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THIRD-ORDER OPERATOR-DIFFERENTIAL EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS AND OPERATORS IN
THE BOUNDARY CONDITIONS

ARAZ R. ALIEV, NAZILA L. MURADOVA

ABSTRACT. We study a third-order operator-differential equation on the semi-
axis with a discontinuous coefficient and boundary conditions which include an
abstract linear operator. Sufficient conditions for the well-posed and unique
solvability are found by means of properties of the operator coefficients in a
Sobolev-type space.

1. INTRODUCTION

It is known that many problems of partial differential equations can be reduced to
problems for differential equations whose coefficients are unbounded operators in a
Hilbert space. Many articles are dedicated to the study of problems with operators
in the boundary conditions for operator-differential equations of second order (see,
for example, [II [7, 10} 13}, 16l 17, 18] 25] and the references therein); however, these
studies are far from the full completion. Note that only a few papers are dedicated
to the study of such boundary-value problems for operator-differential equations of
third order (see, for example, [3]).

This article is dedicated to the study of boundary-value problem for a class
of third-order operator-differential equations with a discontinuous coefficient; one
of the boundary conditions includes an abstract linear operator. Such equations
cover some non-classical problems of mathematical physics (see [§]), investigated in
inhomogeneous environments.

Let H be a separable Hilbert space with the scalar product (z,y), =,y € H and
let A be a self-adjoint positive-definite operator in H (A = A* > ¢E, ¢ > 0, F is the
identity operator). By H., (v > 0) we denote the scale of Hilbert spaces generated
by the operator A; i.e., H, = D(AY), (z,y)y = (A"z, A"y), z,y € D(A"), for y =0
we consider that Hy = H, (z,y)o = (x,y), z,y € H.
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We denote by La([a,b]; H), —0o < a < b < 400, the Hilbert space of all vector
functions defined on [a, b] with values in H and endowed with the norm

b 1/2
I eatoaan = ([ 170 ae) "
Following the book [I4], we introduce the Hilbert space
W3 ([a,0]; H) = {u(t) : u”(t) € La([a,b]; H), A%u(t) € La([a, b]; H)}

endowed with the norm
" ) 1/2 )

||u||W23([a,b];H) = (||U ||2L2([a,b];H) + ||A3u||2L2([a,b];H)

Hereafter, derivatives are understood in the sense of distributions in a Hilbert
space [I4]. The spaces Lo((—00,+00); H), W3 ((—o0,+00); H), La([0,+00); H)
and W3([0,+o0); H) will be denoted by Lo(R; H), W3(R; H), La(Ry;H) and
W3 (R ; H), respectively.

Further, we denote by L(X,Y) the space of all linear bounded operators acting
from a Hilbert space X to another Hilbert space Y, and we denote by o(:) the
spectrum of the operator (-).

Consider the boundary value problem in the Hilbert space H

" A3 ’ A dgiju(t)
—u(t) + p(t) Au(t) + ; i~ gy = f(@),t € Ry, (1.1)
W (0) =0, u”(0)=Ku(0), (1.2)

where A = A* > cE, ¢ >0, K € L(Hs)9, Hy/2), p(t) = o, if 0 <t < 1, p(t) = 3, if
1 <t < 400, here «, 3 are positive numbers, f(t) € Lo(Ry; H), u(t) € W3(Ry; H).

Definition 1.1. If a vector function u(t) € W3 (R, ; H) satisfies (1.1 almost ev-
erywhere in R, then it is called a regular solution of equation (|1.1)).

Definition 1.2. If for any f(t) € L2(Ry; H) there exists a regular solution of (1.1)),
which satisfies the boundary conditions (1.2 in the sense that

. / . "
tim [ (8) 11,0 = 0, Tin [ (8) — () 1, = 0
and the following inequality holds

lullws (ry;my < const [|fllL,rym),
then we say that the problem (|1.1)), (1.2) is regularly solvable.

