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THE ROLE OF RIEMANN GENERALIZED DERIVATIVE IN
THE STUDY OF QUALITATIVE PROPERTIES OF FUNCTIONS

SORIN RĂDULESCU, PETRUŞ ALEXANDRESCU, DIANA-OLIMPIA ALEXANDRESCU

Abstract. Marshal Ash [3] introduced the concept of (σ, τ) differentiable
functions and studied the Riemann generalized derivatives In this article we

study the convexity and monotonicity of (σ, τ) differentiable functions, using

results by Hincin, Humke and Laczkovich, and using the Riemann generalized
derivative. We give conditions such that the classic properties of differentiable

functions hold also for (σ, τ) differentiable functions.

1. Introduction

1.1. Riemann differentiable functions. In this article, we study properties of
generalized Riemann differentiable functions (see [1]-[3], [9]) and the derivatives
of first and second order which are well known as (σ, τ) differentiable functions
(see [8]-[14],[9]). In the first part we give generalizations of classical Fermat, Rolle,
Darboux and Lagrange theorems. There exists functions such that the Riemann
generalized derivative is positive on an interval, but the function is not increasing.

We establish sufficient conditions on the system of vectors (σ, τ) that define the
generalized Riemann derivative, and which imply that any generalized Riemann
differentiable function with positive derivative is increasing. Therefore we obtain
a generalization of A. Hincin’s result (see [4]). There are also given conditions
in which an increasing function on an interval has positive derivative. In general
the generalized Riemann derivative does not have the Darboux intermediate value
property. To emphasize this, we give as example the function f(x) = |x| to which
we apply the symmetric derivative.

Theorem 2.7 establishes conditions under which the generalized Riemann deriv-
ative of a continuous increasing function on an interval has the Darboux property.
Further, we study the convexity of a function with the aid of generalized Riemann
derivative of second order. We obtain necessary and sufficient conditions in which
a generalized Riemann function is convex. Theorem 4.12 generalizes the result of
Zygmund [15]. Theorem 4.13 relaxes the conditions from theorem 4.12 and theo-
rem 4.14 establishes conditions in which a function that has generalized Riemann
derivative of second order, of length n, null on an open interval, is linear.
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1.2. (σ, τ) differentiable functions. In [9] it is defined a new class of generalized
Riemann functions, the (σ, τ) differentiable functions. The motivation for this
definition is that the system (σ, τ) in Kn ×Kn has conditions such that a function
f is generalized Riemann differentiable and such that a series of theorems hold,
where we denote K = R or C. Let G ⊂ K an open subset and the function
f : G→ K. For p, n ∈ N∗, p ≤ n, define the set:

L(p, n,K) :=
{

(σ, τ) ∈ K∗n ×Kn :
n∑
k=1

σkτ
j
k = 0, for j ∈ {0, 1, . . . , p− 1},

and
n∑
k=1

σkτ
p
k = p!, τk are distinct

}
.

Definition 1.1. The function f is (σ, τ)-differentiable of order p at x (x in G) if
(σ, τ) ∈ L(p, n,K) and if the following limit exists and belongs to K:

lim
h→0

1
hp

n∑
k=1

σkf(x+ τkh).

If this limit exists, we denote it by Dp(σ, τ)f(x).

2. Generalizations of classical theorems for (σ, τ)-differentiable
functions

Theorem 2.1 (Generalized Fermat’s theorem). Let I be an interval, f : I → R,
x0 ∈ IntI, x0-local extremum point for f . Suppose that the following conditions
hold:

(i) (σ, τ) ∈ L(1, n,R),
(ii) σ1 > 0, σj < 0, j ∈ {2, . . . , n},
(iii) τ1 = 0,
(iv) f is (σ, τ)-differentiable at x0.

Then D1(σ, τ)f(x0) = 0.

