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EXISTENCE OF PERIODIC SOLUTIONS IN THE MODIFIED
WHELDON MODEL OF CML

PABLO AMSTER, ROCÍO BALDERRAMA, LEV IDELS

Abstract. The Wheldon model (1975) of a chronic myelogenous leukemia

(CML) dynamics is modified and enriched by introduction of a time-varying
microenvironment and time-dependent drug efficacies. The resulting model is a

special class of nonautonomous nonlinear system of differential equations with

delays. Via topological methods, the existence of positive periodic solutions
is proven. We introduce our main insight and formulate some relevant open

problems and conjectures.

1. Modified Wheldon Model of CML

1.1. Background. Chronic myelogenous leukemia (CML) is cancer of the blood
in which too many granulocytes, a type of white blood cell, are produced in the
marrow, and it makes up about 10 to 15 percent of all leukemias (see, for example,
[9, 10, 13, 15, 16]). In 1974 Wheldon in the paper [22] (see also [21]) introduced
the following model of granulopoiesis (granulocyte production)

dM

dt
=

α

1 + βMn(t− τ)
− λM(t)

1 + µBm(t)
,

dB

dt
= −ωB(t) +

λM(t)
1 + µBm(t)

,

(1.1)

where all parameters are positive constants. In model (1.1), M(t) is the number
of cells in the marrow; B(t) is the number of white blood cells; β is the coupling
constant for cell production loop; α is the maximum rate of cell production; λ is the
maximum rate of release of mature cells from marrow; µ is the coupling constant
for release loop; ω is the constant rate for loss of granulocytes from blood to tissue;
τ represents mean time for stem cell maturity; n controls gain of cell production
loop and m controls gain of release loop.
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A different mechanism of CML was modeled and studied by Mackey (see, for
example, [6]).

dN

dt
= −δ(t)N(t)− β(N(t)) + 2e−δτβ(N(t− τ)),

dP

dt
= −γP (t) + β(N(t))− e−δτβ(N(t− τ)).

(1.2)

This model consists of a proliferating phase cellular population P (t) and a G0

resting phase with a population of cells N(t), where

β(N) =
β0θ

nN

θn +Nn
(n > 0).

This is simply a model of stem cells dynamics - daughter cells either differentiate
or return to the stem cell compartment follows by another division cycle. There
is only the implicit suggestion above that there are positive and negative feedback
signals regulating the rates at which cells will move through these “decisions”.

However, model (1.1) has a major drawback, i.e., it describes a wrong mechanism.
At the (unique) nontrivial equilibrium point (M∗, B∗) of system (1.1), we have:

ωB∗ =
α

1 + βMn
∗
. (1.3)

Thus, the B-population in the Wheldon model is inversely proportional to the
M -population; the latter does not have any biological explanation.

To reanimate the Wheldon model, we used Wheldon’s remarks in his later work
[20] to introduce a new mechanism:

dM

dt
=

αM(t)
1 + βMn(t− τ1)

− λM(t)
1 + µBm(t− τ2)

,

dB

dt
= −ωB(t) +

λM(t)
1 + µBm(t− τ2)

.

(1.4)

This model creates a time-delay loop triggering stem cell production and a fast
loop regulating release of mature cells in the blood. Studies of the model imply
that the oscillatory pattern in leukemia may be bring forth in two principal ways,
either by an increased cell production rate or by an increased maturation time.
Note also that model (1.4) assumes that there is a direct negative feedback from
mature to the precursors of those cells. Time delay τ1 (τ in model (1.1)) represents
a mean time for M− cell maturity. A stimulator/inhibitor mechanism is presented
by the second term in both equations, where a time delay τ2 is a lag between when
B−cells are initiated and when an apparent tumor progressed (the latency time)
since each cell cycle phase is dependent on the completion of the previous ones.

