣∣∣∣ . (3.14)

Then

f = C0gf + C1g
′
f + · · ·+ Ck−1g

(k−1)
f , (3.15)

where Cj are finite order meromorphic functions depending on αi,j , where αi,j are
defined in (3.11).

If ρ(gf ) < +∞, then by (3.15), we obtain ρ(f) < +∞, which is a contradiction.
Hence ρ(gf ) = ρ(f) = +∞.

Now, we prove that ρ2(gf ) = ρ2(f) = ρ. By (3.2) , we have ρ2(gf ) 6 ρ2(f) and
by (3.15), we have ρ2(f) 6 ρ2(gf ). This yield ρ2(gf ) = ρ2(f) = ρ.

Furthermore, if f is a finite order meromorphic solution of equation (1.1) such
that

ρ(f) > max{ρ(A), ρ(dj) (j = 0, 1, . . . , k)}, (3.16)

then

ρ(f) > max{ρ(αi,j) : i = 0, . . . , k − 1, j = 0, . . . , k − 1}. (3.17)

By (3.2) and (3.16) we have ρ(gf ) 6 ρ(f). Now, we prove ρ(gf ) = ρ(f). If
ρ(gf ) < ρ(f), then by (3.15) and (3.17), we obtain

ρ(f) 6 max{ρ(Cj) (j = 0, . . . , k − 1), ρ(gf )} < ρ(f)

and this is a contradiction. Hence ρ(gf ) = ρ(f). �

Remark 3.1. From (3.15), it follows that the condition h 6≡ 0 is equivalent to the
condition gf , g

′
f , g
′′
f , . . . , g

(k−1)
f are linearly independent over the field of meromor-

phic functions of finite order.
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Proof of Theorem 1.11. Suppose that f is an infinite order meromorphic solution
of equation (1.1) with ρ2(f) = ρ. Set w(z) = gf − ϕ. Since ρ(ϕ) < ∞, then
by Theorem 1.9 we have ρ(w) = ρ(gf ) = ∞ and ρ2(w) = ρ2(gf ) = ρ. To prove
λ(gf − ϕ) = λ(gf − ϕ) = ∞ and λ2(gf − ϕ) = λ2(gf − ϕ) = ρ we need to prove
λ(w) = λ(w) =∞ and λ2(w) = λ2(w) = ρ. By gf = w + ϕ and (3.15), we obtain

f = C0w + C1w
′ + · · ·+ Ck−1w

(k−1) + ψ(z), (3.18)

where

ψ(z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1). (3.19)

Substituting (3.18) in (1.1), we obtain

Ck−1w
(2k−1) +

2k−2∑
i=0

φiw
(i) = −

(
ψ(k) +A(z)ψ

)
= H, (3.20)

where φi (i = 0, . . . , 2k−2) are meromorphic functions with finite order. Since ψ(z)
is not a solution of (1.1), it follows that H 6≡ 0. Then by Lemma 2.1, we obtain
λ(w) = λ(w) = ∞ and λ2(w) = λ2(w) = ρ; i. e., λ(gf − ϕ) = λ(gf − ϕ) = ∞ and
λ2(gf − ϕ) = λ2(gf − ϕ) = ρ.

Suppose that f is a finite order meromorphic solution of (1.1) such that (1.10)
holds. Set w(z) = gf − ϕ. Since ρ(ϕ) < ρ(f), then by Theorem 1.9 we have
ρ(w) = ρ(gf ) = ρ(f). To prove λ(gf − ϕ) = λ(gf − ϕ) = ρ(f) we need to prove
λ(w) = λ(w) = ρ(f). Using the same reasoning as above, we obtain

Ck−1w
(2k−1) +

2k−2∑
i=0

φiw
(i) = −

(
ψ(k) +A(z)ψ

)
= F,

where Ck−1, φi (i = 0, . . . , 2k − 2) are meromorphic functions with finite order
ρ(Ck−1) < ρ(w), ρ(φi) < ρ(w) (i = 0, . . . , 2k − 2) and

ψ(z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1), ρ(F ) < ρ(w).

Since ψ(z) is not a solution of (1.1), it follows that F 6≡ 0. Then by Lemma 2.2,
we obtain λ(w) = λ(w) = ρ(f); i. e., λ(gf − ϕ) = λ(gf − ϕ) = ρ(f). �

Proof of Corollary 1.14. Suppose that f 6≡ 0 is a solution of (1.1). Since A is
a nonconstant polynomial, then by Lemma 2.3, we have ρ(f) = deg(A)+k

k , which
implies that

ρ(f) > max{ρ(A), ρ(dj) (j = 0, 1, . . . , k)} = 0.

