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WAVE-BREAKING PHENOMENA AND GLOBAL SOLUTIONS
FOR PERIODIC TWO-COMPONENT

DULLIN-GOTTWALD-HOLM SYSTEMS

MIN ZHU, JUNXIANG XU

Abstract. In this article we study the initial-value problem for the periodic
two-component b-family system, including a special case, when b = 2, which

is referred to as the two-component Dullin-Gottwald-Holm (DGH) system.

We first show that the two-component b-family system can be derived from
the theory of shallow-water waves moving over a linear shear flow. Then

we establish several results of blow-up solutions corresponding to only wave

breaking with certain initial profiles for the periodic two-component DGH
system. Moreover, we determine the exact blow-up rate and lower bound of

the lifespan for the system. Finally, we give a sufficient condition for the
existence of the strong global solution to the periodic two-component DGH

system.

1. Introduction

In recent years, Degasperis, Holm and Hone [22] (see also [33]) studied the fol-
lowing nonlinear b-family equation (up to a rescaling, shift and Galilean’s transfor-
mation),

mt −Aux + umx + buxm+ γuxxx = 0, x ∈ R, t > 0, (1.1)
where m = u−α2uxx. One can rewrite equation (1.1) in terms of u(x, t) as follows:

ut−α2uxxt−Aux+(b+1)uux+γuxxx = α2(buxuxx+uuxxx), x ∈ R, t > 0. (1.2)

This equation can be regarded as a model of water waves by using asymptotic
expansions directly in the Hamiltonian for Euler’s equation in the shallow water
regime [20, 33], where u(t, x) stands for the horizontal velocity of the fluid, m is
the momentum density, and A is a nonnegative parameter related to the critical
shallow water speed. The real dimensionless constant b is a parameter which pro-
vides the competition, or balance, in fluid convection between nonlinear steepening
and amplification due to stretching, it is also the number of covariant dimensions
associated with the momentum density m.

It is believed that the Korteweg-de Vries (KdV) equation (α = 0 and b = 2),
the Camassa-Holm (CH) equation (b = 2) [4, 26] (when b = 2 and γ 6= 0, it is
also referred to as the Dullin-Gottwald-Holm (DGH) equation [4, 20]), and the
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Degasperis-Procesi (DP) equation (b = 3) [23] are the only three integrable equa-
tions in the b-family equation (1.2) [20, 21, 22, 23, 33, 34]. When A = γ = 0, (1.2)
admits not only the peakon solutions for any b of the form u(t, x) = ce−|x−ct|, c ∈ R,
but also multipeakon solutions [1, 22, 33] (see also [6] for the case of existence of
infinite many peakons) defined by

u(x, t) =
N∑
j=1

pj(t)e−|x−qj(t)|,

where the canonical positions qj and momenta pj (with j = 1, . . . , N) satisfy the
following system of ordinary differential equations with discontinuous right-hand
side.

p′j = (b− 1)
N∑
k=1

pjpksgn(qj − qk)e−|qj−qk|

and

q′j =
N∑
k=1

pke
−|qj−qk|.

If α = 0 and b = 2, equation (1.2) becomes the well-known KdV equation which
describes the unidirectional propagation of waves at the free surface of shallow water
under the influence of gravity. Its solitary waves are solitons. The Cauchy problem
of the KdV equation has been the subject of a number of studies, and a satisfactory
local or global existence theory is now in hand [45]. It is observed that the KdV
equation does not accommodate wave breaking (by wave breaking we understand
that the wave profile remains bounded while its slope becomes unbounded in finite
time [47]).

When b = 2 and γ = 0, equation (1.2) recovers the standard CH equation,
modeling the unidirectional propagation of shallow water waves over a flat bottom
[4, 13, 26]. The CH equation is also a model for the propagation of axially symmetric
waves in the hyperelastic rods [19]. Its solitary waves are smooth if A > 0 and
peaked in the limiting case A = 0 [4, 5, 6]. Recently, it was claimed in [38] that the
CH equation might be relevant to the modeling of tsunami.

If b = 3 and A = γ = 0 in equation (1.2), then it recovers the DP equation. The
DP equation can be also regarded as a model for nonlinear shallow water dynamics
and its asymptotic accuracy is the same as the CH equation [13]. The formal
integrability of the DP equation was obtained in [22] by constructing a Lax pair.
It has a bi-Hamiltonian structure. The DP equation has not only peaked solitons
and periodic peaked solitons, but also shock peakons [43] and the periodic shock
waves [25].

The CH and DP equations have global strong solutions and also blow-up solu-
tions in finite time, for instance, see [7, 9, 10, 14, 25, 40, 41, 42] and references
therein, with a different class of initial profiles in the Sobolev spaces Hs(R), s >
3/2. It is shown in [2] and [3] that solutions of the CH equation can be uniquely
continued after breaking as either global conservative or global dissipative weak
solutions. The advantage of the CH and DP equations in comparison with the
KdV equation lies in the fact that the CH and DP equations have peaked soli-
tons and models wave breaking. Wave breaking is one of the most intriguing
long-standing problems of water wave theory [47]. The peaked solitons are the
presence of solutions in the form of peaked solitary waves or ”peakons” [4, 5, 6, 23]
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u(t, x) = ce−|x−ct|, c 6= 0, which are smooth except at the crests, where they are
continuous, but have a jump discontinuity in the first derivative. The peakons
replicate a feature that is characteristic for the waves of great height-waves of the
largest amplitude that are exact solutions of the governing equations for water
waves [8, 46, 11]. These peakons are shown to be stable [15, 16, 39].

The interest in the b-family equation inspired the search for various general-
izations of this equation. The following two-component integrable Camassa-Holm
system was first derived in [44] and can be viewed as a model in the context of
shallow water theory [12, 35],

mt −Aux + umx + 2uxm+ ρρx = 0,
m = u− uxx,
ρt + (uρ)x = 0,

(1.3)

where ρ(t, x) is related to the free surface elevation from equilibrium(or scalar den-
sity), and the parameter A characterizes a linear underlying shear flow. Obviously,
if ρ = 0, then (1.3) becomes the CH equation. Many recent works are devoted
in studying system (1.3) (see, for instance, [12, 24, 27, 29, 30, 31, 32, 35, 49] and
references therein).

In the presence of a linear shear flow and nonzero vorticity, we will follow Ivanov’s
approach [35] to derive the following two-component b-family system with any b 6=
−1.

mt −Aux + umx + buxm+ γuxxx + ρρx = 0,
m = u− uxx,
ρt + (uρ)x = 0.

(1.4)

Note when ρ = 0, we recover the b-family equation (1.1). In terms of u and ρ, we
obtain the equivalent form of system (1.4); that is,

ut − utxx −Aux + (b+ 1)uux − buxuxx − uuxxx + γuxxx + ρρx = 0,

ρt + (uρ)x = 0,
(1.5)

with the boundary assumptions u→ 0 and ρ→ 1 as |x| → ∞.
Note that when b = 2, equation(1.5) is the two-component Camassa-Holm sys-

tem, which has the bi-Hamiltonian structure and complete integrability via the
inverse scattering transform method. It can be written as compatibility conditions
of two linear systems (Lax pair) with a spectral parameter ξ, that is

Ψxx =
(
− ξ2ρ2 + ξ

(
m− A

2
+
γ

2

)
+

1
4

)
Ψ,

Ψt =
( 1

2ξ
− u+ γ

)
Ψx +

1
2
uxΨ.

Moreover, this system has the following two Hamiltonians

E(u, ρ) =
1
2

∫ (
u2 + u2

x + (ρ− 1)2
)
dx

and

F (u, ρ) =
1
2

∫ (
u3 + uu2

x −Au2 − γu2
x + 2u(ρ− 1) + u(ρ− 1)2

)
dx.
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The goal of this article is to study the initial-value problem for the periodic
two-component b-family system, including a special case, b = 2, which is the two-
component DGH system. We first derive the two-component b-family system from
the shallow-water wave theory. Then we establish several results of blow-up so-
lutions corresponding to only wave breaking with certain initial profiles for the
periodic two-component DGH system. The difficulty to deal with blow-up solu-
tions is that there is no uniform characteristics for this system. In this case, we
make use of the different diffeomorphism of the trajectory q2 defined in (4.4), which
captures the maximum/minimum of ux. Therefore the transport equation for ρ can
coincide with the equation for u.