Proof. Let x0 ∈ int I a local maximum point. The case when x0 is the local
minimum point is analogous. There exists ε > 0 such that f(x) ≥ f(x0), for all
x ∈ (x0 − ε, x0 + ε) ⊂ I. Therefore,

n∑
j=1

σjf(x0 + τjh) ≤
n∑
j=1

σjf(x0), ∀h ∈ (−ε1, ε1), ε1 =
ε

max2≤j≤n |τj |
, (2.1)

and further we can write:

1
h

n∑
j=1

σjf(x0 + τjh) ≤ 0, ∀h ∈ (0, ε1) (2.2)

1
h

n∑
j=1

σjf(x0 + τjh) ≥ 0, h ∈ (−ε1, 0).

Letting h→ 0 in equations (2.2) we obtain D1(σ, τ)f(x0) = 0. �

Theorem 2.2 (Generalized Rolle’s theorem). Let I be an interval, a, b ∈ I, a < b
and (σ, τ) ∈ L(1, n,R) with the following properties:

(1) σ1 > 0, σj < 0, j ∈ {2, . . . , n},
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(2) τ1 = 0.
Let f : I → R such that:

(i) f continuous on [a, b],
(ii) f is (σ, τ)-differentiable on (a, b),

(iii) f(a) = f(b).
Then there exists c ∈ (a, b) such that D1(σ, τ)f(c) = 0.

Proof. If the function f is constant on [a, b], the theorem holds, because the (σ, τ)-
derivative of a constant function is zero. If the function f is not constant on
[a, b], then f attains its maximum and minimum, as f is continuous and bounded
on a compact set. Let M = supx∈[a,b] f(x) and m = infx∈[a,b] f(x). Suppose
that M > f(a). Then there exists c ∈ (a, b) with f(c) = M (if c ∈ {a, b} then
M = f(c) = f(a) = f(b) which is a contradiction). We can now conclude that c is
a local maximum and applying theorem (2.1) implies that D1(σ, τ)f(c) = 0. The
case M = f(a) implies m < f(a) and the proof is similar. �

Theorem 2.3 (Generalized Lagrange’s theorem). Let I be an interval, a, b ∈ I,
a < b and the function f : I → R with the following properties:

(i) (σ, τ) ∈ L(1, n,R) such that: (1) σ1 > 0, σj < 0, j ∈ {2, . . . , n}, and (2)
τ1 = 0,

(ii) f is continuous on [a, b],
(iii) f is (σ, τ)-differentiable on (a, b).

Then there exists c ∈ (a, b) such that

f(b)− f(a) = (b− a)D1(σ, τ)f(c)

Proof. We define g : I → R as

g(x) := f(x)− f(b)− f(a)
b− a

· x.

We observe that g(a) = g(b). Using the properties of the (σ, τ)-generalized deriva-
tive we deduce that g is (σ, τ)-differentiable and

D1(σ, τ)g(x) = D1(σ, τ)f(x)− f(b)− f(a)
b− a

.

Applying theorem 2.2 to function g we obtain that there exists c ∈ (a, b) such that

D1(σ, τ)g(c) = 0, (2.3)

which is equivalent to

D1(σ, τ)f(c) =
f(b)− f(a)

b− a
.

�

3. Monotonicity versus generalized Riemann derivative

We first state a series of results about the monotonicity of a function studied
with the aid of the generalized Riemann derivative of first order. These results
from Theorems 3.1 and 3.2 belong to Humke and Laczkovich (see [6]). The results
from 3.3 and 3.6 belong to the authors of this article. Let [a, b] be an interval,
f : [a, b]→ R continuous. Denote by G1

f the reunion of all open intervals on which
f is increasing and denote by F 1

f = [a, b] \G1
f .
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Theorem 3.1. Let f be a continuous function on [a, b] and D1 be the Riemann
generalized derivative of first order with n terms. If D1

+f(x) ≥ 0 for all x ∈ (a, b),
then F 1

f is dense nowhere and f ′+(x) = −∞ on a residual set of F 1
f .

Corollary 3.2. Let f : [a, b] → R continuous. If D1
+f ≥ 0 and f ′+ > −∞ for all

x ∈ (a, b), then f is increasing on [a, b].

Theorem 3.3. Let D1 be the generalized Riemann derivative of first order with
three terms and b1 < b2 < b3.