Similar kind of problems on a semi-axis for elliptic operator-differential equations
of the second order is considered in papers [13| [I6] I7]. We should especially note
the work [21I] which considers the non-local boundary value problems for second
order elliptic operator-differential equations on the interval with the coefficients
belonging to a broader class of discontinuous functions, while the coefficients in
the boundary conditions are complex numbers. In [2 [8] 111 12l 15 [19] 20, 22} 23]
along with other problems investigated the solvability of boundary-value problems
for elliptic operator-differential equations of the general form when the coefficients
in the boundary conditions are complex numbers and the equations do not contain
discontinuous coefficients. Such case also is considered in [3| [6] for the third and
fourth orders equations with multiple characteristics. Note that problem ,
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is investigated in the case A3 =0, K =0 in [4] and when p(t) =1,t€ R,, K =0
in [15].

In this article, we obtain the conditions of regular solvability of the boundary-
value problem , by means of properties of operator coefficients.

2. MAIN RESULTS

Before proceeding to the consideration of the question posed, let us introduce
additional notation. Let

W3 i (Rys H) = {u(t) - u(t) € W3 (Ry; H),u/(0) = 0,4"(0) = Ku(0)}

and denote by Py, P; and P the operators acting from the space W23 x(R4; H) into
the space La(Ry; H) by the following rules, respectively:

Pou(t) = —u"(t) + p(t) A3u(t),
Plu(t) = Alu”(t) + Azul(t) + Ag’u,(t)7
Pu(t) = Pyu(t) + Pru(t), u(t) € W237K(R+;H).

Put B = AY2KA=5/2, k(c1,c,c3) = c1 3/ 2% + co/af + c3V a2 and

Kop=(E+ ng_QK)(/f(l, 1, Dwa B — ﬁ(l,wg,wl)e%(“’Q_l)A)

1
3/a2

1
+ (E + WwA—QK) (H(I,W17WQ)6\3/E(LA)1—1)A — k(1,1 1)w1E>,
a
where w; = —3 + @l} wy=—1 - ?z

Lemma 2.1. Let A = A* > cE, ¢ > 0, K € L(Hs)5,Hy2), —Vo?w; ¢ o(B)
and the operator K g have a bounded inverse operator in Hsy. Then the equation
Pou = 0 has only the trivial solution in the space W23_’K(R+; H).

Proof. The general solution of the equation Pyu(t) = 0 in the space W3 (R, ; H)
has the following form [24]:

uo(t) = 4 o) = eVauitApy eVawatdp) e VallmDip, 0 <t <1,
0 g2 (t) = eV =DA, 4 o VB (t-DA, 1<t< 400,

where the vectors ¢ € Hs/o, k = 0,1,2,3,4, are determined from the boundary
conditions ([1.2) and the condition ug(t) € W3(R4; H). Therefore, to determine
the vectors ¢, k =0,1,2,3,4, we have the following relations:

u(),l(o) =0, ug,l(o) = KUO,l(O)a UO,l(l) = u0,2(1)7
u6,1(1) = 7-”6,2(1)’ ug,1(1) = Ug,2(1)~
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From these relations we obtain the following system of equations with respect to
Pk k= 0,1,2,3,4:
_ 3
w1po +wapr + € ‘/EAQDQ =0,

_ 3 1 _ _ 3
wipo + wipr +e” Vi, = \3/77214 2K (po + 1 +e” Vo4py),
«
eVawidy, 1 eVawa oy 4w = 3+ ¢y,
Yaw e Veri oy + Yawse VAo + Yaps = Y/ Pwips + ¥ Bwapa

Vat2eVowrdyg 4 Va2weVowrdy 4 Vapy = 3/ Bwlps + I/ FPwies .
Taking into account wiws = 1, wy +wy = —1, W? = wy, w2 = wy, from the system
(2.1) after simple transformations with respect to ¢y we have

1 — (W —
(B + g A ) (6(1, 1 en = n(1, ) VD)
1
+ (E + ﬁqu_QK)(K(l,wl,wg)e%(wl_lm —k(1,1,Dw E)po = 0.
Consequently,

3/a2
—wlA_QK) (m(l,wl,wg)e%(“’l_lm - k(1,1, 1)w1E)]<p0 =0.
Va2

(2.2)

