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AN EIGENVALUE PROBLEM FOR THE INFINITY-LAPLACIAN

TILAK BHATTACHARYA, LEONARDO MARAZZI

ABSTRACT. In this work, we study an eigenvalue problem for the infinity-
Laplacian on bounded domains. We prove the existence of the principal eigen-
value and a corresponding positive eigenfunction. This work also contains
existence results, related to this problem, when a parameter is less than the
first eigenvalue. A comparison principle applicable to these problems is also
proven. Some additional results are shown, in particular, that on star-shaped
domains and on C? domains higher eigenfunctions change sign. When the
domain is a ball, we prove that the first eigenfunction has one sign, radial
principal eigenfunction exist and are unique up to scalar multiplication, and
that there are infinitely many eigenvalues.

1. INTRODUCTION

In this work, we study a version of the eigenvalue problem for the infinity-
Laplacian on bounded domains. In a sense, this is a follow-up of the works in
[5l 6] that discuss Dirichlet problems involving right hand sides that depend on the
solution.

To describe the problem better, we introduce some notation. Let  C R™,
n > 2, be a bounded domain, € its closure and 9 its boundary. We take a(x) €

C(Q)NL>®(Q), a(x) > 0. We seek a pair (A, u), A real, and u € C'(2) which solves
Asu+da(z)u® =0, in @ and u =0 on 99. (1.1)

We refer to A as an eigenvalue of (1.1)) and to u as an eigenfunction corresponding
to A. The operator A, is the infinity-Laplacian and it is defined as

N u ou o
8xi ij (%czé)mj '

Asou =
ij=1

Since u is only continuous in € and the infinity-Laplacian is a nonlinear-degenerate
elliptic operator, solutions are to be understood in the viscosity sense. Questions in-
volving the infinity-Laplacian have been attracting considerable attention recently.
In particular, existence, uniqueness and local regularity have become topics of great
interest. For greater motivation and context, we direct the reader to the works
[1, 4, [8 @9 18]. Our current work is more along the lines of [5l [6, 16, [17]. From
hereon, we will often refer to as the eigenvalue problem.
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One of the main tasks is to be able to characterize the principal or the first
eigenvalue of . The seminal work [3] provides us with an approach to achiev-
ing this goal. While [3] treats the case of the Laplacian, the ideas employed in it are
general enough to be applicable to nonlinear operators, as shown in [7]. The work
that comes closest to ours is in [I3], which treats the case of the one-homogeneous
infinity-Laplacian. One of the major discussion in [3] [7], [I3] is the maximum princi-
ple when the parameter ) is less than the first eigenvalue. Our work also addresses
this issue in the context of and we prove analogues of some of the results
known for elliptic operators.

We also mention that there is great interest in studying the equation that arises
when one takes the limit, as p tends to infinity, of the first eigenvalue problem for
the p-Laplacian. The resulting problem is often referred to as the infinity-eigenvalue
problem, see for instance [2], [14] [15]. The results in this current work, however, bear
no relation to the questions that arise from this problem.

We have divided our work as follows. Section 2 contains preliminary results
and estimates that will be needed for the existence of the first eigenvalue and a
positive eigenfunction. We also prove a comparison principle that will be used
quite frequently in this work. We also show that if A is large enough then solutions
to the problem in change sign. A related result appears in Section 5. Section
3 contains results for the case A < A, where A\ stands for the first eigenvalue
in . We prove a version of the maximum principle and show the existence of
solutions to with non-trivial boundary data and right hand side. Section 4
contains a proof of the existence of the first eigenvalue and a corresponding positive
eigenfunction. Also included here, is a result about the monotonicity of the first
eigenvalues of the level sets of a positive eigenfunction on 2. In Section 5, we
study on C? domains and prove some results. This also contains a brief
discussion for star-shaped domains. In particular, we show that eigenfunctions,
corresponding to higher eigenvalues, change sign. It is not clear to us, at this time,
if the above result holds in general domains. Also, we have been unable to decide
if, in general, a first eigenfunction has one sign and if Aq is simple. A partial result
appears in Section 6. In Section 6, we take up the case of the ball and study the
radial first eigenfunction when a(z) is radial. Next, we discuss the radial version of
the eigenvalue problem when a(z) is a constant function. In particular, we prove
that there are infinitely many eigenvalues that support radial eigenfunctions. In
addition, we present a proof that the first eigenfunction, on the ball, has one sign
and the radial first eigenfunctions are unique up to scalar multiplication.

2. COMPARISON PRINCIPLES AND SOME PRELIMINARY ESTIMATES

This section contains a version of a comparison principle which will be used
throughout this work. We also list some estimates which will assist us in proving
the existence of a first eigenvalue of . In particular, we provide conditions under
which solutions to with positive boundary data may have a priori bounds. As
pointed out in the introduction, we also prove that solutions to change sign if
A is large enough.

We start with some notation. We work in R™, n > 2, and if z € R", we will
sometimes write x = (x1,x2,...,%,). By e1,ea,..., e, we denote the unit vectors
along the positive x1,xs,...,x, axes respectively. We will use o to denote the
origin. By Bs(p), s > 0, we denote the ball of radius s centered at p. We reserve A
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to be a real number and it will represent the parameter in the differential equation
in . By A, we will mean the first or the principal eigenvalue of the problem
on the domain €. A careful definition of A will be provided later in Sections 3 and
4. Unless otherwise mentioned, the functions we encounter in this work will all be
continuous. Also, throughout this work, all differential equations and inequalities
are to be understood in the sense of viscosity, see [10].

We recall that the in-ball of a domain {2 is the largest ball that is contained in
Q, and the out-ball of €2 is the smallest ball that contains €.

Let © C R™ be a domain, f € C(Q2xR,R) and b € C(99Q). A functionu € C(Q) is
said to be a viscosity sub-solution to Asu = f(z,u) or said to solve Au > f(z,u),
in Q, if the following holds. For any ¢ € C?() such that u—1) has a local maximum
at a point p € 2, we have

Acth(p) = f(p, ulp))-
Similarly, v € C(€) is said to be a viscosity super-solution to Asu = f(z,u) or
said to solve Aqou < f(z,u), in €, if, for any ¢ € C?(Q2) such that u — 1 has a
local minimum at ¢ € €2, we have

Asct(q) < flg,u(q)).

A function v € C(f2) is a viscosity solution to A u = f(x,u), if it is both a
sub-solution and a super-solution.

We now introduce the following definitions in relation to the problem . We
define u € C(f2) to be a sub-solution to the problem

Acou = f(z,u(x)), € Q, and wu=>bon JQ, (2.1)

if u satisfies Agou > f(z,u), in ©, and v < b on 9. Similarly, u € C(Q) is a super-
solution to if u satisfies Aou < f(z,u), in Q, and u > b on 9. We define
u € C(Q) to be a solution to (2.1, if it is both a sub-solution and a super-solution
to .

Let us also note that the operator A, is reflection, rotation and translation
invariant. We will also have the need to employ the radial version of A u, see
Section 6. Suppose that for some p € R™ and for some p > 0, we have u : B,(p) —
R. If u(x) = u(r), where r = |x — p|, then we obtain by a differentiation that
du ) 2d2u

dr W’ r< p- (22)

Setting o = 3%/3/4, we also note that if u(z) = ol — p|*/?, then Agu =1, z €
B,(p), in the sense of viscosity.

We now gather various preliminary results we will need in the rest of this work.
We start with a comparison principle. This is a variant of a result proven in [5],
see Lemma 4.1 therein. We provide details of the proof of this version.