The rest of this paper is organized as follows. In Section 2, we follow the modeling
approach in [35] to derive the two-component b-family system. Then applying
Kato’s semigroup theory, we establish the result of local well-posedness for the two
component b-family system in Section 3. In Section 4, we analyze the wave-breaking
phenomenon of the periodic two-component DGH system and give the precise blow-
up scenarios and several wave-breaking data. In addition, we determine the blow-
up rate and low bound of the lifespan. In the last section, we provide a sufficient
condition for the existence of global solution.
Notation. Throughout this paper, we identity periodic functions with function
spaces over the unit circle S in R2, i.e. S = R/Z.

2. Derivation of the model

Following Ivanov’s approach in [35] , we consider the motion of an inviscid in-
compressible fluid with a constant density % governed by the Euler equations

~vt + (~v · ∇)~v = −1
%
∇P + ~g,

∇ · ~v = 0,

where ~v(t, x, y, z) is the velocity of the fluid, P (t, x, y, z) is the pressure and ~g =
(0, 0,−g) is the gravity acceleration.

Using the shallow water approximation and non-dimensionalization, the above
equations can be written as

ut + ε(uux + wuz) = −px,
δ2 (wt + ε(uwx + wwz)) = −pz,

ux + wz = 0,
w = ηt + εuηx, p = η on z = 1 + εη,

w = 0 on z = 0,

where ~v = (u, 0, w) and p(x, z, t) is the pressure variable measuring the deviation
from the hydrostatic pressure distribution and η(t, x) is the deviation from the mean
level z = h of the water surface. ε = a/h and δ = h/λ are the two dimensionless
parameters with a being the typical amplitude of the wave and λ being the typical
wavelength of the wave.

In the presence of an underlying shear flow, the horizontal velocity of the flow
becomes u + Ũ(z). We take the simplest case Ũ(z) = Az in which A > 0 is a
constant. Notice that the Burns condition gives the shallow-water limit of the
dispersion relation for the waves with vorticity , hence determines the speed of
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propagation of the linear waves. From Burns condition [17, 28] one has the following
expression for the speed c of the traveling waves in linear approximation,

c =
1
2

(
A±

√
4 +A2

)
. (2.1)

In the case of the constant vorticity ω = A, we obtain the following equations
for u0 and η by ignoring the terms of O(ε2, δ4, εδ2)(

u0 −
1
2
δ2u0,xx

)
t

+ εu0u0,x + ηx −
A

3
δ2u0,xxx = 0, (2.2)

ηt +Aηx +
(

(1 + εη)u0 +
A

2
εη2
)
x
− 1

6
δ2u0,xxx = 0, (2.3)

where u0 is the leading order approximation for u (see the details in [35]). Let both
of the parameters ε and δ go to 0. Then by (2.2) and (2.3), we have the system of
linear equations

u0,t + ηx = 0,
ηt +Aηx + u0,x = 0.

This in turn implies that ηtt +Aηtx − ηxx = 0. Introducing a new variable

ρ = 1 + εαη + ε2βη2 + εδ2µu0,xx,

for some constants α, β and µ satisfying
µ

α
=

1
6(c−A)

,

α = 1 +
Ac

2
+
β

α
,

then equations (2.2) and (2.3) become

mt +Amx −Au0,x −
1

6c2(c−A)
δ2u0,xxx

+ε
(

1− α2 + 2β
α

c2
)
u0u0,x +

1
2εα

(ρ2)x = 0,

ρt +Aρx + αε(ρu0)x = 0,

(2.4)

where m = u0 − 1
2δ

2u0,xx. Since b 6= −1 and

(b+ 1)u0u0,x = bmu0,x + u0mx +O(δ2),

equation (2.4) can be reformulated at the order of O(ε, δ2) as

mt +Amx −Au0,x −
1

6c2(c−A)
δ2u0,xxx

+
ε

b+ 1

(
1− α2 + 2β

α
c2
)

(bmu0,x + u0mx) +
1

2εα
(ρ2)x = 0.

Using the scaling u0 → 1
αεu0, x→ δx and t→ δt, then (2.4) becomes

mt +Amx −Au0,x −
1

6c2(c−A)
u0,xxx+

1
(b+ 1)α

(
1− α2 + 2β

α
c2
)

(bmu0,x + u0mx) +
1
2

(ρ2)x = 0,

m = u0 − u0,xx,
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ρt +Aρx + (ρu0)x = 0.

Now if we choose
1

(b+ 1)α

(
1− α2 + 2β

α
c2
)

= 1

and denote γ = − 1
6c2(c−A) , then we arrive at

mt +Amx −Au0,x + bmu0,x + u0mx + γu0,xxx + ρρx = 0,
m = u0 − u0,xx,

ρt +Aρx + (ρu0)x = 0.
(2.5)

Thus the constants α, β, µ and c satisfy

α =
c2(c2 + 1) + 1

3c2 + b+ 1
, β = α2 − α

(
1 +

Ac

2

)
,

µ =
α

6(c−A)
, c2 −Ac− 1 = 0.

With a further Galilean transformation x → x − ct, t → t, we can drop the
terms Aρx and Amx in (2.5) and obtain the two-component b-family system (1.4)
or (1.5).

3. Local well-posedness

In this section, we will apply Kato’s semigroup theory to establish the local
well-posedness for the following periodic initial-value problem to (1.5).

ut + (u− γ)ux = −∂x(1− ∂2
x)−1

( b
2
u2 +

3− b
2

u2
x + (γ −A)u+

1
2
ρ2
)
,

t ≥ 0, x ∈ R,
ρt + (uρ)x = 0, t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,
ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.

(3.1)

For convenience, we present here Kato’s theorem in a form suitable for our
purpose. Consider the abstract quasilinear evolution equation

dv

dt
+A(v)v = f(v) t ≥ 0,

v(0) = v0.
(3.2)

Let X and Y be two Hilbert spaces such that Y is continuously and densely em-
bedded in X and let Q : Y → X be a topological isomorphism. Let L(Y,X) denote
the space of all bounded linear operators from Y to X, particularly, it is denoted
by L(X) if X = Y . The linear operator A belongs to G(X, 1, β) where β is a real
number, if −A generates a C0-semigroup such that ‖e−sA‖L(X) ≤ eβs. We make
the following assumptions, where µi(1 = 1, 2, 3, 4) are constants depending only on
max{‖y‖Y , ‖z‖Y }:
(i) A(y) ∈ L(Y,X) for y ∈ Y with

‖
(
A(y)−A(z)

)
w‖X ≤ µ1‖y − z‖X‖w‖Y , y, z, w ∈ Y
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and A(y) ∈ G(X, 1, β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets
in Y .
(ii) QA(y)Q−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on
bounded sets in Y . Moreover,

‖
(
B(y)−B(z)

)
w‖X ≤ µ2‖y − z‖Y ‖w‖X , y, z ∈ Y, w ∈ X.

(iii) f : Y → Y extends to a map from X into X, is bounded on bounded sets in
Y , and satisfies

‖f(y)− f(z)‖Y ≤ µ3‖y − z‖Y , y, z ∈ Y
and

‖f(y)− f(z)‖X ≤ µ4‖y − z‖X , y, z ∈ Y.

Lemma 3.1 ([36]). Assume conditions (i), (ii) (iii) hold. Given v0 ∈ Y , there is a
maximal T > 0 depending only on ‖v0‖Y and a unique solution v to (3.2) such that

v = v(·, v0) ∈ C
(
[0, T );Y

)
∩ C1

(
[0, T );X

)
.

Moreover, the map v0 7→ v(·, v0) is a continuous map from Y to C
(
[0, T );Y

)
∩

C1
(
[0, T );X

)
.

We now provide the framework in which we shall reformulate problem (3.1).