Remark 1.1. Note that the first term in (1.1) is a decreasing function of M

α

1 + βMn
,

whereas in model (1.4)
αM

1 + βMn
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is a one-hump function, resulting in a relationship between stem cells and white
blood cells more realistic than in (1.3):

ωB∗ =
αM∗

1 + βMn
∗
. (1.5)

Exposure to chemoradiation therapy will kill not only cancer cells, but other
rapidly dividing cells in the body as well (e.g. the cells in the bone marrow that go
on to become white blood cells), and will therefore suppress immune system [2]–[5]
[9, 12, 15, 18, 19]. Note that for a new model the complete recovery is possible for
sufficiently high drug dosage (see Figure 1).
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Figure 1. Dynamics before therapy and after therapy

It is well recognized that tumor microenvironment changes with time and in
response to treatment. These fluctuations can modulate tumor progression and
acquired treatment resistance (see, for example, [8, 12, 13, 18]). Henceforth, to
mimic changes of the tumor microenvironment, we incorporate time-dependent
parameters.

dM

dt
=

α(t)M(t)
1 + β(t)Mn(t− τ1)

− λ(t)M(t)
1 + µ(t)Bm(t− τ2)

− δp(t)M(t),

dB

dt
= −ω(t)B(t) +

λ(t)M(t)
1 + µ(t)Bm(t− τ2)

− δq(t)B(t),
(1.6)
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where p(t) = p(c) and q(t) = q(c) are the varying effectiveness of the drug, and
c = c(t) is the drug concentration at time t. Traditionally, this pharmokinetic is
modeled by linear functions, namely p(c) = αc(t) and g(c) = βc(t) where α and
β are the appropriate drug sensitivity parameters. Clearly, α = β if the drugs are
cycle-non-specific, i.e., they will be equally toxic to all types of cells. Some types
of chemotherapy can be modeled based on a non-monotone one-humped functions-
p(c) = αc(t)e−ac(t) and q(c) = βc(t)e−bc(t). Throughout the paper, it shall be
assumed that α(t), β(t), ω(t), λ(t), µ(t), p(t) and q(t) are continuous, positive and
T -periodic functions and τ1,2 > 0 are fixed delays. The parameter δ is assumed
to be 1 or 0 according the presence or absence of pharmacokinetics. Different and
interesting models of CML were recently examined in [1, 7, 10, 17].

It is worth noticing that, given set of nonnegative initial conditions, the solution
of problem (1.6) is globally defined and positive over [0,+∞). Indeed,

Theorem 1.2. Let ϕi : [−τi, 0] → [0,+∞) be continuous functions such that
ϕi(0) > 0. Then there exists a unique global positive solution of problem (1.6)
under initial conditions

M(t) = ϕ1(t) − τ1 ≤ t ≤ 0,

B(t) = ϕ2(t) − τ2 ≤ t ≤ 0.

Proof. Set R(t) := lnM(t), then the system becomes

R′(t) =
α(t)

1 + β(t)enR(t−τ1)
− λ(t)

1 + µ(t)Bm(t− τ2)
− δp(t),

B′(t) = −ω(t)B(t) +
λ(t)eR(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t).

(1.7)

Suppose that M(t) and B(t) are defined and positive for t < t0, then from the
inequalities −λ(t) − δp(t) < R′(t) < α(t) it is clear that R(t) is defined up to t0.
Moreover, B′(t) < λeR(t) and hence B(t) is defined in t0. Finally, if B(t0) = 0 then
B′(t0) > 0, a contradiction. �

In next section we shall prove, under appropriate conditions, the existence of
at least one positive T -periodic solution: namely, a pair (M,B) of C1 functions
satisfying

M(t+ T ) = M(t) > 0, B(t+ T ) = B(t) > 0

for all t ∈ R. In view of the preceding result, one might attempt to define a Poincaré-
like operator in order to apply some fixed point theorem. However, the conditions
for such a procedure seem to be very restrictive; thus we apply, instead, the Leray-
Schauder degree theory [11, 14] over an appropriate open subset of CT ×CT , where
CT denotes the space of continuous and T -periodic real functions.