Aoou:<

Lemma 2.1. Let & C R", n > 2, be a bounded domain, f : & x R — R and
g: QxR — R be continuous. Suppose that u € C(2) and v € C(£2).
(a) If supg (u—v) > supyq(u—v) and the following hold, in the sense of viscosity,

Asu+ f(z,u(x)) >0 and Asv+g(z,v(x)) <0, Vael,
then there is a point p € Q such that

(u—v)(p) = Sgp(u —v) and g(p,v(p)) < f(p,u(p)).
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(b) Analogously, if infq(u — v) < infpq(u —v) and
Asu+ flz,u(z)) <0 and A v+ g(z,v(x)) >0 Ve,
then there is a point g € Q such that

(u—v)(g) =inf(u —v) and f(g,u(q)) < 9(q,v(q))-

Proof. We employ the ideas in [I0] and use the concept of sub-jets and sup-jets.
We will prove part (a). The proof of part (b) will follow in an analogous manner.
Set M = supq(u — v). By our hypothesis, M > supyq(u — v). Define, for € > 0,

wele,y) = ula) — oly) - oo —yP, (6y) € XN (23

Set M. := supq . we(z,y), and let (z., y.) € Q x Q be such that M, is attained
at (z¢, y.). The following statements are well-known, see [10].

2 2
i 1, = i (e = v — L) <ar i T o,
Let p € Q be such that x. and y. — p, as ¢ — 0. Clearly, M = u(p) — v(p). Since
M > supyq(u — v), there is an open set O, compactly contained in €, such that
p, z. and y. € O.
Next, since (x.,y.) is a point of maximum of we(z,y), ((xe — y:)/e,X:) €
J3ru(z.) and ((ze —y.) /e, Ye) € J>~v(y.). Moreover, we have, see [10],

3(I 0 X. 0 31 —I
20 S5 )

The above clearly implies X, < Y., and using the definitions of J>* and J?~, we
see that

_f(xsvu(xg)) < <X€($&(‘€_ 95)7 (fvg ; y€)>
< <Ys(l’s€* ys)’ (IE ;ys)> (2.4)
< —g(ys,v(yg)).
Now let £ — 0 to conclude that g(p,v(p)) < f(p,u(p)). -

We now state a few consequences of the above lemma. The first is an application
of Lemma, to the eigenvalue problem (|1.1)). This version will be used frequently
in the rest of this work.

Lemma 2.2. Let Ay and Ay be real numbers, and a(x) € C(Q)NL>(2), a(z) > 0.
Suppose that w € C() and v € C(Q).
(i) If supg (u — v) > suppg(u — v), and
Asu+ Ma(z)u® >0 and A v+ Aga(z)v® <0, in Q,
then there is a point p € Q such that (u—v)(p) = supg(u—v) and \ju(p) > Aav3(p).
(i) Similarly, if infq(u — v) < infpq(u —v), and
Asu+ Ma(z)u® <0 and A+ Aga(x)v® >0, in Q,
then there is a point g € Q such that (u—v)(q) = info(u—v) and A\ju3(q) < Aav(q)
We state below a consequence of Lemma [2.2] Versions of Lemma [2.3] are well-

known in the context of eigenvalue problems for elliptic operators. Also see [3[7, [13].
Here, we do not require that © be bounded.
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Lemma 2.3. Let Q C R"™ be a domain. Suppose that a(x) € C(2), a(x) > 0, and
0< A <Ag. Letue C(Q), and v € C(Q), v > 0, solve the problems

Asou+ Ma(x)u® >0 and Asv + dea(x)v® <0, in Q.

Then either u < 0 in Q, or the following conclusions hold.
(i) Let U C Q be a compactly contained sub-domain of @ such that u > 0
somewhere in U. Then
U u
sup — = sup —.
U v o au v
(ii) Assume that u > 0 somewhere in Q. Suppose that Uy C Ugy1 C €,
k= 1,2,..., are compactly contained sub domains of Q, with UpyUy, = Q. If
limy, o0 SUpy;, u/v < 00, then
U . u . U
sup — = lim (sup 7) = lim (sup 7).
Qv k—oo U, VU k—oo \ gy, U
Proof. We prove (i). Let U be a compactly contained sub-domain of Q2 and assume
that u > 0 somewhere in U. Suppose that p € U is such that supy(u/v) =
u(p)/v(p) > supyy u/v. By our hypothesis, u(p) > 0. Thus the function

w(z) = v(p)u(z) —ulp)v(z) <0, zeU. (2.5)

In particular, w(z) < 0 on OU, and w(p) = 0. Thus supy w > supyy w. Since
u(p) > 0 and v(p) > 0, we have that for for all z € Q,

Aco(v(p)u()) + Ara(@) (v(p)u(@))® 20, A (u(p)v(z)) + Aaa(w)(u(p)v(z))* < 0.
We may now apply Lemma [2.2|part(i)). It follows that there is a z € U such that
w(z) = supy w and

Na()u(z)%o(p)® = Aaa(2)u(p)u(=), (2.6)

that is, Tu(p)/v(p) < w(z)/v(z), where T = ()\2//\1)1/3 > 1. This is a contradiction.
Thus supy (u/v) = supgyy (u/v).

We now prove (ii). Let y € Q be such that u(y) > 0. Take k large, so that
y € Uy. Set py = supyy;, (u/v). By part(i), the pu’s are increasing. It is clear that
the limit p = supy pr < oo. If supg(u/v) > p then one can find a set Uy, for k
large, such that supy;, (u/v) > p. This violates the maximum principle in part (i),
as supyy, (u/v) < p. The lemma holds. O

Remark 2.4. As an application of Lemmal2.3] we record the following. Let  C R™
be a bounded domain, and 0 < A\; < Xg. Assume that u, v € C(Q), v > 0 in Q,
solve

Agou + Ala(x)ug >0, Av+ )\ga(z)v3 <0, forzxze.
Thus, if v is positive somewhere in € then w is positive somewhere on 0. As a
result, if u <0, on 9L, then u < 0 in Q.

We now recall a few results from [5], [6l 16l [17] which we will utilize in our work.
The first three lemmas contain versions of the comparison principle that apply in
our context.

Lemma 2.5. Suppose that f € C(Q), f >0, f <0 or f=0inQ. Letu,v € C()
satisfy Acou > f(x) and Asv < f(x) in Q. Then

sup(u — v) = sup(u — v).
Q Xy
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Lemma 2.6. Suppose that f1, fa € C(Q) with fi1(x) > fa(x) in Q. Letu,v € C(Q)
satisfy Ao > f1(x) and Asov < fo(x) in Q. Then

sup(u — v) = sup(u — v).
Q a0
Lemma 2.7. Suppose that f(x,t) € C(Q x R,R) is strictly increasing in t. Let
u,v € C(Q) satisfy Aoou > f(x,u) and Asov < f(x,v) in Q. If u < v on IQ then
u<wvin .

The following estimate will prove useful in this work, see [6l Theorem 5.1]. For
a function g, define g* = max{g,0} and g~ = min{g, 0}. Set o = 34/3/4.

Lemma 2.8. Let Q@ C R"™ be a bounded domain, and Br, (%), 20 € R™, be the

out-ball of Q. Suppose f € C(Q)NL>®(Q), and b € C(0Q). If u € C(Q) solves
Apu= f(z), z€Q, u=>bondQ,

then the following bounds hold.

infb — o(sup fH)Y3RY3 < w(zx) <supb—o(inf f7)V3RY3 zecq.
o0 Q 90 Q
In particular, if f(x) = —Xa(z)u3, a >0, A\ > 0, and p = supg a, then a solution

u to (L.1)) satisfies

inf b+ o(A) 2 RY3 infu™ < w(x) < supb+o(Au)PRY 3 supu®, 2z e Q.
o0 Q o0 Q

Setting Ao = (02uR) ™, then the above may be written more compactly as

inf b+ (A\/Ao)?infu™ < u(x) < supb+ (M Ao)/?supu’.
19}9) Q el Q

We also recall the following existence result proven in [6, Theorem 3.1], also see
Corollary 3.3 and Theorem 5.5 therein. This will be used in showing the existence
of solutions to equations related to the eigenvalue problem.