Theorem 3.2. Given an initial data (u0, ρ0) ∈ Hs(S) × Hs−1(S), s ≥ 2, there
exists a maximal T = T

(
‖(u0, ρ0)‖Hs(S)×Hs−1(S)

)
> 0 and a unique solution

(u, ρ) ∈ C
(
[0, T );Hs(S)×Hs−1(S)

)
∩ C1

(
[0, T );Hs−1(S)×Hs−2(S)

)
of system (3.1). Moreover, the solution (u, ρ) depends continuously on the initial
value (u0, ρ0) and the maximal time of existence T > 0 is independent of s.

The remaining of this section is devoted to the proof of Theorem 3.2. Let

U =
(
u
ρ

)
,

A(U) =
(

(u− γ)∂x 0
0 u∂x

)
(3.3)

f(U) =
(
−∂x(1− ∂2

x)−1
(
b
2u

2 + 3−b
2 u2

x + (γ −A)u+ 1
2ρ

2
)

−uxρ

)
(3.4)

Y = Hs ×Hs−1, X = Hs−1 ×Hs−2, Λ = (1− ∂2
x)1/2 and

Q =
(

Λ 0
0 Λ

)
.

Obviously, Q is an isomorphism of Hs ×Hs−1 onto Hs−1 ×Hs−2. Thus, to derive
Theorem 3.2, we only need to check that A(U) and f(U) satisfy the conditions
(i)-(iii), and this can be formulated through several lemmas.

The following lemmas from [36] and [37] are useful in our proofs.

Lemma 3.3 ([36]). Let r, t be two real numbers such that −r < t ≤ r. Then

‖fg‖Ht ≤ c‖f‖Hr‖g‖Ht , if r >
1
2

and
‖fg‖

Hr+t−
1
2
≤ c‖f‖Hr‖g‖Ht , if r <

1
2
,

where c is a positive constant depending on r and t.
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Lemma 3.4 ([37]). Let f ∈ Hr for some r > 3
2 . Then

‖Λ−s̄[Λs̄+t̄+1,Mf ]Λ−t̄‖L(L2) ≤ c‖∂xf‖r−1, |s̄|, |t̄| ≤ r − 1,

where Mf is the operator of multiplication by f and c is a constant depending only
on s̄ and t̄.

Lemma 3.5. With U ∈ Hs(S) × Hs−1(S)(s ≥ 2), the operator A(U) belongs to
G(Hs−1(S)×Hs−2(S), 1, β).

Proof. Taking the Hs−1 ×Hs−2 inner product with W =
(
w1

w2

)
on both sides of

the equation
dW

dt
+A(U)W = 0

gives
1
2
d

dt
‖W‖2Hs−1×Hs−2

= −〈W,A(U)W 〉(s−1)×(s−2)

= −
〈(w1

w2

)
,

(
(u− γ)∂xw1

u∂xw2

)〉
(s−1)×(s−2)

= −〈w1, (u− γ)∂xw1〉s−1 − 〈w2, u∂w2〉s−2

= −〈Λs−1w1,Λs−1
(
(u− γ)∂xw1

)
〉 − 〈Λs−2w2,Λs−2

(
u∂xw2

)
〉

= −〈Λs−1w1, [Λs−1, u− γ]∂xw1〉 − 〈Λs−1w1, (u− γ)∂xΛs−1w1〉
− 〈Λs−2w2, [Λs−2, u]∂xw2〉 − 〈Λs−2w2, u∂xΛs−2w2〉

= −〈Λs−1w1, [Λs−1, u− γ]∂xw1〉 −
1
2
〈Λs−1w1, ux∂xΛs−1w1〉

− 〈Λs−2w2, [Λs−2, u]∂xw2〉 −
1
2
〈Λs−2w2, ∂xuΛs−2w2〉

≤ ‖Λs−1w1‖2L2‖[Λs−1, u− γ]Λ2−s‖L(L2) +
1
2
‖ux‖L∞‖Λs−1w1‖L2

+ ‖Λs−2w2‖2L2‖[Λs−2, u]Λ3−s‖L(L2) +
1
2
‖ux‖L∞‖Λs−2w2‖L2

≤ c (‖U‖Hs + |γ|)
(
‖w1‖2Hs−1 + ‖w2‖2Hs−2

)
= c (‖U‖Hs + |γ|) ‖W‖2Hs−1×Hs−2 ,

where use has been made of Lemma 3.4 with r = 0, t̄ = s− 2 and s̄ = 0, t̄ = s− 3,
respectively. By integrating both of sides in the above the estimate, it follows that
A(U) ∈ G

(
Hs−1(S)×Hs−2(S), 1, c(‖u‖Hs + γ)

)
�

Lemma 3.6. The operator A(U) defined by (3.3) belongs to tL(Hs×Hs−1, Hs−1×
Hs−2). Moreover

‖ (A(U)−A(V ))W‖Hs−1×Hs−2 ≤ µ1‖U − V ‖Hs×Hs−1‖W‖Hs×Hs−1 ,

U, V,W ∈ Hs ×Hs−1.
(3.5)

Proof. In view of (3.3), we have

(A(U)−A(V ))W =
(

(u− γ)∂x − (v1 − γ)∂x 0
0 u∂x − v1∂x

)(
w1

w2

)
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=
(

(u− v1)∂xw1

(u− v1)∂xw2

)
.

Since Hs−1 (s ≥ 2) is a Banach algebra, taking r = s− 1, t = s− 2 in Lemma 3.3,
we have

‖(A(U)−A(V ))W‖Hs−1×Hs−2

≤ ‖(u− v1)∂xw1‖Hs−1 + ‖(u− v1)∂xw2‖Hs−2

≤ c‖u− v1‖Hs−1 (‖∂xw1‖Hs−1 + ‖∂xw2‖Hs−2)

≤ c‖U − V ‖Hs−1×Hs−2‖W‖Hs−1×Hs−2 .

Taking V = 0 in (3.5), we deduce that A(U) ∈ L
(
Hs ×Hs−1, Hs−1 ×Hs−2

)
. �

Lemma 3.7 ([24]). Let B(U) = QA(U)Q−1 −A(U), for U ∈ Hs ×Hs−1 (s ≥ 2).
Then B(U) ∈ L

(
Hs−1 ×Hs−2

)
and

‖ (B(U)−B(V ))W‖Hs−1×Hs−2 ≤ µ2‖U − V ‖Hs×Hs−1‖W‖Hs−1×Hs−2 ,

U, V ∈ Hs ×Hs−1, W ∈ Hs−1 ×Hs−2.

Lemma 3.8 ([24]). Let U ∈ Hs ×Hs−1 (s ≥ 2). Then the operator f(U) defined
by (3.4) is bounded on bounded sets in (Hs−1 ×Hs−2), and satisfies

(a) ‖f(U)− f(V )‖Hs×Hs−1 ≤ µ3‖U − V ‖Hs×Hs−1 , U, V ∈ Hs ×Hs−1,
(b) ‖f(U)− f(V )‖Hs−1×Hs−2 ≤ µ4‖U − V ‖Hs−1×Hs−2 , U, V ∈ Hs ×Hs−1.

Proof of Theorem 3.2. The result follows from Lemmas 3.5–3.8. �

4. Blow-up mechanism for b = 2

In this section, we investigate the problem of the wave-breaking phenomenon
for the initial-value problem of the periodic two-component Dullin-Gottwald-Holm
system which is a special case of (1.5) as b = 2.

4.1. Preliminaries. The periodic two-component Dullin-Gottwald-Holm system
can be written as

ut − utxx −Aux + γuxxx + 3uux − 2uxuxx − uuxxx + ρρx = 0, t > 0, x ∈ R,
ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,
ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.

(4.1)
Let G(x) = cosh(x−[x]−1/2)

2 sinh(1/2) , x ∈ S. Then (1 − ∂2
x)−1f = G ∗ f for all f ∈ L2(S),

u = G ∗ m and m = u − uxx. Our system (4.1) can be written in the following
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“transport” type

ut + (u− γ)ux = −∂xG ∗
(
u2 +

1
2
u2
x + (γ −A)u+

1
2
ρ2
)
, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,
ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.

(4.2)

To study the wave-breaking problem, we now briefly give the needed results without
proof to pursue our goal. We consider the following two associated Lagrangian scales
of the system (4.1)

∂q1

∂t
= u(t, q1)− γ, 0 < t < T,

q1(0, x) = x, x ∈ R,
(4.3)

and
∂q2

∂t
= u(t, q2), 0 < t < T,

q2(0, x) = x, x ∈ R,
(4.4)

where u ∈ C1([0, T ), Hs−1(S)) is the first component of the solution (u, ρ) to (4.1).