For the reader’s convenience, we make a short account of the main properties of
the degree that shall be used in this work. Let X be a Banach space, let Ω ⊂ X
be open and bounded and denote by cl(Ω) the closure of Ω. If K : cl(Ω) → X
is compact with Ku 6= u for all u ∈ ∂Ω, then the Leray-Schauder degree of the
Fredholm operator F = Id − K at 0 shall be denoted by deg(F ,Ω, 0). Roughly
speaking, this (whole) number can be regarded as an algebraic count of the zeros
of F .

(1) (Solution) If deg(F ,Ω, 0) 6= 0, then F has at least one zero in Ω.
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(2) (Homotopy invariance) If Fσ = Id − Kσ with Kσ : cl(Ω) → X compact
such that Kσu 6= u for all u ∈ ∂Ω, σ ∈ [0, 1] and K : cl(Ω) × [0, 1] → X given by
K(u, σ) := Kσ(u) continuous, then deg(Fσ,Ω, 0) is independent on σ.

(3) If K(cl(Ω)) ⊂ V , with V ⊂ X a finite dimensional subspace, then

deg(F ,Ω, 0) = deg(F|cl(Ω)∩V ,Ω ∩ V, 0).

Identifying V with Rn, the latter term is simply the so-called Brouwer degree. In
this paper, we only need to know that if Ω0 ⊂ Rn is open and bounded with 0 ∈ Ω0,
then deg(−Id,Ω0, 0) = (−1)n.

2. Existence of periodic solutions

2.1. Case 1: No pharmokinetic.

Theorem 2.1. Assume that α(t), β(t), λ(t), µ(t) and ω(t) are continuous, positive
and T -periodic. Furthermore, assume that

(1) n > m
m+1 .

(2) α(t) > λ(t) > ω(t) for all t.

Then system (1.6) with δ = 0 admits at least one positive T -periodic solution.

Proof. Set u(t) = lnM(t) and v(t) = lnB(t), then (1.6) with δ = 0 reads

u′(t) =
α(t)

1 + β(t)enu(t−τ1)
− λ(t)

1 + µ(t)emv(t−τ2)
:= ψ1(u, v)(t),

v′(t) = −ω(t) +
λ(t)eu(t)−v(t)

1 + µ(t)emv(t−τ2)
:= ψ2(u, v)(t).

To prove the existence of T -periodic solutions of this system, we shall apply the
continuation method [14]. Adapted to this case, the method guarantees the exis-
tence of solutions, provided there exists an open bounded set Ω ⊂ CT × CT such
that

(1) For σ ∈ (0, 1], the system

u′(t) = σψ1(u, v)(t),

v′(t) = σψ2(u, v)(t)

has no T -periodic solutions on ∂Ω.
(2) deg(F,Ω ∩ R2, 0) is well defined and different from 0, where the function

F : R2 → R2 is defined by

F (u, v) :=
1
T

∫ T

0

( α(t)
1 + β(t)enu

− λ(t)
1 + µ(t)emv

,
λ(t)eu−v

1 + µ(t)emv
− ω(t)

)
dt.

For simplicity, we divide the proof in two steps.

First step: Let Ω0 := (−R,R)× (−R, cR) ⊂ R2, where c is a fixed constant such
that 1

m+1 < c < n
m . We claim that deg(F,Ω0, 0) = 1 for R > 0 large enough.

Indeed, let us firstly assume that −R ≤ v ≤ cR, then

F1(R, v) =
1

TenR

∫ T

0

α(t)enR

1 + β(t)enR
− λ(t)enR

1 + µ(t)emv
dt.
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As nR > mcR, it follows that F1(R, v) ≤ F1(R, cR) < 0 for R � 0. On the other
hand,

F1(−R, v) =
1
T

∫ T

0

α(t)
1 + β(t)e−nR

− λ(t)
1 + µ(t)emv

dt ≥ 1
T

∫ T

0

α(t)
1 + β(t)e−nR

dt− λ.

The right-hand side term tends to α − λ as R → +∞; thus, as α(t) > λ(t) for all
t, we deduce that F1(−R, v) > 0 for R� 0.