By the assumption of this lemma, K, 3 has a bounded inverse operator in the space
Hs /9, then from equation (2.2)) follows that o = 0. Considering o = 0 in the first
51)

Ko ppo = [(E + ng_QK) (k(1,1, w2 E — K(1, w2, w1 )e %(wz—l)A)

+ (E+

and second equations of (| , we obtain
1 = —wie” %AQOQ, (2.3)
1 .
(B4 ——w A72K)e~ V240, = 0. (2.4)

3/0[2
In turn, by assumption —va2ws ¢ o(B) from (2.4) it follows that ¢o = 0, and

therefore, from (2.3) 1 = 0. Now, considering ¢y = @1 = w2 = 0 in the fourth and
fifth equations of ([2.1)), we obtain:

w13 + wapy = 0,
waps + wipg = 0.

And from these equations we have that p3 = ¢4 = 0. Thus, u¢(t) = 0. The proof
is complete. ([l

Let us consider the question of regular solvability of problem (1.1]), (1.2)) when
Ay = Ay = A3 =0.

Lemma 2.2. In the conditions of Lemma[2.1], the problem

—u" (t) + p(t) APu(t) = f(t), t€ Ry, (2.5)
' (0) =0, u'(0)= Ku(0)

is regularly solvable.
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Proof. We show that the equation Pyu(t) = f(t) has a solution u(t) € W3 (R4 ; H)
for any f(t) € Lo(R4; H). First, we continue the vector-function f(t) in such a way
that f(¢) = 0 for t < 0. We denote the new function by g(t). Let §(&) be the Fourier
transform of the vector-function g¢(t); i.e.,

“+o0
a(6) = \%277 [ ge

where the integral on the right side is understood in the sense of convergence on
the average in H. Then, using the direct and inverse Fourier transforms, it is clear
that the vector-functions

+o0 +oo
v1(t) = %/ (i€3F + aA?’)*l(/O f(s)e*ifsds)e“gdf, teR,

oo .
U (t) = %[ (¢§3E+/6A3)*1(/0 f(s)e’ifsds)e“édf, tER,

satisfy the equations

SU

—ddt:(,’t) +aAdu(t) = g(b),
3’U

Sy o) = o)

respectively, almost everywhere in R. We prove that vy (t) and vs(t) belong to
W3 (R; H). By Plancherel’s theorem

lor ) Rvs (riry = 107 O Loy + 1A% 01 ONL, ey

=1 =i 01O L, mrr) + 1A% 01 ()L e
where 01() is the Fourier transform of the function vy (¢). Since
01(€) = (i€ E + aA®)71g(8),
we have
| = i€ 01 ()| Loy = || — i€ (1€ E + aA®) T 5(E) | o (ror)

<sup|| —i€GEE + aA ) Y y_wuli .
_563” £ (i€ ) N E—sl9E)| Lo () (2.7)

= sup I = ig* (@&’ E + aA®) "M - llg(t)| oot -
E€

It follows from the spectral theory of self-adjoint operators that
| =i (B +aA®) | = sup | —i€(i€® + ac®) 7|
o€o(A)
€3 . (2.8)
= _— < .

U:E?A) (€6 + a200)1/2 =

Therefore, from (2.7)) it follows that —i¢30;(€) € Lo(R; H). Since

4201 ()| (rirn) = 1A% (2B + aA®) "1 G(E) | 1y

< sup ||[A3(GE3E + aA®) M| g_ gl .
_EGEH (i€ ) Na—ml9E) L, R ) (2.9)

= sup 14%(i&° E + aA®) " a—rlg()|| Lo,
S
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again from the spectral theory of self-adjoint operators, we have

o3 1

JAPGEE + ad®) Y = sup 036 +a0®) | = sup T <L
reo(a) reo(n) (E0+a200)1/Z = o
Thus, from ([2.9) it follows that A30,(¢) € Lao(R; H). Hence, vy (t) € W3 (R; H).
Thus vo(t) € W3 (R; H).

Let us denote the restriction of the vector-function v (¢) on [0,1) by uq(t) and
the restriction of the vector-function v2(t) on (1,+00) by ug(t). It is obvious, that
uo(t) € W3([0,1); H), ug(t) € W3((1,+00); H). Then, from the theorem on traces
[[4, ch. 1] it follows that (@ dall) dus(©) dusl) ¢ gy, 5 =0,1,2.