Lemma 4.1 ([18, 12]). Let (u, ρ) be the solution of system (4.1) with initial data
(u0, ρ0) ∈ Hs(S) × Hs−1(S), s ≥ 2, and T the maximal time of existence. Then
(4.3) has a unique solution q1 ∈ C1([0, T )× R,R) and (4.4) has a unique solution
q2 ∈ C1([0, T )×R,R). These two solutions satisfy qi(t, x+1) = qi(t, x)+1, i = 1, 2.
Moreover, the maps q1(t, ·) and q2(t, ·) are increasing diffeomorphisms of R with

q1x(t, x) = exp
(∫ t

0

ux(τ, q1(τ, x))dτ
)
> 0, (t, x) ∈ [0, T )× R,

q2x(t, x) = exp
(∫ t

0

ux(τ, q2(τ, x))dτ
)
> 0, (t, x) ∈ [0, T )× R.

The above lemmas indicate that q1(t, ·) : R → R and q2(t, ·) : R → R are
diffeomorphisms of the line for each t ∈ [0, T ). Hence, the L∞ norm of any function
v(t, ·) ∈ L∞(S) is preserved under the family of diffeomorphisms q1(t, ·) and q2(t, ·)
with t ∈ [0, T ); that is,

‖v(t, ·)‖L∞(S) = ‖v(t, q1(t, ·))‖L∞(S) = ‖v(t, q2(t, ·))‖L∞(S), t ∈ [0, T ). (4.5)

Similarly, we have

inf
x∈S

v(t, x) = inf
x∈S

v(t, q1(t, x)) = inf
x∈S

v(t, q2(t, x)), t ∈ [0, T ), (4.6)

sup
x∈S

v(t, x) = sup
x∈S

v(t, q1(t, x)) = sup
x∈S

v(t, q2(t, x)), t ∈ [0, T ). (4.7)

Lemma 4.2 ([24]). Let (u, ρ) be the solution of (4.1) with initial data (u0, ρ0) ∈
Hs(S)×Hs−1(S), s ≥ 2, and T the maximal time of existence. Then we have

ρ(t, q2(t, x))q2x(t, x) = ρ0(x), (t, x) ∈ [0, T )× S. (4.8)

Moreover if there exists x0 ∈ S such that ρ0(x0) = 0, then ρ(t, q2(t, x0)) = 0 for all
t ∈ [0, T ).
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Lemma 4.3 ([9]). Let T > 0 and v ∈ C1([0, T );H2(R)). Then for every t ∈ [0, T ),
there exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

(vx(t, x)) = vx(t, ξ(t)).

The function m(t) is absolutely continuous on (0, T ) with
dm(t)
dt

= vtx(t, ξ(t)) a.e. on (0, T ).

We may use the following lemma derived in [31] to establish the blow-up criterion
of solution to (4.1).

Lemma 4.4. Let 0 < s < 1. Suppose that f0 ∈ Hs(S), g ∈ L1([0, T ];Hs(S)),
v, vx ∈ L1([0, T ];L∞(S)) and that f ∈ L∞([0, T ];Hs(S))

⋂
C([0, T ];S′(S)) solves

the one-dimensional linear transport equation

ft + vfx = g,

f(0, x) = f0(x).

Then f ∈ C([0, T ];Hs(R)). More precisely, there exists a constant C depending
only on s such that

‖f(t)‖Hs ≤ ‖f0‖Hs + C
(∫ t

0

‖g(τ)‖Hsdτ +
∫ t

0

‖f(τ)‖HsV ′(τ)dτ
)
.

Hence,

‖f(t)‖Hs ≤ eCV (t)
(
‖f0‖Hs + C

∫ t

0

‖g(τ)‖Hsdτ
)
,

where V (t) =
∫ t

0
(‖v(τ)‖L∞ + ‖vx(τ)‖L∞)dτ .

The above lemma was proved using the Littlewood-Palay analysis for the trans-
port equation and the Moser-type estimates. Using this result and performing the
same argument as in [31], we can obtain the following blow-up criterion (up to a
slight modification, the proof is omitted).

Theorem 4.5. Let (u, ρ) be the solution of system (4.1) with initial data (u0, ρ0) ∈
Hs(S)×Hs−1(S), s ≥ 2, and T the maximal time of existence. Then

T <∞⇒
∫ T

0

‖ux(τ)‖L∞(S)dτ =∞. (4.9)

We now give several useful conservation laws of strong solutions to (4.1).

Lemma 4.6. Let (u, ρ) be the solution of system (4.1) with initial data (u0, ρ0) ∈
Hs(S) × Hs−1(S), s ≥ 2, and T the maximal time of existence. Then for all t ∈
[0, T ), we have ∫

S
u(t, x)dx =

∫
S
u0(x)dx,∫

S
ρ(t, x)dx =

∫
S
ρ0(x)dx.

Proof. Integrating the first equation of (4.2) by parts, in view of the periodicity of
u and G, we obtain
d

dt

∫
S
udx = −

∫
S
(u− γ)uxdx−

∫
S
∂xG ∗

(
u2 +

1
2
u2
x + (γ −A)u+

1
2
ρ2
)
dx = 0.
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On the other hand, integrating the second equation of (4.2) by parts, in view of
the periodicity of u and ρ, we obtain

d

dt

∫
S
ρdx = −

∫
S
(uρ)xdx = 0.

Therefore, the proof is complete. �

Lemma 4.7. Let (u, ρ) be the solution of system (4.1) with initial data (u0, ρ0) ∈
Hs(S) × Hs−1(S), s ≥ 2, and T the maximal time of existence. Then for all t ∈
[0, T ), we have∫

S
(u2(t, x) + u2

x(t, x) + ρ2(t, x))dx =
∫

S
(u2

0(t, x) + u2
0x(t, x) + ρ2

0(t, x))dx.

Proof. Multiplying the first equation of (4.1) by 2u and integrating by parts, we
have

d

dt

∫
S
(u2(t, x) + u2

x(t, x))dx =
d

dt

∫
S
ux(t, x)ρ2(t, x)dx.

Multiplying the second equation of (4.1) by 2ρ and integrating by parts, we obtain

d

dt

∫
S
ρ2(t, x) = − d

dt

∫
S
ux(t, x)ρ2(t, x)dx.

Adding the above two equalities, we obtain
d

dt

∫
S
(u2(t, x) + u2

x(t, x) + ρ2(t, x))dx = 0.

This implies the desired result in this lemma. �

Lemma 4.8 ([48]). For every f ∈ H1(S), we have

max
x∈[0,1]

f2(x) ≤ e+ 1
2(e− 1)

‖f‖2H1(S),

where the constant e+1
2(e−1) is sharp.

By the conservation laws stated in Lemmas 4.6 and 4.7, we have the following
corollary.

Corollary 4.9. Let (u, ρ) be the solution of system (4.1) with initial data (u0, ρ0) ∈
Hs(S) × Hs−1(S), s ≥ 2, and T the maximal time of existence. Then for all t ∈
[0, T ), we have

‖u(t, ·)‖2L∞(S) ≤
e+ 1

2(e− 1)
‖u(t, ·)‖2H1(S) ≤

e+ 1
2(e− 1)

‖(u0, ρ0)‖2H1(S)×L2(S).

Lemma 4.10 ([25]). For all f ∈ H1(S), the following inequality holds

G ∗ (u2 +
1
2
u2
x) ≥ κu2(x),

with

κ =
1
2

+
arctan (sinh(1/2))

2 sinh(1/2) + 2arctan (sinh(1/2)) sinh2(1/2)
≈ 0.869.

Moreover, κ is the optimal constant obtained by the function

f0 =
1 + arctan (sinh(x− [x]− 1/2)) sinh(x− [x]− 1/2)

1 + arctan (sinh(1/2)) sinh(1/2)
.
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4.2. Blow-up scenario. Based on the above results, let us state the following
theorem on the precise blow-up mechanism.