Theorem 2.9. Let f € C(Q xR, R) satisfy the condition supg | f(x,t)] < oo, for
any compact interval I, and b € C(9). Consider the following Dirichlet problem
Asu = f(z,u(x)), inQ, and uw=> on IN. (2.7)
(a) Suppose that
(i) u. € C(Q) is a sub-solution of [2.7); i.e., Axus > f(z,us), in Q, and
Ue < b on o, and
(il) u* € C(Q) is a super-solution of ; i€, Asou™ < f(z,u*), in Q, and
u* > b on 0N2.
If ux < u* in Q then problem (2.7) admits a solution u € C(Q) such that u, < u <
u* in Q.
(b) If f is such that any solution to has a priori supremum bounds, then there
is a solution u € C(Q) to ([2.7).

We now record a local Lipschitz continuity result, proven in [6, Theorem 2.4].
Also see [17].

Lemma 2.10. Let o be a constant. Any solution u € C(Q2)NL>(Q) of Ascu(z) >
a, in 2, is locally Lipschitz continuous in ). More specifically, given xo € S there
is a constant C' that depends on xo, diam(Q2), |a| and ||ul| (o) such that

lu(z) —u(y)] < Clz —y|, =,y € Ba(zo),



EJDE-2013/47 AN EIGENVALUE PROBLEM 7

where d := dist(xzg, Q) /3. A similar result holds if Asou < « in 2.

We now shift our attention to obtaining estimates for a problem that is related
to . These will be important in proving the existence of the first eigenvalue
and an associated eigenfunction. To achieve this purpose, we study the following
Dirichlet problem. Let a € C(2) N L>®(Q), a > 0, § > 0 and A > 0. Consider
positive solutions to the problem

Asou + da(z)u®(z) = 0in Q, and uw = § on 9Q. (2.8)

To show existence we note that the function ¢» = § is a sub-solution to (2.8)). For
small A, we obtain a priori supremum bounds. This will lead to the existence of a
solution .

Lemma 2.11. Let  C R™ be a bounded domain. Suppose that a(x) € C(Q) N
L>*(Q), a(z) >0, § >0, and A > 0. Let R, be the radius of the out-ball for 2,
p=supg a, o =343 /4 and \g = (6*uR2)~1. Consider the problem
Asou+ da(x)u®(2) =0, in Q, and u=25 on O9. (2.9)
Assume that u € C(Q) is a solution to (2.9).
(i) If A\ =0 then u =0 in Q.
(ii) IfA<0and § >0 then 0 <u <. If 6 = 0 then u = 0 is the only solution.
(iii) If 6 = 0 and u € C(Q) is a non-trivial and non-constant solution, then

A> 0.
(iv) If 0 < XA < Ag then u is positive in Q and a priori bounded. More precisely,

o0 <u< stépu < 1= O/og)i/e
Proof. We show (i). If A = 0 then u is infinity-harmonic and v = § in Q. For
part (ii), suppose that A < 0. Let Q= denote the set where v < 0. Then Ay u =
JAa(z)u® < 0, in Q~, with « vanishing on 9Q~. But u > 0, in Q~, since u is
infinity super-harmonic in Q~. It follows that Q= = @ and w > 0, in Q. Thus, u is
infinity sub-harmonic in Q, and 0 < wu < 6. If § =0, we get u =10 in Q, for A < 0.
Clearly, parts (i) and (ii) imply part (iii).

We now prove part (iv). We will assume that 6 > 0, the conclusion for § = 0
follows quite easily. We recall Lemma 2.8

AN 1/3 AN 1/3
0+ (*) infu” <wu(z) <d+ (*) supu™. (2.10)
o Q Ao Q
If infq u™ < 0, then (2.10) leads to
0
< infa—
EGVWIEEE S
a contradiction. Thus ([2.10) yields
0<u< < -
B S W O VPWSEE
Since w is infinity super-harmonic, u > § in 2. (]

Finally, we prove that nontrivial solutions to , when § > 0, change sign
for large enough A. This was first shown in [6] and implies that, in the event
eigenfunctions corresponding to large eigenvalues exist, these eigenfunctions would
change sign, a fact well-known for the case of elliptic operators. Its relevance to our
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current work is in obtaining lower and upper bounds for the first eigenvalue. We
provide a proof of this result for completeness. We do not assume that a(z) > 0
everywhere in €.

Theorem 2.12. Let Q C RY be a bounded domain, and a(z) € C(Q) N L*°(Q),
a(x) >0, and a(z) # 0. Set = supg a, o = 3*/3 /4 and \g = (6®uR2) ™", where R,
is the radius of the out-ball for Q. For0 < a < 1, define Qo = {z € Q: a(x) > au},
and set p, to be the radius of the in-ball of Q.. Let § > 0, and suppose that
(A u), w0, solves
Asu+da(zx)u® =0, 2€Q, and u=25 on IN. (2.11)
Set .
4 . 1
A= g5, (oint, (@)) < 00
(i) If § =0, then A > Ao.
(ii) If § > 0 and u > 0, then we have the upper bound A\ < A. If § = 0 and
u >0 then A\g < A < A.

In any case, if X\ is large enough then every solution u to changes sign in €,
regardless of 4.

Proof. For part (i), we refer to parts (iii) and (iv) of Lemma By (2.10), if
6 =0 then u =0, for A < Ag.

We now prove part (ii). See Lemma [2.11] (i) and Theorem (b) for the lack
of a lower bound for A when § > 0. If § = 0 and A > A then u > 0, since u is
infinity super-harmonic.

To show the upper bound for \, we assume that A > 0. Let (A\,u), u € C(Q), u >
0, solve . Being infinity super-harmonic in §2, u satisfies the strong minimum
principle and v > 6. For 0 < a < 1, let B, (zo) be the in-ball for Q,. For
0 <7 < pa, define m(r) = infyp .,y u. Then 6 < m(r) < u, in B.(z,), and m(r)
is decreasing. Consider

(@) = 6 + (m(0) — o) (1

- W;Z“') v € B, (%)

It is clear that v is infinity harmonic in B, (24) \ {2a}. Since u > ¢ on 9B, (24)
and u(zo) = m(0), by Lemma 2.5 v < u in By(2a) \ {2a}. Taking |z — 24| = 0pa,
for 0 < 6 < 1, and noting that v(6p,) < m(0ps), we have

m(0) — 4 1
m(0ps) —86 — 1—6°
Next we consider, in the ball By, (z4), the function
w(@) = o(apX) P *m(0pa) (0pa)"* & = za[**) + m(Bpa).
Using , a calculation shows that
Asow = —adum(0p,)?, in By, (20), and w=m(0p,) on |z — 24| = Opq.

(2.12)

In By, (24) C Qa, we note that a(z) > ap and u > m(fp,). Thus
Asou = —da(z)u® < —arum(0p,)?,  x € By, (24),
with u > won [z —z4| = 0pq. Lemmayields that w < win By, (24). Moreover,
w(za) = oA (ap) P m(0pa) (0pa) " + m(0pa) < ulze) = m(0).
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Recalling that v > § and rewriting,
oA (o) 3 (m(Bpa) — 8) (0pa) "™ + m(Bpa) — & < m(0) — 6.

Rearranging and using (2.12)), we have
m(0) — o < 1

AL/3 1/39(14/3 1< .
o (ap)™’” (Opa)™" + ~mlpa)—06 ~1—6

Rewriting, we get

1
1/3 1/3 4/3
oA (ap) P py 0 < G751 —0) 0<f<1
By computing the minimum of the right hand side, which occurs at § = 1/4, we
obtain

44
AL —i———.
~ 3adu(apy)

3. EXISTENCE AND PROPERTIES OF SOLUTIONS TO ([2.8])

values on 9f2. This will lead to an existence result for (2.8) with non-trivial right-
hand side. All these will be proven under the condition that A is less than the first
eigenvalue A of A,,. We will adapt the comparison principle in Lemma to the
current, context and this will lead to uniqueness, under some conditions.

We will begin with a discussion of how to define the first eigenvalue. The basic
idea resembles closely the one employed in [3] 7, [13].

In this section, we derive properties of solutions to (2.8) when u takes positive

Lemma 3.1. Let Q@ C R™ be a bounded domain. Suppose that a(z) € C(2) N
L>(Q), a(z) > 0, and assume that § > 0. Define \g = (03uR)~, where o =
343 /4, 1 = supg a, and R, the radius of the out-ball of Q. Then the Dirichlet
problem

Asou + da(z)u® =0, in Q, and u =6 on 09, (3.1)

has a positive solution u for 0 < XA < Ag.