Next, assume that |u| ≤ R, and compute

F2(u, cR) = −ω +
1
T

∫ T

0

λ(t)eu−cR

1 + µ(t)emcR
dt ≤ −ω +

∫ T

0

λ(t)e(1−c)R

1 + µ(t)emcR
dt→ −ω

as R→ +∞ since c(m+ 1) > 1, and

F2(u,−R) = −ω +
1
T

∫ T

0

λ(t)eu+R

1 + µ(t)e−mR
dt ≥ −ω +

1
T

∫ T

0

λ(t)
1 + µ(t)e−mR

dt.

Here, the right-hand side term tends to λ − ω as R → +∞. This quantity is
positive since λ(t) > ω(t) for all t, so we conclude that F2(u, cR) < 0 < F2(u,−R)
for R� 0. Thus, we may define the homotopy

H(u, v, σ) := σF (u, v)− (1− σ)(u, v),

which does not vanish on ∂Ω0. It follows that deg(F,Ω0, 0) = deg(−Id,Ω0, 0) =
(−1)2 = 1.

Remark 2.2. As a consequence, it is deduced that F vanishes in Ω0. In particular,
when α, β, λ and µ are positive constants we deduce that the system has a positive
equilibrium, as it shall be proven in section 3 by direct computation.

Second step: Let

Ω := {(u, v) ∈ CT × CT : ‖u‖∞ < R,−R < v(t) < cR for all t}.

We claim that if R is large enough then the T -periodic solutions of the system

u′(t) = σψ1(u, v)(t),

v′(t) = σψ2(u, v)(t)

with 0 < σ ≤ 1 do not belong to ∂Ω.
Indeed, suppose firstly that umax = R > vmax

c and take ξ ∈ [0, T ] is such that
umax = u(ξ). From the first equation of the system we obtain

α(ξ)
1 + β(ξ)enu(ξ−τ1)

=
λ(ξ)

1 + µ(ξ)emv(ξ−τ2)
>

λ(ξ)
1 + µ(ξ)emcR

.

Moreover, observe that u′(t) > −λ(t) for all t, so by periodicity we deduce that

u(ξ − τ1)−R ≥ −
∫ kT+ξ−τ1

ξ

λ(t) dt ≥ −
∫ T

0

λ(t) dt := −C1

where k is the first natural number such that kT > τ1. It follows that

α(ξ) > λ(ξ)
1 + β(ξ)enu(ξ−τ1)

1 + µ(ξ)emcR
> λ(ξ)

1 + β(ξ)en(R−C1)

1 + µ(ξ)emcR
.
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The right-hand side of this inequality tends uniformly to +∞ as R → +∞. Now
assume that vmax = cR ≥ cumax, then take η ∈ [0, T ] such that v(η) = vmax and
deduce, from the second equation of the system:

ω(η) =
λ(η)eu(η)−v(η)

1 + µ(η)emv(η−τ2)
≤ λ(η)e(1−c)R

1 + µ(η)emv(η−τ2)
.

As before, from the inequality v′(t) ≥ −ω(t) it is seen that

v(η − τ2)− cR ≥ −
∫ lT+η−τ2

η

ω(t) dt ≥ −
∫ T

0

ω(t) dt := −C2,

where l is the first natural number such that lT > τ2. This implies

ω(η) ≤ λ(η)e(1−c)R

1 + µ(η)em(cR−C2)
→ 0

uniformly as R → +∞. We conclude that umax and vmax cannot be arbitrarily
large.

Next, suppose that umin = −R < vmin and ξ ∈ [0, T ] be such that umin = u(ξ).
As before,

α(ξ)
1 + β(ξ)enu(ξ−τ1)

=
λ(ξ)

1 + µ(ξ)emv(ξ−τ2)
<

λ(ξ)
1 + µ(ξ)e−mR

and hence

α(ξ) < λ(ξ)
1 + β(ξ)enu(ξ−τ1)

1 + µ(ξ)e−mR
.