Case 1: Suppose that either:

b1 < 0 < b2 < b3 and a1 > 0, a2 < 0, a3 > 0,

or

b1 < b2 < 0 < b3 and a1 < 0, a2 > 0, a3 < 0.

Then there exists a nonconstant decreasing continuous function f : [a, b]→ R, such
that D1

+f(x) ≥ 0, ∀x ∈ (a, b).
Case 2: Other cases, if f : [a, b] → R is continuous and D1

+f(x) ≥ 0 for all
x ∈ (a, b), then f is increasing.

On the left hand side, the case (1,−2, 1), (−1, 1, 4) belongs to case 1, and for this
we have no monotonicity theorem corresponding to D1

+. On the right hand side,
for the cases (1,−2, 1), (−2,−1, 1) we have the following theorem.

Theorem 3.4. Let I be an interval, (σ, τ) ∈ L(1, n,R) with the following properties:

(i) σ1 > 0, σk < 0, k ∈ {2, . . . , n},
(ii) τ1 > 0, τk < 0, k ∈ {2, . . . , n}.

Let f : I → R be continuous, such that:
(iii) D1(σ, τ)f(x) > 0 for all x ∈ int I.

Then f is increasing on I.

Proof. Suppose that there exists x1 < x2, (x1, x2 ∈ I), such that f(x1) > f(x2).
Denote by t := 1

2 [f(x1) + f(x2)] and define the set:

A := {x ∈ [x1, x2] : f(x) < t}.

Note that x1 /∈ A and x2 ∈ A. Let c = inf A. Then c 6= x1 and c ∈ A. There
exists a sequence (hm)m≥1 of strictly positive numbers that converges to 0, such
that c + τ1hm ∈ A and c + τkhm /∈ A, k ∈ {2, . . . , n}. Then: f(c + τ1hm) ≤ t and
f(c+ τkhm) ≥ t, for k ∈ {2, . . . , n}. It follows that

n∑
k=1

σkf(c+ τkhm) <
n∑
k=1

σkt = t

n∑
k=1

σk = 0

and hence

lim
m→∞

1
hm

n∑
k=1

σkf(c+ τkhm) ≤ 0,

which is a contradiction. �
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Remarks. 1. For σ1 = −σ2 = 1
2 , τ1 = −τ2 = 1, σk = τk = 0, k ∈ {3, . . . , n}, we

get the symmetric derivative of f .
2. Theorem 3.3 extends the result of Hincin for the symmetric derivative (see [4]).

Theorem 3.5. Let I be an interval, f : I → R continuous, (σ, τ) ∈ L(1, n,R) such
that:

(i) σ1 > 0, σk < 0, k ∈ {2, . . . , n},
(ii) τ1 > 0, τk < 0, k ∈ {2, . . . , n},
(iii) D1(σ, τ)f(x) ≥ 0 for all x ∈ int I.

Then f is increasing on I.

Proof. For j ∈ N∗ we consider the function defined by:

fj(x) = f(x) + αjx, x ∈ I (3.1)

where (αj)j≥1 is a sequence of strictly positive numbers converging to zero. On the
left hand side, if we apply the differential operator D1(σ, τ) to (3.1) we obtain

D1(σ, τ)fj(x) = D1(σ, τ)f(x) +D1(σ, τ)αjx, x ∈ I.

On the right hand side, we have

D1(σ, τ)(αjx) = αj ·D1(σ, τ)x

= αj lim
h→0

1
h

n∑
k=1

σk(x+ τkh)

= αj lim
h→0

[x
h

n∑
k=1

σk +
n∑
k=1

σkτk

]
= αj ,

which implies
D1(σ, τ)fj(x) > 0, ∀x ∈ IntI.

Applying Theorem 3.3 it follows that fj is increasing on I(j ∈ N∗). Let x < y, then
for fj(x) < fj(y) we have

f(x) = lim
j→∞

fj(x) ≤ lim
j→∞

fj(y) = f(y),

hence f increasing on I. �

Theorem 3.6. Let I be an interval, f : I → R be continuous, (σ, τ) be in L(1, n,R)
such that:

(i) σ1 > 0, σk < 0, k ∈ {2, . . . , n},
(ii) τ1 > 0, τk < 0, k ∈ {2, . . . , n},

(iii) D1(σ, τ)f(x) = 0, for all x ∈ I,
then f is constant on I.