Thus, by Theorem 1.9, we obtain ρ(gf ) = ρ(f) = deg(A)+k
k . �

Proof of Corollary 1.15. Suppose that f 6≡ 0 is a meromorphic solution of (1.1)
such that: (i) all poles of f are uniformly bounded multiplicity, or that (ii) δ(∞, f) >
0. Then by Lemma 2.4, we have ρ(f) = ∞ and ρ2(f) = ρ(A). Now, by using
Theorem 1.9, we obtain ρ(gf ) = ρ(f) =∞ and ρ2(gf ) = ρ2(f) = ρ(A). �
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4. Discussion and applications

In this section, we consider the differential equation

f ′′′ +A(z)f = 0, (4.1)

where A(z) is a meromorphic function of finite order. It is clear that the difficulty of
the study of the differential polynomial generated by solutions lies in the calculation
of the coefficients αi,j . We explain here that by using our method, the calculation
of the coefficients αi,j can be deduced easily. We study for example the growth of
the differential polynomial

gf = f ′′′ + f ′′ + f ′ + f. (4.2)

We have
gf = α0,0f + α1,0f

′ + α2,0f
′′,

g′f = α0,1f + α1,1f
′ + α2,1f

′′,

g′′f = α0,2f + α1,2f
′ + α2,2f

′′.

(4.3)

By (1.6) we obtain

αi,0 =

{
1, for i = 1, 2,
1−A, for i = 0.

(4.4)

Now, by (3.6) we obtain

αi,1 =

{
α′i,0 + αi−1,0, for i = 1, 2
α′0,0 −Aα2,0, for i = 0.

Hence
α0,1 = α′0,0 −Aα2,0 = −A′ −A,
α1,1 = α′1,0 + α0,0 = 1−A,
α2,1 = α′2,0 + α1,0 = 1.

(4.5)

Finally, by (3.9) we have

αi,2 =

{
α′i,1 + αi−1,1, fori = 1, 2,
α′0,1 −Aα2,1, for i = 0.

So, we obtain
α0,2 = α′0,1 −Aα2,1 = −A′′ −A′ −A,

α1,2 = α′1,1 + α0,1 = −2A′ −A,
α2,2 = α′2,1 + α1,1 = 1−A.

(4.6)

Hence
gf = (1−A)f + f ′ + f ′′,

g′f = (−A′ −A)f + (1−A)f ′ + f ′′,

g′′f = (−A′′ −A′ −A)f + (−2A′ −A)f ′ + (1−A)f ′′
(4.7)

and

h =

∣∣∣∣∣∣
1−A 1 1
−A′ −A 1−A 1

−A′′ −A′ −A −2A′ −A 1−A

∣∣∣∣∣∣
= 3A′ −A−AA′ −AA′′ +A2 −A3 + 2(A′)2 + 1.

(4.8)
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Suppose that h 6≡ 0, by simple calculations we have

f =
Ag′′f + (−1− 2A′)g′f + (1−A+ 2A′ +A2)gf

h
(4.9)

and by different conditions on the solution f we can ensure that

ρ(gf ) = ρ(f ′′′ + f ′′ + f ′ + f) = ρ(f).

Turning now to the problem of oscillation, for that we consider a meromorphic
function ϕ(z) 6≡ 0 of finite order. From (4.9), we obtain

f =
Aw′′ + (−1− 2A′)w′ + (1−A+ 2A′ +A2)w

h
+ ψ(z), (4.10)

where w = gf − ϕ and

ψ(z) =
Aϕ′′ + (−1− 2A′)ϕ′ + (1−A+ 2A′ +A2)ϕ

h
. (4.11)

Hence
f =

A

h
w′′ + C1w

′ + C0w + ψ, (4.12)

where

C1 = −1 + 2A′

h
, C0 =

1−A+ 2A′ +A2

h
.

Substituting (4.12) into (4.1) , we obtain

A

h
w(5) +

4∑
i=0

φiw
(i) = −

(
ψ(3) +A(z)ψ

)
,

where φi (i = 0, . . . , 4) are meromorphic functions with finite order. Suppose that
all meromorphic solutions f 6≡ 0 of (4.1) are of infinite order and ρ2(f) = ρ. If
ψ 6≡ 0, then by Lemma 2.1, we obtain

λ(gf − ϕ) = λ(gf − ϕ) = ρ(f) = +∞, (4.13)

λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(f) = ρ. (4.14)

Suppose that f is a meromorphic solution of (4.1) of finite order such that

ρ(f) > max{ρ(A), ρ(ϕ)}.
If ψ(3) +A(z)ψ 6≡ 0, then by Lemma 2.2, we obtain

λ(gf − ϕ) = λ(gf − ϕ) = ρ(f).