As u(ξ − τ1) ≤ −R +
∫ ξ
ξ−τ1 λ(t) dt, the right-hand side of the last inequality tends

uniformly to λ(ξ) as R→ +∞. In the same way, if v(η) = vmin = −R ≤ umin, then
it is seen that

ω(η) ≥ λ(η)
1 + µ(η)emv(η−τ2)

→ λ(η)

uniformly as R → +∞. As α(t) > λ(t) > ω(t) for all t, we deduce that R cannot
be arbitrarily large and the claim is proven. �

2.2. Case 2: With pharmokinetic.

Theorem 2.3. Assume that α(t), β(t), λ(t), µ(t), ω(t), p(t) and q(t) are positive and
T -periodic. Furthermore, assume that:

α(t)− p(t) > λ(t) > ω(t) + q(t)

for all t. Then system (1.6) with δ = 1 admits at least one positive T -periodic
solution.

Proof. We shall follow the general outline of the previous proof. As before, set
u(t) = lnM(t) and v(t) = lnB(t), then the model with δ = 1 reads

u′(t) =
α(t)

1 + β(t)enu(t−τ1)
− λ(t)

1 + µ(t)emv(t−τ2)
− p(t) := ψp,q1 (u, v)(t),

v′(t) = −ω(t) +
λ(t)eu(t)−v(t)

1 + µ(t)emv(t−τ2)
− q(t) := ψp,q2 (u, v)(t).

For the first step, let us consider now F p,q : R2 → R2 given by

F p,q(u, v) := F (u, v)− (p, q)
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with F as in the previous proof. First, assume that |v| ≤ R. Then

F p,q1 (R, v) =
1
T

∫ T

0

α(t)
1 + β(t)enR

− λ(t)
1 + µ(t)emv

dt− p < 0

for R� 0. On the other hand,

F p,q1 (−R, v) =
1
T

∫ T

0

α(t)
1 + β(t)e−nR

− λ(t)
1 + µ(t)emv

dt− p

≥ 1
T

∫ T

0

α(t)
1 + β(t)e−nR

dt− λ− p.

The last term tends to α− λ− p as R→ +∞; thus, as α(t) > λ(t) + p(t) for all t,
we deduce that F p,q1 (−R, v) < 0 for R� 0.

Next, assume that |u| ≤ R and compute

F p,q2 (u,R) ≤
∫ T

0

λ(t)
1 + µ(t)emR

dt− ω − q < 0

for R� 0 and

F p,q2 (u,−R) ≥ 1
T

∫ T

0

λ(t)
1 + µ(t)e−mR

dt− ω − q.

Here, the right-hand side term tends to λ − ω − q as R → +∞. This quantity is
positive since λ(t) > ω(t) + q(t) for all t; so we conclude that F p,q2 (u,R) < 0 <
F p,q2 (u,−R) for R� 0. As in the previous proof, we have deg(F p,q, (−R,R)2, 0) =
1.

For the second step, set

Ω := {(u(t), v(t)) ∈ CT × CT : ‖u‖∞ < R, ‖v‖∞ < R}.
As before, we claim that if R is large enough then the T -periodic solutions of the
system

u′(t) = σψp,q1 (u, v)(t),

v′(t) = σψp,q2 (u, v)(t)

with 0 < σ ≤ 1 do not belong to ∂Ω. Indeed, suppose firstly that umax = R > vmax,
then take ξ ∈ [0, T ] is such that umax = u(ξ) and from the first equation we obtain

α(ξ)
1 + β(ξ)enu(ξ−τ1)

>
λ(ξ)

1 + µ(ξ)emR
+ p(ξ).

As before, using now the fact that u′(t) > −λ(t)− p(t) for all t we deduce that

u(ξ − τ1)−R ≥ −
∫ T

0

[λ(t) + p(t)] dt := −Cp,q1 .