Proof. According to Theorem 3.4, D1(σ, τ)f(x) = 0 on I implies f is increasing on
I and D1(σ, τ)(−f(x)) = 0 on I implies (−f) increasing on I. This implies further
that f is constant on I. �

Theorem 3.7. Let I be an interval, (σ, τ) ∈ L(1, n,R) and f : I → R. If there
exists α ∈ R such that σk(τk − α) ≥ 0 for all k ∈ {1, 2, . . . , n} and f is increasing
on I, then

D1(σ, τ)f(x) ≥ 0, ∀x ∈ int I.
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Proof. The proof is immediate if we notice that for x ∈ int I,

D1(σ, τ)f(x) = lim
h→0

1
h

n∑
k=1

σkf(x+ τkh)

= lim
h→0

1
h

n∑
k=1

σk
f(x+ τkh)− f(x+ αh)

τk − α
(τk − α) ≥ 0.

�

We remark that not all the functions f : I → R, (I-interval), which are (σ, τ)-
differentiable on I have the Darboux intermediate property. Indeed, it is sufficient
to consider the function f : I → R, f(x) = |x|, for which we apply the symmetric
derivative R(1)- which is a particular case of the derivative D(σ, τ). Therefore, for
x 6= 0 we have

R(1)f(x) = lim
h→0

|x+ h| − |x− h|
2h

= sgnx.

which has not the Darboux property. Under some conditions, (σ, τ) differentiable
functions can have the Darboux intermediate value property. We shall see this in
the following theorem.

Theorem 3.8. Let f : I → R, I-open interval and (σ, τ) ∈ L(1, n,R) with the
following properties:

(i) f is continuous and increasing on I,
(ii) σ1 > 0, σj < 0, j ∈ {2, . . . , n},

(iii) τ1 = 0,
(iv) f is (σ, τ) differentiable on I,
(v) there exists α ∈ R such that σk(τk − α) ≥ 0 for all k ∈ {1, . . . , n}.

Then the function ϕ(x) = D1(σ, τ)f(x), x ∈ I has the Darboux property.

Proof. Let a, b ∈ I, a < b and suppose that D1(σ, τ)f(a) < D1(σ, τ)f(b). Let λ ∈ R
such that D1(σ, τ)f(a) < λ < D1(σ, τ)f(b). We show that in these conditions, there
exists c ∈ (a, b) such that D1(σ, τ)f(c) = λ. We define g(x) := f(x)−λx, x ∈ [a, b].
We notice that g is (σ, τ) differentiable on I. We also have

D1(σ, τ)g(a) = D1(σ, τ)f(a)− λ < 0,

D1(σ, τ)g(b) = D1(σ, τ)f(b)− λ > 0.

Suppose that there exists x0 ∈ [a, b] such that x0 is a maximum for g. If x0 ∈ (a, b),
then the conditions from theorem 2.1 hold. Therefore, D1(σ, τ)g(x0) = 0, which
implies D1(σ, τ)f(x0)− λ = 0.

Suppose that g does not attain its extremal values (in this case the maximum)
on (a, b). From here it results that g is strictly monotone on [a, b]. According
to Theorem 3.6, D1(σ, τ)g(x) ≥ 0 for all x ∈ [a, b] or D1(σ, τ)g(x) ≤ 0 for all
x ∈ [a, b], which is a contradiction. Therefore, we get the existence of c ∈ (a, b)
such that D1(σ, τ)f(c) = λ, for each λ as previously chosen. �

We complete this section with an example of an increasing function on a neigh-
borhood of the origin for which the Riemann generalized derivative does not have
the Darboux intermediate value property (inspired by Patrick O’Connor). Let
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α ∈ (−1, 0) and f : R→ R given by

f(x) =

{
x(|x|α − 1), x ∈ R∗

0, x = 0.
(3.2)

We also consider the system (σ, τ) ∈ L(1, n,R∗) and the function

ϕ(x) =
n∑
j=1

σjτj |τj |x, x ∈ R.