Now, we denote

(t) = U () = ua(t) + e Vot 4 eVowetdy, 4 o= Vall=04y, (<t <1,
us(t) = ug(t) + e VPrt=DAyy 4 e VBea(t=DAy, 1<t < +oo,

where ¢ € Hsjz, k = 0,1,2,3,4. The function u(t) belongs to W3 r-(Ry; H), so
the vectors ¥y, k = 0,1,2,3,4, can be determined from the following relations:

W(0) =0, W(0) = Kur(0), wi(1)=uz(l), wi(1) = uh(1), (1) = ().
From here with respect to ¢, k =0, 1,2, 3,4, we have the system of equations
ul, (0) + /aw Aty + aws Ay + Jade™ VoA, =0,
ull(0) + Va2 A? (Wit + wivy +e” %A%) = Kuo(0) + K (¢ + 1 + e~ %A¢2)7
Ua(1) + e VoA 4 e VoW 4 ahy = ug(1) + 13 + ¢4,
ul, (1) + aw Ae Vo Ay + Yawy Ae Vo2 Ay + Ya Ay
= up(1) + {/Bun Ay + /B2 A,
(1) + V2w A%e Vit + Valws A% Vor ity 4 Va2 A%y,
= uj(1) + /B2 A5 + ¥/ BRi AP
From this system we obtain:
Vawiy + Vowypy + Yae Vo, = — A7 (0),
Va2 (wio + withy + €™ Vo) — A72K (1o + P + e~ V)
= A7 (Kua(0) — ug(0)),
e Vo Ay 4+ e Vo Ayy 4 gy — iy — by = up(1) — ua(1),
Yowre Vo Ay + Yawse Vot + fanpy — {/Buwrtbs — I/ Bwatps
= A7 (up(1) — ug (1)),
Wwfe%wlAibo + nge%w2A¢1 + VaZipy — /B2y — 3/ FPwiiy
= A7 (uj(1) = ug(1)).

Since uq (t) € W3([0,1); H) and ug(t) € W3((1, +00); H), by the theorem on traces
14, ch. 1] A7 g (0), A7*(Kua(0) — ug(0), us(l) — ua(1), A7 (uj(1) — ug (1))
and A7 (uf}(1) — u/ (1)) belong to Hs/5. Then by these values acting also as in the
system

(2.10)

o
1)), in this case, taking into account that the operator K, g has a bounded

inverse operator in the space Hs/, and —Va2wy ¢ o(B), obviously, from ([2.10)) it is
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possible to find the vectors ¢, k = 0,1,2, 3,4, where all ¢y, € Hy /5, k =0,1,2,3,4.
Therefore, u(t) € W3 (R, ; H) satisfies equation (2.5) almost everywhere in R, and

conditions ([2.6)).
By lemma the problem

—u"'(t) + p(t) A’u(t) = 0,
uw'(0) =0, «"(0)=Ku(0)
has only the trivial solution in the space WQ:”,K(RJF; H).

Now we show that the operator P : W§’7K(R+;H) — Lo(Ry; H) is bounded.
Indeed, for u(t) € W237K(R+; H) we have

I PoullZ, (k. i)
= ||u”/||2L2(R+;H) + ||P(t)A3U||%2(R+;H) —2Re(u"”, p(t)A%u) 1, (R, 51)
<Nu"NZ s (rysry + IO AUl oy + 200" om0 A%l Ly (511
< 2(llu" 12, (ry i) + oAUl R, 1)
< 2max(1; 042§ﬂ2)||u||%/l/23(R+;H)'
Thus, according to the Banach theorem on the inverse operator, there exists P(;1 :
Ly(Ry; H) — W3 i (Ry; H) and it is bounded. Hence, it follows that
lullwg(ry my < const| fllL,r, m)-

The proof is complete. O
On the basis of Lemmas [2.1] and 2.2 we obtain the following conclusion.