It follows that
α(ξ)
p(ξ)

> 1 + β(ξ)enu(ξ−τ1) ≥ 1 + β(ξ)en(R−Cp,q
1 )

and hence R cannot be arbitrarily large. On the other hand, assume that umax ≤
vmax = R, then take η ∈ [0, T ] such that v(η) = vmax and deduce, from the second
equation of the system, that

ω(η) + q(η) ≤ λ(η)
1 + µ(η)emv(η−τ2)
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and, from the inequality v′(t) ≥ −ω(t)− q(t), that

v(η − τ2)−R ≥ −
∫ T

0

[ω(t) + q(t)] dt := −Cp,q2 .

This implies

ω(η) + q(η) ≤ λ(η)
1 + µ(η)em(R−Cp,q

2 )
→ 0

uniformly as R → +∞. We conclude that umax and vmax cannot be arbitrarily
large.

Next, suppose that umin = −R < vmin and ξ ∈ [0, T ] be such that umin = u(ξ).
As before, it follows that

α(ξ)
1 + β(ξ)enu(ξ−τ1)

<
λ(ξ)

1 + µ(ξ)e−mR
+ p(ξ)

and hence

α(ξ) <
( λ(ξ)

1 + µ(ξ)e−mR
+ p(ξ)

)(
1 + β(ξ)enu(ξ−τ1)

)
.

Thus, the right-hand side of the last inequality tends uniformly to λ(ξ) + p(ξ) as
R→ +∞. In the same way, if v(η) = vmin = −R ≤ umin, then

ω(η) + q(η) ≥ λ(η)
1 + µ(η)emv(η−τ2)

→ λ(η)

uniformly as R→ +∞. As α(t)−p(t) > λ(t) > ω(t) + q(t) for all t, we deduce that
R cannot be arbitrarily large and the proof is complete. �

3. Remarks about equilibrium points

In this section, we briefly discuss the uniqueness or multiplicity of positive equi-
librium points for the autonomous case and make some comments on possible os-
cillation properties of the solutions.

With this aim, assume that all the parameters of (1.6) are constant, then the
existence of at least one positive equilibrium (M∗, B∗) is easily shown, provided
that

n > (1− δ) m

m+ 1
, α > λ− δp.

Indeed, consider the system
α

1 + βMn
=

λ

1 + µBm
+ δp,

(ω + δq)B =
λM

1 + µBm

(3.1)

and let

c(B) :=
B(1 + µBm)(ω + δq)

λ
.

Then (3.1) has at least a positive solution if and only if the function ϕ : [0,+∞)→ R
given by

ϕ(B) :=
α

1 + βc(B)n
− λ

1 + µBm
− δp

has at least a positive root. This is easily verified, since

ϕ(0) = α− λ− δp > 0
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and
lim

B→+∞
ϕ(B) = −δp.

Thus, the result follows for δ = 1. When δ = 0, condition n > m
m+1 implies

ϕ(B) < 0 for B � 0 and so completes the proof.
It is worth noticing that the number of equilibria depends on the parameters

of the system. Although more precise computations are possible, we shall not
pursue a detailed analysis here and restrict ourselves to some elementary comments.
Consider, for instance, the case δ = 0, then

B∗ =
αM

ω(1 + βMn)
.

Calling z = 1 + βMn, we obtain the following equation for z:

z =
α

λ
+ r
[ n
√
z − 1
z

]m := ψ(z),

where r = αm+1µ
ωmβm/nλ

. The function z − ψ(z) is negative for z = 1 and, as n > m
m+1 ,

tends to +∞ as z → +∞. Next, we compute

ψ′(z) =
rm(z − 1)

m−n
n

nzm+1
[n− (n− 1)z],

ψ′′(z) =
rm(z − 1)

m−2n
n

nzm+2
[az2 + bz + c],

where

a =
n− 1
n

[n+m(n− 1)], b = −2[n+m(n− 1)], c = (m+ 1)n.

In particular, ψ vanishes at most twice in (1,+∞), which implies that the system
cannot have more than 3 positive equilibrium points.

When n 6= 1, the quadratic az2 + bz + c has two different real roots, namely

R± =
n

n− 1

(
1± 1√

n+m(n− 1)

)
.