Finally, we can state the following two results.

Theorem 4.1. Let A(z) be a transcendental entire function of finite order satisfy-
ing 0 < ρ(A) < ∞ and 0 < τ(A) < ∞, and let dj(z) (j = 0, 1, 2, 3) be finite order
entire functions that are not all vanishing identically such that

max{ρ(dj) (j = 0, 1, 2, 3)} < ρ(A).

If f is a nontrivial solution of (4.1) , then the differential polynomial

gf = d3f
(3) + d2f

′′ + d1f
′ + d0f (4.15)

satisfies

ρ(gf ) = ρ(f) =∞,
ρ2(gf ) = ρ2(f) = ρ(A).
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Theorem 4.2. Under the hypotheses of Theorem 4.1, let ϕ(z) 6≡ 0 be an entire
function with finite order. If f is a nontrivial solution of (4.1), then the differential
polynomial gf = d3f

(3) + d2f
′′ + d1f

′ + d0f with d3 6≡ 0 satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(f) =∞, (4.16)

λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(f) = ρ(A). (4.17)

Proof of Theorem 4.1. Suppose that f is a nontrivial solution of (4.1). Then by
Lemma 2.3,

ρ(f) =∞, ρ2(f) = ρ(A).

First, we suppose that d3 6≡ 0. By the same reasoning as before we obtain that

h =

∣∣∣∣∣∣
H0 H1 H2

H3 H4 H5

H6 H7 H8

∣∣∣∣∣∣ ,
where H0 = d0 − d3A, H1 = d1, H2 = d2, H3 = d′0 − (d2 + d′3)A − d3A

′, H4 =
d0 + d′1 − d3A, H5 = d1 + d′2, H6 = d′′0 − (d1 + 2d′2 + d′′3)A − (d2 + d′3)A′ − d3A

′′,
H7 = 2d′0 + d′′1 − (d2 + 2d′3)A− 2d3A

′, H8 = d0 + 2d′1 + d′′2 − d3A. Then

h =
(

3d0d1d2 + 3d0d1d
′
3 + 3d0d2d

′
2 − 6d0d3d

′
1 + 3d1d2d

′
1 + 3d1d3d

′
0

+ d0d2d
′′
3 − 2d0d3d

′′
2 + d1d2d

′′
2 + d1d3d

′′
1 + d2d3d

′′
0 + 2d0d

′
2d
′
3 + 2d1d

′
1d
′
3 − 4d2d

′
0d
′
3

+ 2d2d
′
1d
′
2 + 2d3d

′
0d
′
2 − d1d

′
2d
′′
3 + d1d

′
3d
′′
2 + d2d

′
1d
′′
3 − d2d

′′
1d
′
3 − d3d

′
1d
′′
2

+ d3d
′
2d
′′
1 − d3

1 − 3d2
0d3 − 2d1(d′2)2 − 3d2

1d
′
2 − 2d3(d′1)2 − d2

2d
′′
1 − d2

1d
′′
3 − 3d2

2d
′
0

)
A

+
(

2d0d2d
′
3 + 2d0d3d

′
2 − d1d2d

′
2 + 2d1d3d

′
1 − 4d2d3d

′
0 + d1d3d

′′
2

− d2d3d
′′
1 − 2d1d

′
2d
′
3 + 2d2d

′
1d
′
3 + 3d0d1d3 + d0d

2
2 − d2

1d2 + d2
2d
′
1 − 2d2

1d
′
3

)
A′

+
(
d2d3d

′
1 + d0d2d3 − d1d3d

′
2 − d2

1d3

)
A′′ +

(
2d2d3d

′
3 − 3d1d

2
3 + 2d2

2d3 − 2d2
3d
′
2

)
AA′

+
(
d3
2 − 3d1d2d3 − 3d1d3d

′
3 − 3d2d3d

′
2 − d2d3d

′′
3 − 2d3d

′
2d
′
3

+ 3d0d
2
3 + 3d2

3d
′
1 + 2d2(d′3)2 + 3d2

2d
′
3 + d2

3d
′′
2

)
A2

− d3
3A

3 + 2d2d
2
3(A′)2 − d2d

2
3AA

′′ − 3d0d1d
′
0 − d0d1d

′′
1 − d0d2d

′′
0 − 2d0d

′
0d
′
2

+ d1d
′′
0d
′
2 + d2d

′
0d
′′
1 − d2d

′
1d
′′
0 + d3

0 + 2d0(d′1)2 + 3d2
0d
′
1 + 2d2(d′0)2

+ d2
1d
′′
0 + d2

0d
′′
2 − 2d1d

′
0d
′
1 + d0d

′
1d
′′
2 − d0d

′
2d
′′
1 − d1d

′
0d
′′
2 .