Theorem 2.3. Let the conditions of Lemma[2.]] be satisfied. Then the operator Py
18 an isomorphism between the spaces WS”K(RJF; H) and Lo(Ry; H).

Let us prove the following coercive inequality which will be used further.
Lemma 2.4. Let Re(B) > 0. Then for any u(t) € WS’K(RJr;H), the following
inequality holds
1

o™ 20”13,y oy + 102 () APull3, m, ) < min(a: A)

HP0u||%2(R+;H)' (2.11)

Proof. Consider the following equalities:

(Pou, A?’u)LQ(R%H) = (—U/N + p(t)A3u7 ASU)LQ(R+;H)
= (—u", Au),rem) + (p(0)APu, A0y reay (212)
= (_u///7 ASU)LQ(R+;H) + ||p1/2(t)A3u||%2(R+;H)7
(Pou, —p~ (0" Ly(ry iy = (=0 + p(t) APu, —p~ (O)u"") Loy 1)
— (_u///7 _p_l(t)u///)Lg(R+;H) _ (Aguaum)L2(R+;H)

= ||p71/2(t)u//1||%2(R+;H) — (AP, u") 1y Ry i)
(2.13)
Note that by integrating by parts for u(t) € W§7K(R+; H), we have

—Re(w”, A%) 1, (r, 1) = Re(BA*?u(0), A>?u(0)). (2.14)
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By (2.12)) and (2.13)) and taking into account ([2.14]), we obtain

(Pou, A%u — p~ ()t Ly (511

= [lp" O A%ullE, (rysrry + 107200 12, (r. sy + 2 Re(BAY2u(0), A2u(0)).
(2.15)
Applying the Cauchy-Schwarz inequality to the left side and then the Young’s
inequality and taking into account , we obtain

(Pou, A%u — p~ " ()u"") 1y (R 1)
< o2 () Poul Lo(rasin 102 () A%u — p7 2 (00| Ly (5 i1

1 1

< —— || Poul? _ ~p2 () A%u — p~ 2 (1) ||2 ;

< (e 7)1 0 M 30O A = o O Ly o
B 1 2 1 1/2 3,112

= m”P@U”L2(R+;H) + §Hp (t)A U‘le(R+;H)

1,
+ 5l 20" L, oy + Re (BAY2u(0), A% 2u(0)).

Taking into account (2.16]) into (2.15]), we have

o™ 2@ I, (ryary + 0™ 2 (AL, 5, oy + 2Re(BAY *u(0), Au(0))
1

< MHP‘JU|'%2(R+;H)'
(2.17)
Since Re B > 0, then from inequality , we obtain the validity of inequality
(2.11)). The proof is complete. (|

Theorem implies that the norm || Poullz,(r,;m) is equivalent to the norm
lullwg(ry;m) in the space W§’7K(R+; H). Therefore, the norms of the intermedi-

ate derivative operators Aj% : WQ?’,K(RJF;H) — Lo(Ry;H), j = 1,2,3, can
be estimated with respect to ||Poul|z,(r,;#) (by the continuity of these operators
[14]). Methods for solution of equations with scalar boundary conditions are often
inapplicable to the problems with boundary conditions which include abstract op-
erators. For example, when K = 0, operator pencil factorization method for the
estimation of the norms of intermediate derivative operators has been developed in
[4] (this method was first mentioned in [I5] when considering operator-differential
equations with constant coefficients). The estimates for the norms of intermediate
derivative operators are playing an important role in obtaining solvability condi-
tions. But, the method of [4] is not applicable to the boundary value problems
for odd order operator-differential equations with the boundary conditions which
include abstract operators. In this work, to estimate the norms of intermediate
derivative operators we use the classical inequalities of mathematical analysis and

the coercive inequality (2.11)).