If ϕ(α) = 0, then f is continuous, increasing on a neighborhood of the origin and
(σ, τ)-differentiable. Moreover the derivative does not have the Darboux property.
To prove this we shall first notice that f is continuous on R∗. Therefore, for x ∈ R∗,

D1(σ, τ)f(x) = f ′(x) = (α+ 1)|x|α − 1.

On the right hand side (α + 1) > 0, |x|α ≥ εα > 0, for x ∈ (−ε, 0) ∪ (0, ε), where

ε ∈ (0, ε0) with ε0 =
(

1
α+1

) 1
α

and f continuous, implies that f increasing on a
neighborhood of origin. If we denote g(x) := x|x|α, x ∈ R, then

D1(σ, τ)g(0) = lim
h→0

1
h

n∑
j=1

σjg(τjh) = 0.

This leads us to conclude that D1(σ, τ)f(0) = −1. In the above example we built
function which has the (σ, τ) derivative non positive and as a consequence, it does
not have the Darboux intermediate value property.

4. Convexity versus second order Riemann generalized derivative

Definition 4.1. We say that a function f : I → R (where I is an interval) has a
strong maximum at x0 ∈ int I if there exists a neighborhood V of it, such that
f(x0) ≥ f(x) for all x ∈ V and f is non constant on V .

Remark. A convex function has not a strong maximum in the interior of its domain
of definition. Indeed, if x0 is a strong maximum point, then the arc from the graph
y = f(x), for which |x − x0| ≤ δ is situated above the chord, for δ small enough,
which contradicts the convexity.

Theorem 4.2. A continuous functions ϕ : I → R is convex if and only if for all α,
β ∈ R the function ψ(x) = ϕ(x) + αx + β has no strong maximum in the interval
I.

Proof. The sum of two convex function is convex, therefore the necessity is obvious.
To prove the sufficiency, suppose that ϕ is not convex. Then there exists the arc
P1P2, such that every point from it is situated either above the chord P1P2 or
on the chord. Let x1, x2 the abscise of points P1, P2 and let y = −αx − β the
chord equation. Then the equation ϕ(x) +αx+ β = 0 has solutions x1 and x2 and
ψ(x) = ϕ(x)+αx+β > 0 for x ∈ (x1, x2). It follows that ψ has a maximum strictly
included in the interior of (x1, x2). As a consequence, the maximum is included in
the interior of I, which is a contradiction. �

In the following theorems we shall mention a number of convexity properties of
functions that are obtained with the aid of generalized Riemann derivative of second
order. These results are known and they belong to Humke and Laczkovick (see [5]).



8 S. RĂDULESCU, P. ALEXANDRESCU, D.-O. ALEXANDRESCU EJDE-2013/187

Let [a, b] be an interval and f : [a, b] → R continuous. Denote by G2
f the reunion

of relative open intervals on which f is convex. We denote by F 2
f := [a, b] \G2

f .

Theorem 4.3. Suppose that f : [a, b]→ R is continuous and D2 is the generalized
Riemann derivative of second order with n terms. If D2

+f(x) ≥ 0, ∀x ∈ (a, b), then
F 2
f is nowhere dense.

Theorem 4.4. Let D2 be the Riemann generalized derivative of second order with
n terms such that b1 ≥ 0, (i = 1, . . . , n). Then for all closed subsets which are
nowhere dense, F ⊂ [a, b] for which neither a nor b are isolated points of F , there
exists a continuous function f : [a, b]→ R, such that D2

+f(x) ≥ 0, for all x ∈ (a, b)
and F 2

f = F . As we can remark, the condition D2
+f ≥ 0 does not always imply the

convexity of f . The following two theorems deal with this, in case of three terms.

Theorem 4.5. Let D2 be the generalized Riemann derivative of second order with
three terms for which b1 < b2 = 0 < b3. If f : [a, b] → R is continuous and
D2

+f(x) ≥ 0, ∀x ∈ (a, b), then f is convex.