Theorem 4.11 (Wave-breaking criterion). Let (u, ρ) be the solution of (4.1) with
initial data (u0, ρ0) ∈ Hs(S)×Hs−1(S), s ≥ 2, and T the maximal time of existence.
Then the solution blows up in finite time if and only if

lim inf
t→T−0

{inf
x∈S

ux(t, x)} = −∞. (4.10)

To prove this wave-breaking criterion, we use the following lemma to show that
indeed ux is uniformly bounded from above.

Lemma 4.12. Let (u, ρ) be the solution of (4.1) with initial data (u0, ρ0) ∈ Hs(S)×
Hs−1(S), s ≥ 2, and T the maximal time of existence. Then

sup
x∈S

ux(t, x)≤‖u0,x‖L∞ +
√
‖ρ0‖2L∞ + C2

1 . (4.11)

The constants above are defined as follows.

C0 = ‖(u0, ρ0)‖2H1×L2 , (4.12)

C2
1 =

(
(1− κ)

e+ 1
e− 1

+
1
2

)
C0 +

(−1 + sinh 1)(γ −A)2

4 sinh2(1/2)
, (4.13)

C2 =
5e+ 3

4(e− 1)
C0 +

(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)
, (4.14)

and κ is defined in Lemma 4.10.

Proof. The local well-posedness theorem and a density argument imply that it
suffices to prove the desired estimates for s ≥ 3. Thus, we take s = 3 in the proof.
Also, we assume that u0 6≡ 0. Otherwise, the results become trivial. Differentiating
the first equation in (4.2) with respect to x. Using the identity −∂2

xG∗f = f−G∗f ,
we obtain

utx+(u−γ)uxx = −1
2
u2
x+u2+

1
2
ρ2−(γ−A)∂2

xG∗u−G∗
(
u2+

1
2
u2
x+

1
2
ρ2
)
. (4.15)

Using Lemma 4.1 and the fact that

sup
x∈S

(vx(t, x)) = − inf
x∈S

(−vx(t, x)) ,

we can consider m̄(t) and η(t) as follows,

η(t) ∈ S, m̄(t) := ux(t, η(t)) = sup
x∈S

(ux(t, x)), t ∈ [0, T ). (4.16)

Hence,
uxx(t, η(t)) = 0, a.e. t ∈ [0, T ).

For any x ∈ S, take the trajectory q2(t, x) defined in (4.3). Then it follows from
the second equation of (4.2) for the component ρ that

dρ (t, q2(t, x))
dt

= −ux (t, q2(t, x)) ρ (t, q2(t, x)). (4.17)

It is known that q2(t, ·) : S→ S is a diffeomorphism for every t ∈ [0, T ). In view of
Lemma 4.1, there exists x1(t) ∈ S such that

q2(t, x1(t)) = η(t), t ∈ [0, T ),
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with η(0) = x1(0). Now define

ξ̄ = ρ(t, η(t)), t ∈ [0, T ).

Therefore, along the trajectory q2(t, x1) = η(t), equations (4.15) and (4.17) become

m̄′(t) = −1
2
m̄2 +

1
2
ξ̄2 + f(t, η(t)),

ξ̄′(t) = −ξ̄m̄,
(4.18)

for t ∈ [0, T ), where “′” denotes the derivative with respect to t and f(t, η(t)) is

f = u2 − (γ −A)∂2
xG ∗ u−G ∗ (u2 +

1
2
u2
x +

1
2
ρ2).

We first derive the upper bound for f for later use in getting the wave-breaking
results. Using Lemma 4.10 we have

f ≤ (1− κ)u2 − (γ −A)∂xG ∗ ∂xu, (4.19)

for any x ∈ S and t ∈ [0, T ). Applying Young’s inequality with G = cosh(x−[x]−1/2)
2 sinh(1/2)

leads to

|γ −A||∂xG ∗ ∂xu| ≤ |γ −A|‖Gx‖L2‖ux‖L2 = |γ −A|

√
1
2 (−1 + sinh 1)

2 sinh(1/2)
‖ux‖L2

≤ (−1 + sinh 1)(γ −A)2

8 sinh2(1/2)
+

1
4
‖ux‖2L2 .

(4.20)
Using Lemma 4.8, we obtain

u2 ≤ ‖u(t, ·)‖2L∞(S) ≤
e+ 1

2(e− 1)
‖(u0, ρ0)‖2H1×L2 . (4.21)

Therefore, in view of (4.20), (4.21) and the conservation law in Lemma 4.7, we
obtain the upper bound of f for any x ∈ S and t ∈ [0, T ),

f ≤ (1− κ)u2 + |γ −A||∂xG ∗ ∂xu|

≤ (1− κ)
e+ 1

2(e− 1)
‖(u0, ρ0)‖2H1×L2 +

(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)
+

1
4
‖ux‖2L2

≤
(

(1− κ)
e+ 1

2(e− 1)
+

1
4

)
‖(u0, ρ0)‖2H1×L2 +

(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)

=
1
2
C2

1 .

(4.22)

Attention is now turned to the lower bound of f . Similarly as before, we obtain∣∣G ∗ (u2 +
1
2
u2
x +

1
2
ρ2
)∣∣ ≤ ‖G‖L∞‖u2 +

1
2
u2
x +

1
2
ρ2‖L1

≤ cosh(1/2)
2 sinh(1/2)

‖(u0, ρ0)‖2H1×L2

=
e+ 1

2(e− 1)
‖(u0, ρ0)‖2H1×L2 .

(4.23)
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Using (4.20),(4.21) and (4.23), we have

−f ≤ u2 + |γ −A||∂xG ∗ ∂xu|+ |G ∗ (u2 +
1
2
u2
x +

1
2
ρ2)|

≤
(
e+ 1
e− 1

+
1
4

)
‖(u0, ρ0)‖2H1×L2 +

(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)

=
5e+ 3

4(e− 1)
‖(u0, ρ0)‖2H1×L2 +

(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)
.

(4.24)

Combining (4.22) and (4.24), we obtain

|f | ≤ 5e+ 3
4(e− 1)

‖(u0, ρ0)‖2H1×L2 +
(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)
= C2. (4.25)

Since now s ≥ 3, we have u ∈ C1
0 (S). Therefore,

inf
x∈S

ux(t, x) ≤ 0, sup
x∈S

ux(t, x) ≥ 0, t ∈ [0, T ).

Hence, m̄(t) ≥ 0 for t ∈ [0, T ). From the second equation of (4.18), we obtain that

ξ̄(t) = ξ̄(0)e−
R t
0 m̄(τ)dτ .

Hence,
|ρ(t, η(t))| = |ξ̄(t)| ≤ |ξ̄(0)| ≤ |ρ0(x1(0))| ≤ ‖ρ0‖L∞ .

Now define

P1(t) = m̄(t)− ‖u0,x‖L∞ −
√
‖ρ0‖2L∞ + C2

1 .

Note that P1(t) is a C1− differentiable function in [0, T ) and satisfies

P1(0) ≤ m̄(0)− ‖u0,x‖L∞ ≤ 0.

We will show that
P1(t) ≤ 0, t ∈ [0, T ). (4.26)

If not, then suppose there is a t0 ∈ [0, T ) such that P1(t0) > 0. Define

t1 = max{t < t0 : P1(t) = 0}.

Then P1(t1) = 0 and P ′1 ≥ 0, or equivalently,

m̄(t1) = ‖u0,x‖L∞ +
√
‖ρ0‖2L∞ + C2

1 ,

m̄′(t1) ≥ 0.

On the other hand, we have

m̄′(t1) = −1
2
m̄2(t1) +

1
2
ξ̄2(t1) + f(t1, η(t1))

≤ −1
2

(
‖u0,x‖L∞ +

√
‖ρ0‖2L∞ + C2

1

)2

+
1
2
‖ρ0‖2L∞ +

C2
1

2
< 0,

which is a contradiction. Therefore, P1(t) ≤ 0, for t ∈ [0, T ), and we obtain (4.26).
Therefore, the proof is complete. �

It is also found that if ux is bounded from below, we may obtain the following
estimates for ‖ρ‖L∞(S).
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Lemma 4.13. Let (u, ρ) be the solution of (4.1) with initial data (u0, ρ0) ∈ Hs(S)×
Hs−1(S), s ≥ 2, and T the maximal time of existence. If there is an M ≥ 0, such
that

inf
(t,x)∈[0,T )×S

ux ≥ −M, (4.27)

then
‖ρ(t, ·)‖L∞(S) ≤ |ρ0‖L∞(S)e

Mt. (4.28)

Proof. For any give x ∈ S, we define

U(t) = ux(t, q2(t, x)), γ(t) = ρ(t, q2(t, x)),

with q2(t, x(t)) = x, for some x(t) ∈ R, t ∈ [0, T ). Then the ρ equation of system
(4.1) becomes

γ′ = −γU.
Thus,

γ(t) = γ(0)e−
R t
0 U(τ)dτ .