Let us prove, in the first place, that the positive equilibrium is unique when
m ≤ n. This is immediate for m < n, since the function z − ψ(z) is strictly
decreasing near 1, and ψ′′ vanish at most once in (1,+∞). When m = n, there are
two cases:

• If n ≤ 1, then ψ′′ does not vanish in (1,+∞).
• If n > 1, then direct computation shows that the equation ψ′(z) = 1 has

at most one solution in (1,+∞).
In both cases, the function z − ψ(z) has at most one critical point in (1,+∞) and
the claim follows.

The situation is different when m > n: for instance, if r is large enough then
there are 3 positive equilibria, provided that α

λ is sufficiently close to 1. Indeed, we
may set, for example, R > 1 as the largest root of the quadratic function az2+bz+c,
namely

R =


m+1

2 if n = 1,
R− if n < 1,
R+ if n > 1,
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with R± as before. Next, consider the function g(z) = z − ψ(z) + α
λ − 1 and fix r

such that r > Rm

(R−1)
m−n

n

. Then g(R) < 0 and, as g(1) = 0 and g′(1) = 1, it is seen

that g has exactly one zero in (1, R) and another one in (R,+∞). Now let

ε = max
1≤z≤R

g(z),

then the function z − ψ(z) has 3 zeros when α
λ < 1 + ε.

In view of the previous example, a natural question arises: is it possible to find
a sharp set of sufficient conditions for the uniqueness of the positive equilibrium
when m > n? For example, a sufficient condition when n ≤ 1 is

α

λ
≥ R

with R as before: indeed, in this case ψ′(z) > 0 in (1,+∞), so ψ(z) > z in [1, R]
and ψ′′ does not vanish after R, so the equation ψ′(z) = 1 has at most one solution
in (R,+∞).

When n > 1, a sufficient condition for uniqueness of the positive equilibrium is:
α

λ
≥ n

n− 1
.

Indeed, in this case ψ strictly increases up to z = n
n−1 and strictly decreases after

that point. As ψ(z) > z on (1, n
n−1 ) it follows that the equation ψ(z) = z has

exactly one solution. Observe that R > n
n−1 , so the previous condition is sharper

than the condition α/λ ≥ R.
Also, it is worth noticing that, in all cases, if r is small then the equilibrium

is unique. More precisely, for n ≤ 1 the function ψ′ is positive and achieves its
absolute maximum at z = R; thus, a sufficient condition for uniqueness is:

ψ′(R) < 1. (3.2)

For n > 1, the function ψ′ achieves its absolute maximum at z = R− > 1. This
yields the sufficient condition

ψ′(R−) < 1. (3.3)
Conditions (3.2) and (3.3) are obviously satisfied when r is small.

The presence of delays yields also an interesting matter about the oscillation
properties of the autonomous model. This is an interesting field of research that
can be the object of a future work; here, we shall only prove some behavior that
might indicate the presence of oscillation.

In more precise terms, we set a positive equilibrium (M∗, B∗) as the center of
coordinates and denote by Qj the j-th quadrant, namely

Q1 := {(M,B) : M > M∗, B > B∗},
Q2 := {(M,B) : M < M∗, B > B∗},
Q3 := {(M,B) : M < M∗, B < B∗},
Q4 := {(M,B) : M > M∗, B < B∗}.

We shall prove that, under appropriate conditions, if a non-constant positive solu-
tion starts in Q2 or Q4 then it cannot remain there for all t.

Proposition 3.1. Let τ1 > (1 + βMn
∗ )2/(nαβMn

∗ ) and assume that there are no
equilibrium points in Q4. Then there exists a sequence tn → +∞ such that, for all
n, M(tn) < M∗ or B(tn) > B∗.
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Proposition 3.2. Let τ1 >
(1+βMn

∗ )2

nαβMn
∗

and assume that there are no equilibrium
points in Q2. Then there exists a sequence tn → +∞ such that, for all n, M(tn) >
M∗ or B(tn) < B∗.

In other words, a non-constant positive solution starting at Q2 or Q4 might
abandon the respective quadrant and never return, or it might eventually come
back but then it leaves the quadrant again and so on. A proof of Proposition 3.1
is given below; the proof of Proposition 3.2 is similar so we omit it.