Theorem 4.6. Let D2 the Generalized Riemann derivative of second order with
three terms, for which b1 < 0 < b2 < b3. Suppose that f : [a, b]→ R is continuous,
D2

+f(x) ≥ 0, ∀x ∈ (a, b) and f is not convex. Then there exists d ∈ (a, b) such that
f is convex on a left neighborhood of d and f ′d(d) = −∞.

Corollary 4.7. Let D2 be the generalized Riemann derivative of second order with
three terms, for which b1 < 0 < b2 < b3. Let f : [a, b]→ R continuous and suppose
that D2

+f(x) ≥ 0 and f ′+ > −∞ for all x ∈ (a, b). Then f is convex.

Theorem 4.8. Let D2 be the generalized Riemann derivative of second order with
three terms and f : [a, b]→ R continuous. If D2

+f(x) ≥ 0 for all x ∈ (a, b) then the
set of isolated points of F 2

f is dense in F 2
f .

Theorem 4.9. Let D2 be the generalized Riemann derivative of second order with
n terms, for which bi ≥ 0, i = 1, . . . , n. Let F be a closed subset of [a, b] such that
neither a nor b are isolated point of F and the set of isolated points of F is dense
in F . Then there exists a continuous function f : [a, b]→ R such that

D2
+f(x) ≥ 0, ∀x ∈ (a, b) and F 2

f = F.

Theorem 4.10. Let D2 be the generalized Riemann derivative of second order with
three terms, with b1 < 0 ≤ b2 < b3. Suppose that either b2 = 0 or

log | b2b1 |
b2 − b1

≤
log | b3b1 |
b3 − b1

.

If f : [a, b]→ R is continuous and D2
+f(x) ≥ 0 for all x ∈ (a, b), then f is convex.

Theorem 4.11. Let D2 be the generalized Riemann derivative of second order with
three terms, such that b1 < 0 < b2 < b3 and

log | b2b1 |
b2 − b1

>
log | b3b1 |
b3 − b1

.

Let F be a closed and nowhere dense subset of [a, b], such that neither a nor b are
isolated points of F and the set of isolated points of F is dense in F . Then there
exists a continuous function f : [a, b] → R such that D2

+f(x) ≥ 0 for all x ∈ (a, b)
and F 2

f = F .



EJDE-2013/187 THE ROLE OF RIEMANN GENERALIZED DERIVATIVE 9

The following theorem solves the problem posed by Ash in [3].

Theorem 4.12. Let D2 be the generalized Riemann derivative of second order with
three terms and b1 < 0 < b3. If f : [a, b] → R is continuous and D2

+f(x) = 0, for
all x ∈ (a, b), then f is linear.

These results are stated in [5], without proof. In the following subsection we
shall give our results, keeping the notation introduced in chapter 1 and 2.

4.1. Necessary and sufficient conditions on the (σ, τ) differentiable func-
tion convexity.

Theorem 4.13. Let f : (a, b)→ R with the following properties:
(i) (σ, τ) ∈ L(2, n,R),

(ii) σ1 < 0, σj > 0, j ∈ {2, . . . , n},
(iii) τ1 = 0,
(iv) f is convex.

Then D2(σ, τ)f(x) ≥ 0 for all x ∈ (a, b).

Proof. We notice that
n∑
j=1

σjf(x+ τjh) ≥ 0 (4.1)

if and only if
n∑
j=1

σjf(x+ τjh) = σ1f(x+ τ1h) +
n∑
j=2

σjf(x+ τjh)

=
n∑
j=2

σjf(x+ τjh) + σ1f(x) ≥ 0

if and only if
n∑
j=2

(
− σj
σ1

)
f(x+ τjh) ≥ f(x).

To prove the inequality (4.1), we consider −σjσ1
∈ [0, 1) and

∑n
j=2

(
− σj

σ1

)
= 1. As

f is convex we apply Jensen inequality and we obtain:
n∑
j=2

(
− σj
σ1

)
f(x+ τjh) ≥ f

( n∑
j=2

(
− σj
σ1

)
(x+ τjh)

)
= f

(
− 1
σ1

n∑
j=2

σjx−
h

σ1

n∑
j=2

σjτj

)
= f

(
x− h

σ1

n∑
j=2

σjτj

)
= f(x).