From assumption (4.27), we see that

U(t) ≥ −M, t ∈ [0, T ).

Hence,
|ρ(t, q2(t, x(t))| = |γ(t)| ≤ |γ(0)|e−

R t
0 U(τ)dτ ≤ ‖ρ0‖L∞eMt,

which together with (4.5) leads to (4.28). �

We are now in the position to prove Theorem 4.11.

Proof of Theorem 4.11. Assume that T <∞ and (4.10) is not valid. Then there is
some positive number M > 0 such that

ux(t, x) ≥ −M, ∀(t, x) ∈ [0, T )× S.

It is now inferred from Lemma 4.12 that |ux(t, x)| ≤ C, where

C = C(A, γ,M, ‖(u0, ρ0)‖2Hs×Hs−1).

Therefore, Theorem 4.5 in turn implies that the maximal existence time T = ∞,
which contradicts the assumption that T <∞. Conversely, the Sobolev embedding
theorem Hs(S) ↪→ L∞(S) with s > 1/2 implies that if (4.10) holds, the correspond-
ing solution blows up in finite time. This completes the proof. �

Now, we give the following theorems with some initial conditions which guarantee
wave breaking in finite time.

Theorem 4.14. Let (u, ρ) be the solution of (4.1) with the initial data (u0, ρ0) ∈
Hs(S) ×Hs−1(S), s ≥ 2, and T the maximal time of existence. Assume that there
is some x0 ∈ S such that

ρ0(x0) = 0, u0,x(x0) = inf
x∈S

u0,x(x),

and
u0,x(x0) < −C1, (4.29)

where C1 is defined as

C2
1 =

(
(1− κ)

e+ 1
e− 1

+
1
2

)
‖(u0, ρ0)‖2H1×L2 +

(−1 + sinh 1)(γ −A)2

4 sinh2(1/2)
.
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Then the corresponding solution to system (4.1) blows up in the following sense:
there exists a T1 with

0 < T1 ≤ −
2

u0,x(x0) +
√
−C1u0,x(x0)

(4.30)

such that
lim inf
t→T−0

{inf
x∈S

ux(t, x)} = −∞.

Proof. Similar to the proof of Lemma 4.12, it suffices to consider s ≥ 3. So in the
following of this section s = 3 is taken for simplicity of notation.

we consider the functions m(t) and ξ(t) ∈ S as in Lemma 4.12

m(t) := ux(t, ξ(t)) = inf
x∈S

(ux(t, x)), t ∈ [0, T ).

Hence,
uxx(t, ξ(t)) = 0, a.e. t ∈ [0, T ). (4.31)

Similar as before, we can choose x2(t) ∈ S such that

q2(t, x2(t)) = ξ(t) t ∈ [0, T ).

Along the trajectory of q2(t, x), we have

dρ(t, ξ(t))
dt

= −ρ(t, ξ(t))ux(t, ξ(t)).

It follows from the assumption of the theorem, that

m(0) = ux(0, ξ(0)) = inf
x∈S

u0,x(x) = u0,x(x0).

Hence, we can choose ξ(0) = x0 and then ρ0(ξ(0)) = ρ0(x0) = 0. Thus, from (4.8)
we obtain

ρ(t, ξ(t)) = 0, t ∈ [0, T ). (4.32)
Differentiating the first equation in (4.2) with respect to x, evaluating the result at
x = ξ(t) and using (4.31) and (4.32), we deduce from (4.15) that

m′(t) = −1
2
m2(t) + f(t, ξ(t)). (4.33)

Using the upper bound of f in (4.22), it is found that

m′(t) ≤ −1
2
m2(t) +

1
2
C2

1 , a.e. t ∈ [0, T ).

By assumption (4.29), m(0) = u0,x(x0) < −C1, we deduce that m′(0) < 0 and m(t)
is strictly decreasing over [0, T ). Set

δ =
1
2
− 1

2

√
C1

−u0,x(x0)
∈
(

0,
1
2

)
. (4.34)

Using that m(t) < m(0) = u0,x(x0) < 0, it follows that

m′(t) ≤ −1
2
m2(t) +

1
2
C2

1 ≤ −δm2(t), a.e. t ∈ [0, T ). (4.35)

Integrating on both sides in (4.35), it is inferred that

m(t) ≤ u0,x(x0)
1 + δu0,x(x0)t

→ −∞ as t→ − 1
δu0,x(x0)

. (4.36)
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Hence,

T ≤ − 1
δu0,x(x0)

, (4.37)

which proves (4.30). �

Corollary 4.15. With the assumptions of Theorem 4.14, assume s > 5/2. There
exists a T ∗ with 0 < T1 ≤ T ∗, (T1 is defined in (4.30)) such that

(a) lim supt→T∗{supx∈S ρx(t, x)} =∞, if ρ0,x(x0) > 0,
(b) lim inft→T∗{infx∈S ρx(t, x)} = −∞, if ρ0,x(x0) < 0.

Proof. With the assumptions of Theorem 4.14, we have

ρ0(x0) = 0, u0,x(x0) = inf
x∈S

u0,x(x),

and u0,x(x0) < −C1. Evaluating ρ along the trajectory q2(t, x), we obtain

dρx (t, q2(t, x))
dt

= −uxx (t, q2(t, x)) ρ (t, q2(t, x))− 2ux (t, q2(t, x)) ρx (t, q2(t, x)).

As in the proof of Theorem 4.14, we can choose x2(t) ∈ S such that q2(t, x2(t)) =
ξ(t), t ∈ [0, T ). Then we have

m(t) := ux(t, ξ(t)) = inf
x∈S

(ux(t, x)), t ∈ [0, T ).

Hence, uxx(t, ξ(t)) = 0, a.e. t ∈ [0, T ). This in turn implies

dρx (t, ξ(t))
dt

= −2ux (t, ξ(t)) ρx (t, ξ(t)),

and

ρx(t, ξ(t)) = ρ0,x(x0)e−2
R t
0 ux(τ,ξ(τ))dτ = ρ0,x(x0)e

−2
R t
0 inf
x∈S

ux(τ,x)dτ
.

Since m(t) is strictly decreasing in [0, T ), by (4.36) we have

e
−2

R t
0 inf
x∈S

ux(τ,x)dτ
≥ e−2

R t
0

u0,x(x0)
1+δu0,x(x0)τ dτ ≥ e− 2

δ ln(1+δu0,x(x0)t),

where δ is defined in (4.34). So

e−
2
δ ln(1+δu0,x(x0)t) → +∞,

if t → − 1
δu0,x(x0) . Therefore, it is inferred from (4.37) that there exists some T ∗

with 0 < T1 ≤ T ∗ such that

sup
x∈S

ρx(t, x) ≥ ρx (t, ξ(t))→ +∞.

as t → T ∗. If ρ0,x(x0) < 0, the proof is similar to the above. This completes the
proof of the corollary. �

Theorem 4.16. Let (u, ρ) be the solution of (4.1) with the initial data (u0, ρ0) ∈
Hs(S) × Hs−1(S), s ≥ 2, and T the maximal time of existence. Also assume that∫

S ρ0(x)dx = 0, and ‖ρx(t, ·)‖L∞(S) ≤M (M is a positive constant). If there exists
some K0 = K0(C0) > 0 (C0 = ‖(u0, ρ0)‖2H1×L2) such that∫

S
u3

0xdx < −K0, (4.38)

then the corresponding solution to (4.1) blows up in finite time.