Lemma 3.3. Assume that R(t1− τ1) ≥ R(t2− τ1) and B(t1− τ2) ≤ B(t2− τ2). If
R(t1) ≥ R(t2) and B(t1) ≤ B(t2), at least one of the inequalities being strict, then
R′(t1) < R′(t2) and B′(t1) > B′(t2).

Proof. It suffices to observe that the right hand side of the first equation of (1.7) is
strictly decreasing in the variables R(t− τ1) and strictly increasing in the variable
B(t−τ2), and the right hand side of the second equation of (1.7) is strictly increasing
in the variable R(t) and strictly decreasing in the variables B(t) and B(t−τ2). Then
R′(t1) < R′(t2) and B′(t1) > B′(t2). �

Remark 3.4. As in Lemma 3.3, it is easily seen that if R(t) > R∗ := ln(M∗) for
t ∈ [t0 − τ1, t1) and B(t) < B∗ for all t ∈ [t0 − τ2, t1) then R′(t) < 0 < B′(t) for
all t ∈ [t0, t1]. If R(t1) = R∗ or B(t1) = B∗, then there exists η > 0 such that
(R(t), B(t)) /∈ Q4 for t ∈ (t1, t1 + η). On the other hand, if R(t) > R∗ for all
t ≥ t0 − τ1 and B(t) < B∗ for all t ≥ t0 − τ2 then R′(t) < 0 < B′(t) for all t ≥ t0
and, if there are no equilibrium points in Q4, then R(t)→ R∗ and B(t)→ B∗.

Proof of Proposition 3.1. Suppose that M(t) > M∗ for all t ≥ t0−τ1 and B(t) < B∗
for all t ≥ t0 − τ2. A simple computation shows that

R′(t) = −A(R(t− τ1)−R∗)− C(B∗ −B(t− τ2)),

with

A = A(R(t), R(t− τ1)) :=
αβ(enR∗ − enR(t−τ1))

(1 + βenR(t−τ1))(1 + βenR∗)(R∗ −R(t− τ1))
> 0,

C = C(B(t), B(t− τ2)) :=
λµ(Bm∗ −Bm(t− τ2))

(1 + µBm∗ )(1 + µBm(t− τ2))(B∗ −B(t− τ2))
> 0,

A(R(t), R(t− τ1))→ nαβenR∗

(1 + βenR∗)2
as t→ +∞,

C(B(t), B(t− τ2))→ λµmBm−1
∗

(1 + µBm∗ )2
as t→ +∞.

Moreover,

R(t− τ1)−R∗ = R(t− τ1)−R(t) +R(t)−R∗ = −τ1R′(θ) +R(t)−R∗
for some mean value θ ∈ (t − τ1, t). From Lemma 3.3 with t1 = θ and t2 = t, it
follows that R′(θ) < R′(t). Thus,

R′(t) < −A(R(t)−R∗)− C(B∗ −B(t− τ2)) + τ1AR
′(t).

Observe that the hypothesis says that τ1 >
(1+βenR∗ )2

nαβenR∗ . Without loss of generality,
we may assume that t0 is large enough so that τ1A(R(t), R(t− τ1)) > 1, then

(τ1A− 1)R′(t) > A(R(t)−R∗) + C(B∗ −B(t− τ2)) > 0,

a contradiction. �
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Open Problems. We outline some problems that might be of interest for scientists
who plan to start future research in this field.

(1) Use Lyapunov-like functionals to find sufficient conditions for the global
stability of a non-trivial equilibrium of the autonomous model.

(2) Prove or disprove that for a new model the complete recovery is possible for
sufficiently high drug dosage; examine permanence, persistence and extinction of
the solutions.

(3) Define what is the required type, frequency and intensity of the cancer treat-
ment that switch unfavorable oscillatory dynamics of a system to a non-oscillatory
state.

Acknowledgments. We thank the anonymous referee for insightful comments
that led to an improvement of this manuscript.
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