Proof. We use Theorem b) and Lemma [2.11fiv). Since A < Ag, any solution u
is a priori bounded and Theorem leads to a solution. Lemma [2.11] ensures that
u > 0 in §. O

We now discuss the definition of the first eigenvalue. The fact that it is indeed
an eigenvalue and has at least one eigenfunction will be shown in Section 4. We
define, for each 6 > 0,

S =5(Q) ={A>0:Problem (2.8) (or (3.1])) has positive solutions}. (3.2)
By Lemma S is non-empty. By Theorem S is bounded above. Now set
Aq = sup A. (3.3)
S

We refer to A as the first or the principal eigenvalue of A, on €.
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Remark 3.2. We record the following conclusions.
(i) By Lemma [2.11} A\g > (o3uR3)~!. We show that the interval [0, A\q) C S.
Let A € S and u > 0 be a solution to

Asu+Xa(z)u® =0, in Q, and w =6 on ON.
Note that v > ¢ in Q. If 0 < ) < A, then u is a super-solution to
Asv + Na(z)v* =0, in Q, and v =46 on 9Q. (3.4)

Clearly, w = 4 is a sub-solution; it follows from Theorem [2.9]that there is a solution
v to (3.4]) such that § < v < u. Hence, A’ € S. That Aq € S will follow from Lemma
below.

(ii) The set S is independent of the value of §. This follows by scaling.

(iii) We discuss the influence of the weight function a(z). Write in (3.2)), S =
5(Q,a) and in B.3), Ao = Aa(a). We claim that S(€,b) C S(,a), and Ag(a) >
Aa(b), when 0 < a(x) < b(z), in Q. To see this, let A € S(Q,b). We can find a
function u € C(Q), u > 0, that solves Ay u + Ab(z)u® = 0, in Q, and u = § on
9Q. Then Aoou+ Aa(z)u® <0, in Q. Since v = § is a sub-solution, we have from
Theorem that there is a function u € C(Q), v < @ < u, that solves

Asti+ Aa(x)a® =0, in Q, and @ = on 99.
Thus A € S(Q,a) and \g(a) > Aq(b).
(iv) By Theorem the set S is bounded from above and Aq < oo.

Later in this section, we will use to state an existence result for boundary
data that has one sign, under the hypothesis 0 < A < Aq. A related result is in
Lemma where it is shown that if 0 < A < Aq and the boundary data is zero
then the zero solution is the only solution.

We restate problem for easy reference. Also recall and (3.3). We will
study the properties of a solution u € C(Q), u > 0, to

Asou+ da(z)u® =0, in Q, and w=4>0 on 9Q. (3.5)

Here 0 < A < Ao < co. We refer the reader to Lemma for the case A < 0.
We show next that if A € S, then, for some € > 0, A + ¢ is also in .S. This will
imply that Aq € S, justifying part (iii) in Remark

Lemma 3.3. Let a(z) € C(Q) N L>®(Q) with a(x) > 0. Suppose that for some

A > 0, there is a function v € C(Q), v > 0, such that
Asov 4+ Aa(z)v® <0, inQ, and v>§ on ON. (3.6)
Set m = supg v. Then, for every e such that 0 < & < X\(§/m)3 the problem
Asu+ A+ e)a(z)u® =0, inQ, and u=275 on 09,
has a positive solution u € C(Y). Hence, Ao & S, where S is as in .

Proof. We apply Theorem to achieve the proof. Let 0 < ¢ < A(6/m)>. Take
0 < a < 1 such that

e < aX(d/m)3. (3.7
Since v > 0, it follows that v > § in €. Define
w(z) =v(z) —ad, =z
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Then becomes
Asw + Aa(z)v® <0, in Q, and w > (1 —a)d on 9. (3.8)
Writing v = w + ad and noting w < m in €2, we expand, using , to obtain
Asow + (A + &)a(z)w?® < a(z) (X + e)w® — M)
a(z) (A +e)w® — A(w + ad)?) (3.9
< a(z) (em® — A(Badw?® + 3a%6%w + a*5%)) .

Since w > (1 — a)d and a? —3a+3 > 1, for 0 < a < 1, we have
ad (3w? + 3adw + a*6%) > ad®(a® — 3o+ 3) > as’.
Using the above in and applying ,
Asw + (A +g)a(z)w® < a(z) (em® — Aad®) <0, z€Q. (3.10)
It is clear that if we take 0 < & < A(§/m)3 and any o with (¢/A\)(m/§)® < a < 1
(see (3.7)) then the function
w v —ad

h=he)= g =T, 20 (3.11)

defined in €2, is a super-solution to
Asof+N+e)a(z)f> =0, inQ, and f =25 on IN. (3.12)

Next, we observe that the function g(z) = 6, z € Q is a sub-solution of (3.12).
Since g < h in €, invoking Theorem we obtain that (3.12)) has a solution u
such that g <u < h in €. O

We prove now a comparison principle by employing Lemmas 2.3 and [3:3] This
will imply the uniqueness of solutions to (3.5 for 0 < A < Ao. We will utilize
the function h defined in (3.11)). Also, see [3| [7, 13]. We do not assume that € is
bounded.

Lemma 3.4. Suppose that a(xz) € C(Q) N L*(Q), a(z) > 0 and A > 0. Let
u, v € C(Q), v >0, solve the problems

Asou+ Aa(x)u® >0, Ajv+ da(z)v® <0 in Q.
FEither u < 0 in Q, or the following holds.
(a) IfU is a compactly contained sub-domain of Q and u > 0 somewhere in U,
then supy, (u/v) = supgy (u/v).
(b) Suppose that u > 0 somewhere in Q and {U,,}, m =1,2,... is an increas-
ing sequence of compactly contained sub-domains of 2, with U3S_, U, = L.
If limy, o0 SUPyy;, (u/v) = k < oo, then k>0 and u < kv in §2.

Proof. We take part (a). Let U, compactly contained in €, be such that u > 0
somewhere in U. Set £ = {(U) = infyy v. Being infinity super-harmonic, v > ¢ in
U. If we define, for 0 < o < 1,

v— ol

h:

in U
T—o =U

then a simple calculation shows that h > v > £(1 —a) in U. By (3.10), we also
have
Asch+ (A +e)a(x)h® <0, inU,
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where 0 < € < Aa(¢/supy v)3. By Lemma we have that for every 0 < a < 1,
u u
sup — = sup —.
v h auh
Letting o | 0, we obtain that

u u

sup — = sup —.

v v ou v
Part (b) of the lemma follows by applying the arguments of Lemma[2.3]and Remark
24 O

As a consequence of Lemma [3.:4] we obtain the uniqueness of solutions to the
Dirichlet problem (3.5 with infsq b > 0.

Remark 3.5. Let Q@ C R"™ be a domain, 0 < A < oo, and a(z) € C(Q) N
L>(Q), a(z) > 0. Suppose that u, v € C(Q), with u > 0 and v > 0, solve
Asu+da(z)u® =0in Q, and Av + Aa(z)v® = 0.

Suppose that {U,,}, m = 1,2,..., is an increasing sequence of compactly contained
sub-domains of Q with Uge_; Uy, = Q. If the two limits, lim,, . (Supsy, , (u/v)) and
lim;, 00 (SUPsyy, (v/u)), exist then

lim (inf E) < u(z) < lim (sup g), x e Q.

m—oc \ U, v/ ~ v(x) ~ m—oo \ gy, v

These limits, if they exist, are independent of the sequence.
As an application, if Q is bounded, u, v € C(f2), b € C(99) is such that
infgob >0 and u = v = b on 02, then we have that u = v in Q.

Next we record an application of Lemma [2.3] This will be used in Section 4,
where we show the existence of the first eigenvalue.