EJDE-2013/44 WAVE-BREAKING PHENOMENA 19

Proof. Applying u2
x∂x to both sides of the first equation in (4.2) and integrating by

parts with the fact that

−3
∫

S
uu2

xuxxdx =
∫

S
u4
xdx.

We have

d

dt

∫
S
u3
xdx+

1
2

∫
S
u4
xdx = 3

∫
S
u2
x

(
u2 + (γ −A)u+

1
2
ρ2
)
dx

− 3
∫

S
u2
xG ∗

(
u2 +

1
2
u2
x + (γ −A)u+

1
2
ρ2
)
dx.

(4.39)

Note that ∣∣ ∫
S
u3
xdx

∣∣ ≤ (∫
S
u4
xdx

)1/2(∫
S
u2
xdx

)1/2

,

and C0 = ‖(u0, ρ0)‖2H1×L2 . Thus we have∫
S
u4
xdx ≥

1
C0

(∫
S
u3
xdx

)2

. (4.40)

Using Corollary 4.9, we obtain the estimate∫
S
u2
xu

2dx ≤ ‖u‖2L∞(S)

∫
S
u2
xdx ≤

e+ 1
2(e− 1)

C2
0 . (4.41)

By the assumption
∫

S ρ0(x)dx = 0 and Lemma 4.2, we have∫
S
ρ(t, x)dx =

∫
S
ρ0(x)dx = 0.

It then follows that for any t ∈ [0, T ), there exists x3(t) ∈ S and ρ(t, x3(t)) = 0. It
is noted that

ρ(t, x) =
∫ x(t)

x3(t)

ρx(t, s)ds, x3(t), x(t) ∈ S,

which implies that

|ρ(t, x)| ≤
∣∣ ∫ x(t)

x3(t)

ρx(t, s)ds
∣∣ ≤M,∫

S
u2
xρ

2dx ≤M2

∫
S
u2
xdx ≤M2C0, (4.42)

∣∣ ∫
S
u2
xudx

∣∣ ≤ ‖u‖L∞(S)

∫
S
u2
xdx ≤

( e+ 1
2(e− 1)

)1/2

C
3/2
0 , (4.43)

and∫
S
u2
xG ∗ (γ −A)udx

≥ −|γ −A|‖G‖L∞(S)‖u‖L∞(S)

∫
S
u2
xdx

≥ −|γ −A| cosh(1/2)
2 sinh(1/2)

( e+ 1
2(e− 1)

)1/2

C
3/2
0 = −|γ −A|

( e+ 1
2(e− 1)

)3/2

C
3/2
0 .

(4.44)
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In view of the above inequality (4.41), (4.42), (4.43) and (4.44), it follows from
Lemma 4.10 that

d

dt

∫
S
u3
xdx ≤ −

1
2C0

(∫
S
u3
xdx

)2

+ 3
∫

S
u2
x

(
u2 +

1
2
ρ2
)
dx+ 3(γ −A)

∫
S
u2
xudx

− 3
∫

S
u2
xG ∗

(
u2 +

1
2
u2
x

)
+ u2

xG ∗ (γ −A)u+ u2
xG ∗

(
1
2
ρ2

)
dx

≤− 1
2C0

(∫
S
u3
xdx

)2

+ 3
∫

S
u2
x

(
u2 +

1
2
ρ2

)
dx+ 3(γ −A)

∫
S
u2
xudx

− 3κ
∫

S
u2
xu

2dx− 3
∫

S
u2
xG ∗ (γ −A)udx

= − 1
2C0

(∫
S
u3
xdx

)2

+ 3(1− κ)
∫

S
u2
xu

2dx+
3
2

∫
S
u2
xρ

2dx

+ 3|γ −A|
∫

S
u2
xudx− 3

∫
S
u2
xG ∗ (γ −A)udx

≤ − 1
2C0

(∫
S
u3
xdx

)2

+
3(1− κ)(e+ 1)

2(e− 1)
C2

0 +
3
2
M2C0

+
3(3e− 1)
2(e− 1)

|γ −A|
( e+ 1

2(e− 1)

)1/2

C
3/2
0 .

(4.45)
Set h(t) =

∫
S u

3
xdx, and

K2 =
3(1− κ)(e+ 1)

2(e− 1)
C2

0 +
3
2
M2C0 +

3(3e− 1)
2(e− 1)

|γ −A|
(

e+ 1
2(e− 1)

)1/2

C
3/2
0 .

Note that if h(0) < −
√

2C0K, then h(t) < −
√

2C0K. Therefore, we can solve the
above inequality (4.45) to obtain

h(0) +
√

2C0K

h(0)−
√

2C0K
e

q
2
C0
Kt − 1 ≤ 2

√
2C0K

h(0)−
√

2C0K
≤ 0.

Due to the inequality

0 <
h(0) +

√
2C0K

h(0)−
√

2C0K
< 1,

then there exists T1 satisfying

0 < T1 <
1√
2
C0
K

ln
h(0) +

√
2C0K

h(0)−
√

2C0K
,

such that limt→T1 limh(t) = −∞. This contradicts the assumption ux(t, x) > −M .
Let K0 =

√
2C0K. As a result, we deduce that the solution blows up in finite time

which is the desired result in the theorem. �

Next, we give a wave breaking result when the initial profile u0 is odd and ρ0 is
even.

Theorem 4.17. Let (u, ρ) be the solution of (4.1) with the initial data (u0, ρ0) ∈
Hs(S)×Hs−1(S), s ≥ 2, and T the maximal time of existence. Assume that u0 6≡ 0
is odd, ρ0 is even, u0,x ≤ 0 and ρ0(0) = 0. Assume γ = A = 0. Then the
corresponding solution to system (4.1) blows up in finite time.
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Proof. Similar to the proof of Lemma 4.12, it suffices to consider s ≥ 3. Since u0 is
odd and ρ0 is even, the corresponding solution (u(t, x), ρ(t, x)) satisfies that u(t, x)
is odd and ρ(t, x) is even with respect to x for given 0 < t < T . Hence, u(t, 0) = 0
and ρx(t, 0) = 0. Thanks to the transport equation of ρ in (4.1), we have

ρt(t, 0) + ρ(t, 0)ux(t, 0) = 0,

ρ(0, 0) = 0.

Thus, we obtain ρ(t, 0) = 0. Evaluating (4.15) at (t, 0) and denoting M(t) =
ux(t, 0), we obtain

M ′(t) +
1
2
M2(t) = −G ∗ (u2 +

1
2
u2
x +

1
2
ρ2)(t, 0). (4.46)

(a) If u0,x < 0, then

M ′(t) +
1
2
M2(t) ≤ 0. (4.47)

Hence,
M(t) ≤M(0) = u0,x(0) < 0, for t ∈ [0,T).

Integrating (4.47) on [0, t], we obtain

− 1
M(t)

+
1

M(0)
≤ −1

2
t.

Therefore,

ux(t, 0) = M(t) ≤ 2M(0)
2 +M(0)t

→ −∞, t→ − 2
M(0)

, (4.48)

which indicates that the maximal existence time T ≤ −(2/u0,x(0)).
(b) If u0,x = 0, then

M ′(t) ≤ −G ∗ (u2 +
1
2
u2
x +

1
2
ρ2)(t, 0).

In view of G ∗ ( 1
2u

2
x + 1

2ρ
2)(t, 0) ≥ 0, we have

M ′(t) ≤ −G ∗ u2(t, 0), t ∈ [0, T ).

If there exists some t′ ∈ (0, T ) such that∫
S
G(x)u2(t′, x)dx = 0,

then we have u(t′, x) ≡ 0. Using the uniqueness of strong solution guaranteed
by Theorem 3.2, we obtain u0(x) = 0. This contradicts the assumption u0 6≡ 0.
Thus, in view of the positivity of u2 and G, we have dM/dt(t) < 0, M(t) is strictly
decreasing on [0,T). Then there exists some t0 ∈ (0, T ) such that M(t0) < 0.
Solving inequality (4.47), we obtain

M ′(t0) ≤ −1
2
M2(t0) < 0.

Hence,

− 1
M(t)

+
1

M(t0)
≤ −1

2
(t− t0), t ∈ [t0, T ).