Theorem 2.5. Let ReB > 0. Then for any u(t) € W3 (Ry; H) the following
inequalities hold:
147

A3 Iy .
WH@(@;H) < ajl|Poullpy(rpsmy, J=1,2,3, (2.18)



EJDE-2013/219 THIRD-ORDER OPERATOR-DIFFERENTIAL EQUATIONS 9

where
21/3 max!/3(a; ) 21/3 max!/%(a; B) 1

= RS ag = ————.
31/2 min/3 (o ) min(cq; 3)

- 31/2 min®/%(a; 3)
Proof. Let u(t) € VV23 x(R4; H). Integrating by parts and applying the Cauchy-
Schwarz inequality, and then the Young’s inequality, we obtain

ay

+oo
1AW 2 ) = / (Ad", A") gt

_ li " —+o00 oo i "
= (Au', Au" ) g | — (Au', Au"") gdt
0
Fo0 (2.19)
== [t < LA 0 )
< mtaxpl/Q(t)||A2U/||L2(R+;H) o™ 2w || Loy sy
€ 1,
< B maX(Oé§5)||A2U/||2L2(R+;H) + EHP 1/2(t)um||2L2(R+;H)a
with € > 0. Proceeding in a similar manner, we have
+oo
1420 oy = [ (A% A
_ 2 2,1 +oo e 2 2.1
= (A%u, A% )|y — (A%u, A*u") g dt
0
+oo
:_/ (APu, Au") gyt (2.20)
0
< APl oy 1AW | oy )
< m?Xp71/2(t)||AUN||L2(R+;H)||p1/2(t)A3u||L2(R+;H)
n 1 1
< Em“Au”|‘%2(3+;H) + %”PUQ@A?’“H%Q(RJr;H)y
with 7 > 0. Taking into account inequality (2.20]) in (2.19):
72 € . n 1 2
[Au ||L2(R+;H) < imax(a,ﬁ)(§m||14u ||L2(R+;H) b1
1 1/2 3,112 1 —-1/2 "2 ( . )
+ %HP AUl (rysm)) + ?EHP O\, Ry s
From this inequality we obtain
en max(a; 3) )2 € max(«a; 3) 1/2 3,112
(1- W)HAU 20y < THP O AUl 7, (rym) (229)

1, _
+ Q*EHP 1/2(t)um||%2(R+;H)'
Choosing 1 = M, from inequality (2.22)) we have

||AU”H%Q(R+;H)
4 min(«a; )
~ 8emin(a; B) — 4 max?(a;

3 2@ A%l oy + 0™ 2O 12, ()]
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Then, by minimizing e, we find ¢ = {/2min(a; 3)/ max2(a; 3). Therefore,

||Au”||%2(R+;H)
22/3 max?/3(a; B) _
3min1/3(a' 5) |:||p1/2(t)A3u||%2(R+,H) + ||p 1/2(t)u///||%2(R+;H)} .
Now, taking into account inequality (2.11)), from inequality (2.23]) we obtain
22/3 max?/3(a; B)

3min®/3(; )

(2.23)

1A L ) < | Poul ey

As a result,

21/3 max!/3(a; 8)
31/2 min*/3(a; B)
To estimate the norm [|A%W||1, (g, m), we take into account in (2.20):

_ enmax(a; 3) 9 2
(1 4min(o; B) )HA B HLQ(R%H)

Ui

1
—-1/2 "y 2 S na1/2 3,112
S Emin(ad) min(a: 3) o™ =" 11,y sm) + 277“0 O AT, m, -

Choosing € = ?/(2min(«; 3)), from inequality (2.24) we have
||A2u/||%2(R+;H)

< 4min(a; B)

= Symin®(a: B) — 't max(as )

AW | o < 1Poula(rien.

(2.24)

(20" I sty + 102 O A, )]

In this case, minimizing 1, we find n = {’/2 min?(o; )/ max(c; 3). Therefore,

‘lAQU/“%Q(R+;H)
22/3 max!/3(a; 3)
3min%3(; B)
From this inequality, taking into account inequality (2.11]), we obtain
22/3 max!/3(a; )
3min® (e B)

(2.25)

o™ 2@ I, (ry oy + 0™ 2O A%l L, 5, o))

||A2u’||%2(R+;H) < HPOu||2LQ(R+;H)‘

Thus,

21/3 max!/%(a; )

31/2 min®/%(a; 9)

Now we estimate the norm || A%ul|r, (g, ;m)- From inequality (2.11)) we have
1

mnpouﬂig(m;m > |p 2 () A%ull%, g, .y > min(as; )| A%ull?, m, .-

AW || 1y Ry shy < | Powl| Ly Ry H)-

Hence, we obtain

1
3,112 2
||A U“Lz(R+;H) S m||POuHL2(R+;H)
or )
3
HA U||L2(R+;H) < min(a;ﬁ) ‘|P0u|‘L2(R+;H)-

The proof is complete. O
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Now, we prove the boundedness of the operator Py : W3 (o (Ry; H) — La(Ry; H).