Remark 3.6. Let 0 < A < ). Suppose that (A, u), v > 0, and (N,v), v > 0,
solve the problem . As u and v take the same boundary data, by Lemma
u < wvin Q. Thus, if Ay T Aq then the corresponding unique solutions {v;} form an
increasing sequence.

We now show that if 6 = 0 in (3.5) and A < A, then the only solution is the
zero solution. The proof requires the existence of a solution that is positive in €.
Note that this is guaranteed by the nature of the set S, see (3.2)).

Lemma 3.7. Let a(z) € C(Q) N L>®(Q), alx) > 0, and X > 0. Suppose that
veC(Q), v>0, and v solves

Agov + Aa(z)v® <0, in Q.

Ifinfpqv > 0, and v € C(2) solves

Asou+ Aa(z)u® >0, in Q, and u=0 on O, (3.13)
then u < 0 in Q. If equality holds in then u =0 n Q.
Proof. We use Lemma If u solves and u is positive somewhere in §2 then
supq (u/v) = supyq(u/v) > 0. This being a contradiction, we have v < 0 in Q. If,

instead of the inequality in (3.13)), equality holds, then both v and —u are solutions.
We conclude that ©v = 0 in . Incidentally, if 0 < A < A then such a function v

exists, by (3.2). a
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A related result follows below.

Remark 3.8. Let a(z) € C(2) N L>®(Q), a(z) > 0,0 < Ay < Ay and § > 0.

Suppose that u, v € C(2) solve the problems
Asu+ Aa(z)u® >0 and  Agv+ Aa(z)v® <0, in Q.

Assume also that u < 6 < v on 9. Set a = ()\1/)\2)1/3. If v > 0 and w is positive
somewhere in €2, then we claim that

u(z) < 7% (supv®), Va € Q.
Q

To see this, we make the following observation. Let A > 0 and w € C(Q) be positive.
If Asow + Aa(x)w? > 0, in €, then for any 3 > 1, we have A w” + A3 a(z)w3? >
0. If instead, Asow + Aa(z)w® < 0, then for any 0 < 8 < 1, it follows that
Asw® + AFa(x)w’ <O0.

Now take 8 = a. Since a < 1, we invoke Lemma to conclude that u/v® <
supyq (u/v®) = 617, The claim holds.

We surmise that a stronger estimate holds, namely, that u(xz) < C9, Vz € Q,
where C' = C(A1, A2, 2). However, a proof is not yet clear to us.

We now state the first of the two existence results of this section. We include a
partial result about uniqueness. Also see [13].

Theorem 3.9. Let Q@ C R™ be a bounded domain, and a(x) € C(2) N L>(Q2) with
a(xz) > 0. Suppose that 0 < A\ < Aq and b € C(9Q). Then there is a function
u € C(Q) that solves the following Dirichlet problem; that is,

Asou+ da(x)u® =0, in Q, and u="> on ON. (3.14)
In addition, we have the following.
(i) If b=10 on 09, then u=0, in Q.
(ii) Suppose that b # 0 on ON. Ifinfapqb > 0 orsupyq b < 0 then every solution
u € C(2) is non-vanishing in 2.
(iii) If infaq |b] > O then u is unique.
Proof. We first show the existence of a solution to (3.14). Let m = supyq b and
¢ =infypqb. If £ = m, Remark [3.2] gives us a solution. Take m; > max(m, 0), and
£1 < min(0,¢).
By Remark there is a wy; € C(Q), wy > 0, that solves

Asowr + Aa(z)w? =0, in Q, and w; =m; on O (3.15)
By , the function we = (¢1/m1)w; solves

Aws + Aa(m)wg =0,in Q, and wy =¥ on IN.
Clearly, wo < wq, in Q, and we < b < w; on 9. By Theorem there is a

solution u € C(Q) to (3.14) such that wy < u < wy.
It is clear that part (i) of the lemma follows from Remark and Lemma
We prove part (ii). We will assume that b > 0 (if b < 0, we work with —u). Suppose

that « changes sign in . Call O~ = {u < 0}. Then u solves
Asu+ Aa(z)u®* =0, and w=0on IN".
Since A < Aq, by Remark [3.2} there is a solution v € C(Q), for § > 0, to
Asv +Aa(z)v® =0, v >0, inQ, and v =4 on dN.
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Since v > §, in Q—, applying Lemmal3.7|to u and v in Q~, we obtain a contradiction.
Thus, v > 0 in 2, and being infinity super-harmonic we have that v > 0 in 2. Part
(iii) follows from Remark also see Lemma O

We now state an existence result for non-homogenous right hand sides. We will
prove this under the somewhat restrictive assumption that infg a(x) > 0. We do
not address the issue of uniqueness. We borrow an idea from Lemma Also see
[13].

Theorem 3.10. Let Q C R™ be a bounded domain, a(x) € C(Q) N L*(Q), with
infreqa(x) >0, and 0 < A < A\q. Suppose that h € C(2)NL>¥(Q) and b € C(99N).
Then there is a function u € C(Q) that solves the following Dirichlet problem,

Asou + da(z)u® = h(z), in Q, and u=">b on ON. (3.16)

Proof. Our approach is similar to Lemma Let m = supynb, ¢ = infpqb,
M = supg |h| and v = infg a. Take my > max(m,0) and ¢; < min(0,¢, —mq). We
will construct a sub-solution and a super-solution to li
(i) We first construct a super-solution. Let wy € C(Q2), wy > 0, be a solution to
Asow; + Aa(z)w? =0, in Q, with w; = my on 9.

Existence follows from Remark [3.2] Being infinity super-harmonic, w; > m;. For
0 < a < 1, take wy = wy —amy. Thus Asws + Aa(z)(we +am;)? = 0. Expanding,
Asws + Aa(z)wi = —Aa(z) (3am w3 + 3a®miws + a’mi).

Noting that wy > (1 — @)myq, in 2, we obtain that
Asows + Aa(z)wi < —dwvm? (3a(l — a)? +3a%(1 —a) +a?).

Set w = ws /(1 — ). Selecting « close enough to 1, we obtain from above that

3a 3a” a? M
3 < 3 o
Asw + Aa(z)w® < —Avmy <(1 — o) + (1—a)2 + 1- 04)3> < .

Thus w € C(Q) solves
Asow < h(z) — da(z)w®, w>0, in Q, and w =m; >bon 9.
(ii) We now construct a sub-solution v € C(f2) that satisfies
Asv + da(z)v® > M, v <0, inQ, and v=/¢ on Q.
If we take v = (¢1/m1)w, where w is as in part (i), we obtain that
Mt
3

Ao + a(z)v® >
my

>h(z), v<0, inQ, and v=1~¢ <bon .
Invoking Theorem [2.9, we obtain the existence of a solution u € C(Q), v < u < w,
to (3.16). O

We conclude this section with a result about distance estimates regarding how
close the points of a level set, of any positive solution u of (2.8)), are to the boundary
09). Define

1
1
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Lemma 3.11. Suppose that a(x) € C(2) N L>*(Q2), a(x) > 0, A > 0 and § > 0.
Let u € C(Q), u > 0, solve the problem

Acou+ da(z)u® =0, inQ, and u=25 on 09. (3.17)
Set v = infg a(z) and d(x) = dist(z, 092), x € Q. It follows that
Fo/u(z)) _ F(0)
< < .
d(z) < )4 = Ow)i/4

If m = supg u and z € Q is such that u(z) = m, then d(z) < F(6/m)/(Av)'/4.

Proof. First notice that the integral F'(0) < oo. Let z € Q. Set d = d(z) and
consider the ball Bg(x). For 0 < r < d, define m(r) = infp (5)u. Since u is
infinity superharmonic, m(r) = infsp,_(5) u, m(r) is concave and is decreasing. Also
m(0) = u(z) and m(d) = 4.

For y € Bg(x), set r = |z — y|. Let w(y) = w(r) € C(Bq4(z)) be defined as

w@)uﬂDCﬂwU3AT(AZMﬁ3$)Uiﬁ. (3.18)

Here w(0) is so chosen that w(d) = §. Note that w’(0) = 0. Using (2.2)), one can
show that w is a viscosity solution to

Asow(y) + Avm(r)® =0, in By(z), and w =8 on dBy(x).