Consequently,

ux(t, 0) = M(t) ≤ 2M(t0)
2 +M(t0)(t− t0)

→ −∞, t→ t0 −
2

M(t0)
, (4.49)
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which indicates that the maximal existence time 0 < T ≤ t0 − 2
M(t0) . Therefore,

the proof is complete. �

4.3. Blow-up rate. We now address the question of the blow-up rate of the slope
to a breaking wave for system (4.1).

Theorem 4.18. If T < ∞ is the blow-up time of the solution (u, ρ) to (4.1) with
the initial data (u0, ρ0) ∈ Hs(S) × Hs−1(S), s ≥ 2, satisfying the assumption of
Theorem 4.14, then

lim
t→T−

((
inf
x∈S

ux(t, x)
)

(T − t)
)

= −2. (4.50)

Proof. We may again assume s = 3 to prove the theorem. In view of (4.33), we
have

m′(t) = −1
2
m2(t) + f(t, ξ(t)).

Using (4.25), we deduce that 4.51

− 1
2
m2(t)− C2 ≤ m′(t) ≤ −

1
2
m2(t) + C2. (4.51)

Choose 0 < ε < 1/2. Since m(t) → −∞ as t → T−, we can find t0 ∈ (0, T ) such
that

m(t0) < −
√

2C2 +
C2

ε
.

Since m(t) is absolutely continuous on [0, T ). It is then inferred from (4.51) that
m(t) is strictly decreasing on [t0, T ) and hence

m(t) < −
√

2C2 +
C2

ε
< −

√
C2

ε
, t ∈ [t0, T ).

This in turn implies that

1
2
− ε < d

dt

( 1
m(t)

)
<

1
2

+ ε, a.e. t ∈ [t0, T ).

Integrating the above relation on (t, T ) with t ∈ [t0, T ) and noticing that m(t) →
−∞ as t→ T−, we obtain(

1
2
− ε
)

(T − t) < − 1
m(t)

<

(
1
2

+ ε

)
(T − t).

Since ε ∈ (0, 1/2) is arbitrary, in view of the definition of m(t), the above inequality
implies (4.50). �

4.4. Lower bound of the lifespan. Our attention is now turned to a lower bound
depending only on C2 and u0,x(x0) = inf

x∈S
u0,x(x) for the lifespan of the solution of

system (4.1). We have the following result.

Theorem 4.19. Assume (u0, ρ0) ∈ Hs(S) ×Hs−1(S), s ≥ 2, and Tmax > 0 is the
lifespan of the corresponding solution to (4.1). Assume further there is some x0 ∈ S
such that

ρ0(x0) = 0, u0,x(x0) = inf
x∈S

u0,x(x).
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If Tmax <∞, then the lifespan Tmax > 0 satisfies

Tmax ≥ T =
√

2
C2

arctan
(
−
√

2C2

infx∈S u0,x(x)
) (4.52)

where

C2 =
5e+ 3

4(e− 1)
‖(u0, ρ0)‖2H1×L2 +

(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)
is defined in(4.14).

Proof. Let us first assume that the initial data (u0, ρ0) ∈ Hs(S)×Hs−1(S), s ≥ 3.
In view of (4.33), we have

m′(t) = −1
2
m2(t) + f(t, q2(t, x2)) ≥ −1

2
m2(t)− C2.

Integrating this inequality, we obtain

arctan
m(t)√

2C2

≥ arctan
m(0)√

2C2

−
√
C2

2
t, ∀t < min(Tmax, T ).

This in turn implies that

m(t) ≥

√
2C2m(0)− 2C2 tan

(√
C2
2 t
)

√
2C2 +m(0) tan(

√
C2
2 t)

.

Due to (4.10), there appears the result (4.52) from the above inequality.
If s ∈ [2, 3), it is easy to see the lifespan T smaxas a function of s for the initial

data u0,x(x0) = infx∈S u0,x(x) with s ≥ 2 is nonincreasing. So T smax ≥ T rmax for
2 ≤ s ≤ r. This ensures the validity of lower bound of the lifespan T smax in (4.52)
for all s ≥ 2. �

5. Existence of global solution

In this section, we provide a sufficient condition for the existence of a global
solution of system (4.1).

Theorem 5.1. Assume the initial data (u0, ρ0 − 1) ∈ Hs ×Hs−1, s ≥ 2. If

inf
x∈S

ρ0(x) > 0, (5.1)

then the corresponding solution (u, ρ) to the initial-value problem of system (4.1),
as given by Theorem 3.2, exists globally in time.

Proof. As before we prove this theorem for s ≥ 3. By Theorem 4.5, to obtain
global existence, it suffices to control |ux(t, x)|. We will achieve this by proving the
following key results.∣∣ inf

x∈(S)
ux(t, x)

∣∣, ∣∣ sup
x∈(S)

ux(t, x)
∣∣ ≤ C4e

C3t, (5.2)

where

C3 = 1 +
5e+ 3

4(e− 1)
‖(u0, ρ0)‖2H1×L2 +

(−1 + sinh 1)(γ −A)2

8 sinh2(1/2)
,

C4 =
1

infx∈(S ρ0(x)
(
1 + ‖u0,x‖2L∞ + ‖ρ0‖2L∞

)
.
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We first estimate | infx∈(S) ux(t, x)|. Recall that m(t), ξ(t) and x2(t) are defined
by

m(t) := ux(t, ξ(t)) = inf
x∈S

(ux(t, x)), t ∈ [0, T ),

uxx(t, ξ(t)) = 0, a.e. t ∈ [0, T ).

We can choose x2(t) ∈ R, such that q2(t, x2(t)) = ξ(t). Let ζ(t) = ρ
(
t, ξ(t)

)
.

Evaluating (4.16) along the trajectory q2(t, x) at ξ(t) leads to

m′(t) = −1
2
m2(t) +

1
2
ζ2(t) + f(t, ξ(t)), (5.3)

ζ ′(t) = −ζm, t ∈ [0, T ). (5.4)

In view of (5.1), it follows (5.4) that ζ(t) and ζ(0) are all positive. We define
the following Lyapunov function, which is due to Constantin and Ivanov [12]

w(t) = ζ(t) +
1
ζ(t)

(1 +m2(t)). (5.5)

It is always positive in [0, T ) since ζ(t) and ζ(0) are all positive. Differentiating
and using (5.3) and (5.4), we obtain

w′(t) = ζ ′(t)− 1
ζ2(t)

(1 +m2(t))ζ ′(t) +
2
ζ(t)

m′(t)m(t)

=
2m(t)
ζ(t)

(
1
2

+ f(t, ξ(t))
)

≤ 1
ζ(t)

(1 +m2(t))
(

1
2

+ |f(t, ξ(t)))|
)

≤ C3w(t).

(5.6)

Solving (5.6) and recalling the definitions of C3 and C4, we infer that

w(t) ≤ w(0)eC3t =
1
ζ(0)

(
ζ2(0) + 1 +m2(0)

)
eC3t

≤ 1
ζ(0)

(
1 + ‖u0,x‖2L∞ + ‖ρ0‖2L∞

)
eC3t

= C4e
C3t.

(5.7)

It is easy to see that ζ(t) ≤ w(t) and |m(t)| ≤ w(t). Therefore, for t ∈ [0, T ),∣∣ inf
x∈(S)

ux(t, x)
∣∣ = |m(t)| ≤ w(t) ≤ C4e

C3t.

To estimate | supx∈(S) ux(t, x)|, recalling m̄(t), η(t) and x1(t) as defined in Lemma
4.12, let ζ̄(t) = ρ(t, η(t)). For t ∈ [0, T ), we obtain

m̄′(t) = −1
2
m̄2(t) +

1
2
ζ̄2(t) + f(t, η(t)),

ζ̄ ′(t) = −ζ̄m̄.
Define

w̄(t) = ζ̄(t) +
1
ζ̄(t)

(1 + m̄2(t)).

Similar to (5.6) and (5.7), we have

w̄(t) ≤ C3w̄(t) and w̄(t) ≤ C4e
C3t.
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Therefore, ∣∣ sup
x∈(S)

ux(t, x)
∣∣ = |m̄(t)| ≤ w̄(t) ≤ C4e

C3t, t ∈ [0, T ).

Therefore, the proof is complete. �
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