Finally, if d3 ≡ 0, d2 ≡ 0, d1 ≡ 0 and d0 6≡ 0, we have h = d3 6≡ 0. Hence h 6≡ 0.
By d3 6≡ 0, A 6≡ 0 and Lemma 2.5, we have ρ(h) = ρ(A), hence h 6≡ 0. For the

cases (i) d3 ≡ 0, d2 6≡ 0; (ii) d3 ≡ 0, d2 ≡ 0 and d1 6≡ 0, by using a similar reasoning
as above we obtain h 6≡ 0. By h 6≡ 0, we obtain

f =
1
h

∣∣∣∣∣∣
gf d1 d2

g′f d0 + d′1 − d3A d1 + d′2
g′′f 2d′0 + d′′1 − (d2 + 2d′3)A− 2d3A

′ d0 + 2d′1 + d′′2 − d3A

∣∣∣∣∣∣ ,
which we can write

f =
1
h

(D0gf +D1g
′
f +D2g

′′
f ), (4.18)



EJDE-2013/16 DIFFERENTIAL POLYNOMIALS 13

where

D0 =
(
d1d2 − 2d0d3 + 2d1d

′
3 + d2d

′
2 − 3d3d

′
1 − d3d

′′
2 + 2d′2d

′
3

)
A

+
(

2d1d3 + 2d3d
′
2

)
A′ +A2d2

3 + 3d0d
′
1 − 2d1d

′
0 + d0d

′′
2 − d1d

′′
1

− 2d′0d
′
2 + d′1d

′′
2 − d′2d′′1 + d2

0 + 2(d′1)2,

D1 =
(
d1d3 − 2d2d

′
3 − d2

2

)
A+ d2d

′′
1 − d0d1 − 2d1d

′
1 + 2d2d

′
0 − d1d

′′
2 ,

D2 = d2d3A+ d2
1 − d2d

′
1 + d1d

′
2 − d0d2.

If ρ(gf ) < +∞, then by (4.18), we obtain ρ(f) < +∞, and this is a contradiction.
Hence ρ(gf ) = ρ(f) = +∞.

Now, we prove that ρ2(gf ) = ρ2(f) = ρ(A). By (4.15), we obtain ρ2(gf ) 6 ρ2(f)
and by (4.18) we have ρ2(f) 6 ρ2(gf ). This yield ρ2(gf ) = ρ2(f) = ρ(A). �

Proof of Theorem 4.2. Suppose that f is a nontrivial solution of (4.1). By setting
w = gf − ϕ in (4.18), we have

f =
1
h

(D0w +D1w
′ +D2w

′′) + ψ, (4.19)

where

ψ =
D2ϕ

′′ +D1ϕ
′ +D0ϕ

h
. (4.20)

Since d3 6≡ 0, then h 6≡ 0. It follows from Theorem 4.1 that gf is of infinite order
and ρ2(gf ) = ρ(A). Substituting (4.19) into (4.1), we obtain

D2

h
w(5) +

4∑
i=0

φiw
(i) = −

(
ψ(3) +A(z)ψ

)
,

where φi (i = 0, . . . , 4) are meromorphic functions with finite order. First, we prove
that ψ 6≡ 0. Suppose that ψ ≡ 0, then by (4.20) we obtain

D2ϕ
′′ +D1ϕ

′ +D0ϕ = 0 (4.21)

and by Lemma 2.5, we have

ρ(D0) > max{ρ(D1), ρ(D2)}. (4.22)

By (4.21), we can write

D0 = −
(
D2

ϕ′′

ϕ
+D1

ϕ′

ϕ

)
.

Since ρ(ϕ) <∞, by Lemma 2.6 we obtain

T (r,D0) 6 T (r,D1) + T (r,D2) +O(log r).

Then
ρ(D0) 6 max{ρ(D1), ρ(D2)},

which is a contradiction with (4.22). It is clear now that ψ 6≡ 0 cannot be a solution
of (4.1) because ρ(ψ) <∞. Then, by Lemma 2.1 we

λ(w) = λ(w) = λ(gf − ϕ) = λ(gf − ϕ) = ρ(f) =∞,
λ2(w) = λ2(w) = λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(f) = ρ(A).

�
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