See [0, Lemma 4.1] for a proof. Next, u solves (3.17), in Bg(z), with u > 4, on
OBg(x). Thus, Lemma [2.6] implies that w < u, and w(r) < m(r), in By(x). Thus,

(w'(r)?w” (r) + Aww? < 0,in By(z), and w(d)=4.

Noting that w'(r) < 0 and w(r) > 0, and multiplying both sides by w’(r), an
integration leads to

w(0) 1
(*V>1/4d§/ Lﬂl 5/ %~
5 (w(0)t — s T Jsjuy) (1—sH)Y

The conclusion of the lemma holds. O

4. EXISTENCE OF THE FIRST EIGENVALUE AND THE FIRST EIGENFUNCTION

In this section, we will show that \q, defined in , is the first eigenvalue of
Ao on Q. The proof will also provide us with the existence of a first eigenfunction
which turns out to be positive. As was shown in Lemma solutions to (1.1),
for A < Aq, are the zero-solutions. Thus A is the smallest value of A, in ,
that supports a non-trivial solution. This section also contains some monotonicity
results about the first eigenvalues of the level sets of a positive first eigenfunction
on (.

In this section, we will always take 2 C R™ to be a bounded domain. For a
better exposition, recall , and . In Section 3, we showed that if
a(z) € C(NL>®(Q), a(z) > 0,6 >0and 0 < A < Aq, then there exists a positive

solution u € C(12) to
Asou+ Aa(z)u® =0, in Q, and = on 99. (4.1)
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Moreover, by Remark 3.5 u is unique. We recall Remark [3.6] where it is shown
that if {\x}32,, Ak € S, is an increasing sequence and if uy is the positive solution
to (4.1)) corresponding to Ay, then wugi1 > ug in Q. We record this fact in

ug, k=1,2,...,1s an increasing sequence. (4.2)
We now prove the main result of this section. Also see [13].

Theorem 4.1. Let Q) C R, n > 2, be a bounded domain, and a(x) € C(Q)NL>®(Q)
with a(x) > 0. Let S be as defined in (3.2) and Aq = sup S. Then there is a solution
v e C(Q), v>0 to the eigenvalue problem

Asov 4+ Aqa(z)v® =0 in Q, and v =0 on 0Q.

Proof. For k =1,2,...,let \; € 9, be an increasing sequence with limytoc A = Aq.
Fix 6 > 0 and let uy > 0 solve the problem
Ao + Mpa(z)ui =0, in Q, and  ug = on IS (4.3)
Set my, = supq uy, it follows from that my is increasing. We claim that
klirrgo my = 00. (4.4)

We provide a lower bound for my, by using Remark and Lemma|3.3] By Lemma
for each k = 1,2,..., there is a 4 > 0 such that

Asotiy + (M F€)a(x)a =0, in Q, and Gy =6 on O,

where 0 < & < A\, (6/my)3. We claim that Aqg — A\ > A\, (6/my)3. If this were false
then by taking £ = Aqg — Ay in Lemma [3.3] we would obtain a positive solution to
Aot + Aga(x)n® = 0, in Q, and n = 6 on dQ. This would imply that Aq < sup S,
this contradicts the definition of Aq. In other words, the claim holds and

Ak 1/3
(e )
"=
Thus (4.4) holds.
Next, define vy, = ug/my. Then supv, = 1 and
Asovi + Apa(z)vi =0, in Q, and vy, = §/my. (4.5)

As vy,’s are uniformly bounded, by Lemma[2.10] they are uniformly locally Lipschitz
continuous. There is a subsequence, which we continue to denote by {vy}, that
converges locally uniformly to some function v € C(2) such that v > 0. By [5,
Lemma 5.1], it follows that v solves
Asov+ Aga(r)v®* =0, v >0, in Q, and supwv=1. (4.6)
Q

To show that v > 0 and v € C(£), we will employ an upper bound and a lower
bound.

We first construct an upper bound. Set y = supg a(z), and let n € C(2) solve
the problem

Asn = —2Xqu, in Q, and n=0.

The existence of n follows from [5, 6] [16]. Also, the function n + d/my, solves the
same differential equation with d/my as the boundary data. Since implies
that 6/my < v, < 1, it is easy to see that 2Aqu > )\Qa(x)vz. It follows from
and Lemma that §/my, < vp < p+d/my, k=1,2,.... Thus 0 < v < 7,
in particular, v = 0 on 9Q and v € C(Q). In order to show that v > 0 in Q, we
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construct a lower bound. Since vi’s are continuous in 2 and supg v = 1, there is
a point xx € Q such that vg(xr) = 1. We may now find a subsequence of vy and xy,
(which we continue to call them as vy and zj) with xx — x. Since v is small near
99, it follows that x € Q and v(z) = 1. Let h € C(Q\ {z}) solve

Ash =01in Q\ {z}, with h(z) =2/3 and h = 0 on 9.

By Lemma [2.6] and ([L5)), 0 < h < vy, for large k. Thus, 0 < h < v < n. The
conclusion of the theorem follows. O

From hereon we will refer to Aq as the first eigenvalue of the infinity-Laplacian
and a non-trivial solution v € C(£2) to the problem

Asu+ Aga(z)u® =0, in Q, and wu =0 on 99, (4.7

as a first eigenfunction. As is clear from Theorem [£.1] an eigenfunction, having one
sign in 2, exists. In the rest of this section, we will derive some properties of Aq.
We start with an observation about domain monotonicity of the first eigenvalue.

Remark 4.2. In (3.2), let us write S = S(§2). Suppose that ' C Q is a sub-
domain. If A > 0 is such that there is a function v € C(2) that solves
Asv +Aa(z)v® =0, v >0, inQ, and v=4on I,

then v also solves the same equation in € with v > ¢ on 9. Thus S(2) C S()
and \g < Agy.

Suppose that Q' is compactly contained in © and u > 0 solves (4.7)), see Theorem
If we set § = infgs u, then 8 > 0. Since one can use u as a super-solution and
the function v = 6 as a sub-solution of (4.7), Theorem provides us with a
positive solution w € C(£¥') to the problem

Asow + Aga(x)w® =0, in ', and w =6 on I
By Lemma we can find an ¢ > 0 and a function w € C(€’) that solves
Aso® + (Mg +e)a(x)w® =0, w >0, in Q, and @ =6 on .

By the definition of the set S, we see that Aqgr > A\qg + & > Aq. We have thus strict
domain monotonicity in case £’ is compactly contained in Q. However, in general,
there is no strict domain monotonicity, see Lemma [6.3]in Section 5.

Remark 4.3. We also observe that if u € C(2), u # 0, solves
Asou+ Aa(x)u® =0, in Q, and u =0 on 99,

then A > Aq. This can be seen as follows. Firstly, by Lemma [2.11] A > 0. Next, if
A < A, then Remark and Lemma [3.7] would imply that u = 0 in Q. Thus the
claim holds.

In the next lemma, we make an observation related to Remark This ad-
dresses the monotonicity property of the first eigenvalue of a level set of an eigen-
function.

Lemma 4.4. Let Q C R™, n > 2, be a bounded domain, and a(x) € C(£2) N L>(£)
with a(x) > 0. Let u € C(Q), u > 0, and supgu = 1 be a first eigenfunction, that
18,

Asou + Aga(z)u® =0, in Q, and u=0 on ON.
For 0 <t <1, set Qo = {x € Q: wulx) > t}. Then \q, is increasing and

limtm )\Qt = 0.
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Proof. First note that by Remark 2] Ag < Mg, < Aq,, for 0 <t < s < 1, and
A+ Aga(z)u® =0in Q;, and w=1ton 98y, VO <t < 1. (4.8)

For notational ease, call \y = Aq,. Now, for any fixed 0 < o« < 1 and 0 < t < 1,
and, for any t < s <1,

s% — (s — at)® = 3ast(s — at) + >t* > o313 (4.9)

Take 0 < @ < 1 and € > 0 to be chosen later. As done in Lemma [3.3] we write
w = u — ot and obtain

Asw + (Mg + e)a(z)w® = a(z) (Ao +)(u— at)® — Agu®), inQ,  (4.10)
with w = (1 — )t on 9. Rearranging the right side we obtain that
a(x){(Na +&)(u— at)® = Aqu®} = a(z)[e(u — at)® — Ao{u® — (u — at)?}].
Using and t < u < 1 in (£.10), we conclude
Asow + (Mg + €)a(z)w?® < a(z) (e(1 — at)® — Aga®t?)