Lemma 2.6. Let AjA™7 € L(H,H), j = 1,2,3. Then Py is a bounded operator
from the space W3 ;(Ry; H) into the space Lo(Ry; H).
Proof. For any u(t) € W237K(R+; H) we have
| Prull oy (resmy = A" + Agu’ + Asull, gy 1)
< N AA - mllAd | Loy iy + A2 A2 - m | A% | Ly (r )
A3 A7 | APl () -

Applying the theorem on intermediate derivatives [14 ch. 1], we obtain from the
last inequality that

1Prully (ry sy < constllullwg rym)-

The proof is complete. ([
Let us consider the question of regular solvability of problem (1.1f), (1.2].

Theorem 2.7. Let A= A* > cE, ¢ >0, K € L(Hs/3,Hy)2), —Va2w, ¢ o(B),
the operator Ko g has a bounded inverse in the space Hs;z, Re B > 0 and AjATT €
L(H,H), j =1,2,3, moreover, the following inequality holds

ar|| At AT - + a2l A2 AT |p—m + asl|AsA7? | g—m < 1,

where the numbers aj, j = 1,2,3, are defined in Theorem . Then the boundary

value problem (1.1)), (1.2)) is regularly solvable.

Proof. Boundary value problem (1.1)), (1.2)) can be represented in the operator form
Pou(t) + Pru(t) = f(t),

where f(t) € Ly(R.; H), u(t) € W3 o (Ry; H).

Under conditions A = A* > cE, ¢ > 0, K € L(Hs/s, Hy/2), —Va2wy ¢ o(B),
the operator K, s has a bounded inverse in the space Hs/p, by Theorem the
operator Py has a bounded inverse Fy ! acting from the space Lo (R4; H) into the
space W3 - (Ry; H). If we put v(t) = Pyu(t) we obtain the following equation in
Ly(Ry; H):

(B + PuFg o(t) = f(t).
We show that under the conditions of the theorem, the norm of the operator P; P(;1
is less than unity. Taking into account inequalities (2.18)), we have

1P1Py 0| Ly (i)
= [|Prull L, (R, 1)
< HA1UH||L2(R+;H) + HA2U/HL2(R+;H) + ||A3UHL2(R+;H)
<NAA N a—m|Ad | Loy iy + 1A2A 2 o | A | Ly (ry i)
F A3 A [ | A%l Ly (o)
< a|AvA N m—m | Poull o ry sy + a2l| A2 A2 g || Poull Ly gy 1)

+ a|| A3 A7 | g ml| Poull Ly (r )

3
=>4l AT r—m ol Loy
j=1



12 A. R. ALIEV, N. L. MURADOVA EJDE-2013/219

Thus,
3

PP Loy s La(r o) < D agllA AT [rmm < 1
j=1

Therefore, the operator E + Py P, " is invertible in the space Lo(Ry; H) and wu(t)
is defined by the formula

u(t) = Py (B + PPy ) TH(1),
moreover

||uHW23(R+;H)
< NPy Mraresmy—wir s m 1B + PrPy ) ™ o(ry sy — Lo (s | f | Lo (54 50)
< ConSt||f||L2(R+;H)-

The proof is complete. O

Corollary 2.8. In the conditions of Theorem[2.7, the operator P is an isomorphism
between the spaces W3 p(Ry; H) and Lo(Ry; H).

In conclusion, we remark that our solvability results imply the results of [4] when
K =0 and As = 0, and the results of [I5] when K =0 and a = 8 = 1.

Acknowledgements. We are very grateful to the referees for their careful reading
of the original manuscript, for their helpful comments which led to the improvement
of this article.
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