Let ε > 0 arbitrary. For |h| < −εε1
|

Pn
j=2 σjτj |

= ε′ results: x− h
σ1

∑n
j=2 σjτj < ε+x. As

this inequality takes place for all ε > 0, we deduce the inequality (4.1). Therefore

1
h2

n∑
j=1

σjf(x+ τjh) ≥ 0, ∀x ∈ (a, b), ∀h ∈ (−ε′, ε′). (4.2)
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From which we obtain

lim inf
h→0

1
h2

n∑
j=1

σjf(x+ τjh) ≥ 0, ∀x ∈ (a, b). (4.3)

�

Theorem 4.14. Let f : (a, b)→ R a continuous function such that:
(i) (σ, τ) ∈ L(2, n,R),
(ii) σ1 < 0, σj > 0, j = 2, . . . , n,

(iii) τ1 = 0,
(iv) D2(σ, τ)f(x) > 0 for all x ∈ (a, b).

Then f is convex on (a, b).

Proof. Suppose that f is not convex. Then, according to Theorem 4.2 there exist
α, β ∈ R such that the function g(x) := f(x) +αx+ β has a strong maximum. Let
x0 ∈ (a, b) a strong maximum for g. On the left hand side we have

f(x0) ≥ f(x0 + τjh), j ∈ {2, . . . , n}.
We multiply this relation by σj > 0, (j = 2, . . . , n) and summing we obtain

n∑
j=2

σjf(x0) ≥
n∑
j=2

σjf(x0 + τjh).

From this we obtain

−σ1f(x0) = f(x0)
n∑
j=2

σj ≥
n∑
j=2

σjf(x0 + τjh).

The relation above is equivalent to
n∑
j=2

σjf(x0 + τjh) + σ1f(x0) ≤ 0,

which implies
n∑
j=1

σjf(x0 + τjh) ≤ 0.

On the right hand side we obtain
n∑
j=1

σjg(x0 + τjh) =
n∑
j=1

σjf(x0 + τjh) +
n∑
j=1

σj(αx+ β)

=
n∑
j=1

σjf(x0 + τjh) ≤ 0

and as a consequence,

lim
h→0

1
h2

n∑
j=1

σjg(x+ τjh) = lim
h→0

1
h2

n∑
j=1

σjf(x+ τjh)

≤ 0 < lim
h→0

1
h2

n∑
j=1

σjf(x+ τjh)

which is a contradiction. Therefore f is convex. �
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The following theorem establishes weaker conditions for the convexity of f by
relaxing condition (iv) from theorem (4.14).

Theorem 4.15. Let f : (a, b)→ R continuous, such that:
(i) (σ, τ) ∈ L(2, n,R),

(ii) σ1 < 0, σj > 0, j ∈ {2, . . . , n},
(iii) τ1 = 0,
(iv) D2(σ, τ)f(x) ≥ 0 for all x ∈ (a, b).

In these conditions f is convex on (a, b).

Proof. We shall define the functions fj(x) := f(x)+ x2

j , j ∈ N∗, x ∈ (a, b) for which
we have

lim
h→0

1
h2

n∑
k=1

σkfj(x+ τkh) = lim
h→0

1
h2

n∑
k=1

σkf(x+ τkh) + lim
h→0

1
h2

n∑
k=1

1
j
σk(x+ τkh)2.

As

lim
h→0

1
h2

n∑
k=1

1
j
σk(x+ τkh)2 = lim

h→0

1
h2

n∑
k=1

σk
j

[(x+ τkh)2 − x2]

= lim
h→0

1
h

n∑
k=1

σkτk
j

(2x+ τkh)

=
n∑
k=1

σkτ
2
k

j
=

2
j
> 0,

we obtain

lim
h→0

1
h2

n∑
k=1

σkfj(x+ τkh) = lim
h→0

1
h2

n∑
k=1

σkf(x+ τkh) +
n∑
k=1

σkτ
2
k

j

≥
n∑
k=1

σkτ
2
k

j
=

2
j
> 0.