For 0 < 6 < 1, select
a3t3>\g
gg=0—-—,
TV = at)?

to obtain
Asow + (Mg +eg)a(z)w® <0, in Q, and w=t(1—a) >0 on ;.

By Remark 3.2
3t3

o
A2 All+0—=).
b= Q( + (1fat)3)
By Remark [.2]
a3t
i > > —_—
2 %2 2014077 )
The inequality holds for any 0 < o < 1 and 0 < ¢ < 1, hence the claim. O

We make a related observation regarding Ag. In the previous lemma, we dis-
cussed the limit lim;1; A;. In the next lemma we study the limit lim; o A;.

Lemma 4.5. Suppose that a(x) € C(Q2) N L>°(Q) with a(xz) > 0. Let T be the set
of all X’s such that A\ > A\q and the problem

Asv + da(z)v® =0, in Q, and v =0 on OQ.

has a positive solution v € C(). Let u > 0 be an eigenfunction corresponding to
Aq. Assume that supqu = 1. For 0 < t < 1, define QO = {z : u(x) > t} and
At = Aq,. Then
Ao =infT <supT = iItlf/\t = hﬂ?At'
t

In particular, T is a singleton set if and only if Ag = limgjg As.

Proof. Firstly, supT < oo, by Theorem[2.12] If 0 < ¢t < s < 1 then Q4 C €4, and by
Remark At < A and limg o Ay = infy A¢. Our goal is to show that A\ > sup 7,

for all 0 <t < 1. Suppose not. Let A € T be such that A > A, for some 0 < t < 1.
By the definition of T', there is a function v that solves

Asov + Aa(z)v® =0, v > 0, in Q, with v = 0 on 9Q.
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Since €2; is compactly contained in €, infpo, v > 0. Next, let w > 0 be a first
eigenfunction on §2;, that is,
Asow + Ma(z)w® =0, in Q;, and w =0 on 6.

Since A > )\, applying Lemma to v and w in €;, we obtain 0 <
Supyq, (w/v) = 0, a contradiction. Hence, A\; > sup T, for all 0 < ¢

Theorem

(w/v) <
<1 B

<

Ao =infT <supT < irtlf)\t.

Next, we show that sup T' = inf; A;. To see this, for 0 < t < tg, ty small, consider
the family of first eigenfunctions w; that solve

Asow; 4+ Ma(z)wf =0, wy > 0, in Q, and w; = 0 on 9.

Scale w; such that supw; = 1. Calling A\g = inf; A\; and arguing as in Theorem
(see |5, Lemma 5.1]), we obtain a convergent subsequence {wy, }7°, (with ¢; | 0) of
{wt}i<t, and a function wy € C(2) such that limg, o wy, = wo with supwy = 1.
Also,

A wo + )\Oa(x)wg’ =0, wp >0, inQ, and wy >0 on ON.
To show that wy € C(Q) and wy = 0 on 92, we employ an upper bound similar to
that in Theorem Set = supg, a and let € C(Q) be the solution to

Asn = —2Xopt, in Q@ and 1 =0 on K.

Since for any 0 < ¢t < g, 2 C Q, At < Ay, 0 <wy <1 and n > 0 in €, Lemma
implies that wy; < 7 in Q. Thus 0 < wp < 7 in 2, and thus, wy € C(Q) and
wo = 0 on ON.

We now prove that wg > 0 in . Let ; € Q,, | = 1,2,..., be such that
wy, () = 1. Then for some p € Q, ¥ — p as | — oo (choose a subsequence, if
needed). Since wy, < n, it follows that p € . Hence, wy, (p) > 1/2, for t; close
to 0. Take s, close to 0, such that p € Qg (any s < u(p) will do). We take ¢ to
be a positive infinity harmonic function in Q, \ {p} with {(p) = 1/2 and { =0
on 0Q;. Since wy, is positive and infinity super-harmonic in €;, and Qs C £, for
0<t <s, Lemma implies that w;, > ¢ in Q5. Thus wo > ¢ > 0 in Q. In
particular, wy > 0 in €, for any s close to 0. Since €25 exhausts €2 as s decreases
to 0, we have that wg > 0 in . Thus inf; Ay = supT. The claim holds. ([l

Remark 4.6. Let the function u € C(9), the sets €, the eigenvalues \;, 0 < ¢ < 1,
and T be as in the statement of Lemma 5l We claim that the set T is either a
singleton set or the interval [\q, supT]. Set AT = sup7, and assume that T is
not a singleton set. Choose € > 0 such that AT — ¢ > \q. Fix 6 > 0, and for each
0 <t < 1, consider the family of problems

Asovs + (AT = e)a(z)v} =0, v; > 0, in Qy, with v, = 6 on 99;.

By Lemma At > AT — ¢. Hence, Theorem (also see Remark [3.2)) implies
that the above has a unique solution vy € C(Q;), v; > 6, for every 0 < t < 1. If
0 <t; <ty <1, then O, C Q and Ay, < Ay, and we conclude from Lemma
that vy, < vy, in Q,. Call m; = supg, vi, then m; increases as ¢ decreases. We
claim that lim;j o m; = oo. To see this, first we employ Lemma noting that
At > Aq, to observe that supq, (u/vi) = supyq, (u/v¢) = t/4. If sup, my < oo then
it follows that u < (tm¢)/d, in ;. Letting ¢ decrease to 0, we get v = 0 in . This
is a contradiction and the claim holds.
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Define wy = v;/my, in ;. Noting that supg, w; = 1 and arguing as in Theorem
and Lemma (see [3 Lemma 5.1]), one can find a convergent subsequence
{wy, } of {w}(with t; — 0) and w € C(Q2) such that limy, 0wy, — w. Moreover,

Asw + (AT = e)a(x)w® =0, w >0, in Q, with w =0 on 9.

This proves our assertion.

5. ADDITIONAL RESULTS ON SOME SPECIAL DOMAINS

In Sections 5 and 6, we will discuss some results regarding the first eigenvalue
problem on some special domains. The present section contains a discussion related
to the eigenvalue problem on C? domains and on star-shaped domains. If A\
and T are as in the statement of Lemma [£.5] we will show that T is a singleton set
when  is a C? domain, in other words, lims|o A\t = Aq, see Remark

We begin this section by proving that the eigenfunctions corresponding to higher
eigenvalues change sign. This fact is well-known in the context of elliptic operators
on general domains. We provide a proof in this context for C? domains and star-
shaped domains. In this context, recall the result in Theorem that holds on
any bounded domain.

Lemma 5.1. Let Q C R™ be a bounded domain. Suppose that either Q has C?
boundaries or is star-shaped. We assume that (i) a(z) € C(Q) and, infq a(x) > 0,
if Q is star-shaped, and (ii) that a(x) € C(Q) N L>®(Q), a(x) > 0, if Q has a C?
boundary. Let A > \q and v € C(Q) be such that

Asv +da(z)v® =0, inQ, supv=1, v=0 ondQ. (5.1)
Q

Then v changes sign in 2.

Proof. We start with the case when € is a star-shaped domain. Without any loss
of generality, we may assume that €) is star-shaped with respect to the origin o.
Suppose that v > 0 in Q. We scale v as follows. For 0 < ¢t < o0, set y = tx,
we(y) = v(x) and Q = {tx: z € Q}. Note that Q, CQ C O, 0<s< 1<t A
simple calculation leads to

A
Aow; + tja(y/t)wf =0, in £, and w; =0 on 0.