Applying theorem (4.14) for fj , j ∈ N∗, we obtain their convexity. As f(x) =
limj→∞ fj(x) for all x ∈ (a, b) results that f is convex on (a, b). �

Remark. For σ = (1,−2, 1), τ = (1, 0,−1) we get the symmetric derivative of
second order for f . For this we get the following corollary of Theorem 4.12 which
belongs to Zygmund (see [15, pp. 44-45]).

Corollary 4.16 (Zygmund). Let f : (a, b) → R continuous. Then f is convex on
(a, b) if and only if the inferior symmetric derivative of f on (a, b) is positive.

Theorem 4.17. Let I be an interval, f : I → R continuous. If the following
conditions hold:

(i) σ1 < 0, σj > 0 for all j ∈ {2, . . . , n},
(ii) τ1 = 0,

(iii) (σ, τ) ∈ L(2, n,R),
(iv) D2(σ, τ)f(x) = 0, ∀x ∈ IntI,

then there exist α, β ∈ R such that f(x) = αx+ β.
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Proof. Let a, b ∈ I, a < b. We define ϕ : [a, b]→ R, given by:

ϕ(x) := f(x)− f(a)− f(b)− f(a)
b− a

· (x− a). (4.4)

If there exists c ∈ (a, b) such as ϕ(c) > 0, then there exists ε > 0 such that
ϕ(c) > ε

2 (c− a)(b− c), as ϕ is continuous. We define ψ : I → R, given by:

ψ(x) := ϕ(x)− ε

2
(x− a)(b− x). (4.5)

We notice that ψ is continuous and ψ(a) = ψ(b) = 0. Therefore there exists
x0 ∈ [a, b] such that

ψ(x) ≤ ψ(x0), ∀x ∈ (a, b).

We also have ψ(c) > 0 and x0 /∈ {a, b}, and as a consequence x0 ∈ (a, b). Let η > 0
such that (x0 − η, x0 + η) ⊂ I. Then

ψ(x0 + τjh) ≤ ψ(x0), for |h| < η ·
(

max
j
|τj |
)−1

= η′.

From where we obtain

σ1 · ψ(x0 + τ1h) = σ1 · ψ(x0),
n∑
j=2

σjψ(x0 + τjh) ≤
n∑
j=2

σjψ(x0);

therefore,
n∑
j=1

σjψ(x0 + τjh) ≤
n∑
j=1

σjψ(x0) = 0, |h| < η′. (4.6)

Further we have

1
h2

n∑
j=1

σjψ(x0 + τjh)

=
1
h2

( n∑
j=1

σjϕ(x0 + τjh)− ε

2

n∑
j=1

σj(x0 + τjh− a)(b− x0 − τjh)
)

=
1
h2

n∑
j=1

σjϕ(x0 + τjh)

− ε

2h2

n∑
j=1

σj [(x0 − a)(b− x0) + τjh(b− x0)− τjh(x0 − a)− τ2
j h

2]

=
1
h2

n∑
j=1

σjϕ(x0 + τjh) +
ε

2

n∑
j=1

σjτ
2
j

=
1
h2

n∑
j=1

σjϕ(x0 + τjh) + ε, for |h| < η′.

Letting h→ 0 in relation (4.6) and taking into consideration the relation

1
h2

n∑
j=1

σjψ(x0 + τjh) =
1
h2

n∑
j=1

σjϕ(x0 + τjh) + ε (4.7)
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we obtain

0 ≥ lim
h→0

1
h2

n∑
j=1

σjψ(x0 + τjh)

= lim
h→0

1
h2

n∑
j=1

σjϕ(x0 + τjh) + ε

= lim
h→0

1
h2

n∑
j=1

σjf(x0 + τjh) + ε > 0

which is a contradiction. Similarly can be solved the case ϕ(c) < 0. In conclusion
ϕ(c) = 0 for all c ∈ (a, b). Therefore, there exist α, β ∈ R, according to relation
(4.4), such that

f(x) = αx+ β, ∀x ∈ [a, b].

�
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