Taking t > 1, close to 1, and using the uniform continuity of a, we have

A
Aoa(y) < tqa(y/th y e

Hence,
Asow; + Aoa(y)w? <0, in Q, and 1813" wy > 0.

This contradicts the definition of A, see Remark and Lemma The claim
holds.
We now prove the lemma when  is C2. We achieve this in six steps. We assume

that v > 0 in (5.1).

Step 1: By Theorem one can find an eigenfunction u > 0 such that
Asou + Aga(z)u® =0, in Q, supu=2, wu=0on . (5.2)
Q
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Step 2: We construct two auxiliary functions. Set o = 3*/3/4, and consider the
ball Br(0), for R > 0. Take m > 0, define

() = ¢(m, R, |z]) = clz| —bla|*®, @ € Brl(o), (5:3)

where ¢ = (1/R) + (86/3)RY3m!/3, and b = om!/3. Using (2.2), for x # o, we
have

1
4, (C 4blffl ® )ﬂxrz/s

-
_ 4£ [ /3] 2/3( 80b|x\1/3+16b2|x|2/3>]

9 3 9

7470 { 3] 2/3( 80b|x\1/3) n 16m1/3b2}

9 3 9

4o B 8Jm1/3|x|1/3
[

/3

= (= e a2 (5 + S (R = [af ) = m < —m.

We record this and other useful facts for v, see (5.3)),

(i) ¥(0) =0, (i) Y(R) > 1, (i) Actp(z) < —m, ¢(x) >0, z € Bg(o) \({;ij
For ¢ > 0, define .

_ _ ||
n(@) = (6, R |2) = (1= ), Va € Br(o).
We note also the following for future reference.

(i) n(R) =0, (i1) n(o) =, (iii) Acn(z) =0, x € Br(o)\{o}.  (5.5)
We introduce additional notation that will be used in Steps 3,4,5. Being a
C? domain,  satisfies an uniform interior ball condition at every point of 9.
Let 2p denote the radius of the optimal ball. For every z € 99, let v(z) denote
the unit inward pointing normal. Then the ball By,(z + 2pr(z)) C Q and z €
0YN OBy, (z + 2pv(z)). For every z € 09, set y = z + pr(z).
Step 3: For every z € 012, define

2, =0 \ (UZGBQBp/Q(z + pV(Z)/2)) . (56)

Also, set
b, = igrllfu and ¢, = igrzl*fv, (5.7)

where u is as in Step 1 and v is as in (5.1)).
Step 4: We work in the balls B,(y) and Bs,(z). Here, B,(y) C QN By,(z).
We recall the constructions in Step 2, (5.3)-(5.5) and (5.7). Let u = supg a(z).
Recalling Step 1, take m,, = Aqu and m,, = Au. For each fixed z € 99, set in (5.3)),
¢u(x) =¢(mu>20’ |x—Z|), "/)v(x) :w(manP’ |$_Z|)7 T e B2P<Z)' (5'8)
Next, in Step 2, take

nu($> = U(Euapa |x - Z/|), nv(x) = n(gm P, |"1j - yl)’ VS Bp(y) (59)

We also note that if # € B,(y) and lies on the segment yz, then
Lz — 2|

Nu(T) = T’ no(T) = P

M' (5.10)



22 T. BHATTACHARYA, L. MARAZZI EJDE-2013/47

Step 5: We claim that for each z € 9Q and = € B,(y)

(@) < u(x) < 29u(x), n(z) < v(@) < Yo(). (5.11)
We present details for u, the proof for v will follow analogously. We apply the
properties of ¢, from (5.4) in Bs,(z) N Q, call w = 21,,. Using Step 1, (5.4]) and
(5.8), we see that

Asow < =8Xap, and Agu > —8qu, in Ba,(z) NQ.

From (5.2), (5.4) (ii) and (iii), we see that w(z) > 2 > u(x), x € 0B2,(2) N2, and
w > u on 02N Byy(z). The comparison principles in the Lemmas and yield
that u < 29y, in Ba,(2) N Q. To show that 7, < u, in B,(y), we note

Asn, =0, and A, u<0, in B,(y)\ {y}.

Using (5.5)-(5.7) and (5.10), we have that n,(z) < u(z), = € B,(y) and ¢, =
nu(y) < u(y). Thus, Lemma implies that 7, < u in B,(y). Thus holds.

If z € Q\ Q. (see (5.6)), then one can find a closest point z € 99, such that
x € B,(y), where y = z + pv(z). As a result, we have

mlz) _ u@) _ 2la)

by (1‘) ’U(QS) 7]1}(£)
Next, we observe that z lies on the segment yz. From Step 2 and ([5.10]), we conclude
that there are positive constants ki, k2 and d, depending only on ¢, £,, A, Aq, u
and p, such that

(z

v(z

Step 6: We recall (5.1), (5.2), (5.12) and Lemma Choose 1 < 7 < (A Aq)/5.

Since u — v = 0 on 01, supgu = 2 and supg v = 1, the function v — v will assume
a positive maximum in 2. We will show that this leads to a contradiction thus
proving the lemma.

Since supg(u — v) > supyn(u — v), by Lemma there is a point z; € €,
where u — v takes its supremum and (\/Aq)Y3v(21) < u(z1). As (u—70)(z1) >0
and (u — 7v) = 0 on 91, the function v — 7v has a positive maximum in Q. An
application of Lemma [2:2] to u and v yields that there is an zo € Q such that

~

S

k < < ko, for every z € Q with dist(z, 9Q) < d. (5.12)

~—

A
sup(u — 7v) = (u — 7v)(x2) >0, and 7(7)1/3

Q Ao
We iterate this argument. Suppose that we have shown for some m = 1,2,..., that
there is an z,, € € such that

v(xg) < u(xs).

sup(u — 7™ 1) = (u — 7™ ) (2,,) > 0, Tm_l(%)l/?)v(xm) < u(Zm)-
Q Q

Since u — 7™v = 0 on 92, the function v — 7"v has a positive maximum in €.
Applying Lemma [2.2) to v and 7"v, we see that there is an 2,11 € Q such that

stgllp(u — 7)) = (u—7"0)(Tmt1) >0, T (E) / V(@ma1) < u(@ms1)-
Thus, we have shown that for each m = 1,2, ..., there is an z,, € {2 such that

(X)) = 7" 0(T).
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Recall that the functions u and v are in C(Q), v > 0, v > 0, in Q, and u = v = 0 on
00. Tt follows that v(z,,) — 0 as m — oo. that is, x,, is close to I for large m.
Combining this with , we obtain 7™ < ko, for all values of m that are large
enough. This is a contradiction and the lemma holds. Incidentally, 7 ,
(5.12)) and Lemma lead to u < kov in . This could have been used instead to
achieve the last part of the proof. ([l

Remark 5.2. Lemma leads to the following conclusions.

(i) Suppose that A = A, and u and v are two positive eigenfunctions. Adapting
the arguments in Step 2-5 of Lemma and applying Remark we have that
k1 <ufv < kg, in Q.

(ii) By Lemma Remark {4.6{and Lemma [5.1} it follows that lim;jo Ay = AT =
Aq. Thus T is a singleton set.

6. CASE OF THE BALL

We now turn our attention to the case of the ball. We will take the weight
function a(x) to be radial. We will study the radial version of the eigenvalue problem
and present some properties of the radial eigenfunction. Under the hypothesis that
a(z) is a constant function, we provide a description of the eigenvalues that support
radial eigenfunctions and show that there are infinitely many such eigenvalues. We
end the section by presenting a proof of the fact that if the weight function is a
constant then the first eigenfunction has one sign and all radial first eigenfunctions
are unique up to scalar multiplication.

We begin by recalling that the existence of the first eigenvalue and a positive first
eigenfunction is guaranteed by Theorem We apply now the results of Section
3 and 4 to show that there is a first eigenfunction v that is positive and radial.

For R > 0, let = Bg(0), and we take a(z) = a(]z|) > 0. For ease of notation,
we set Ap = Ap (o) and r = |z|. If v(z) = v(r) then the radial expression for the
infinity-Laplacian in gives us

dv,2d*v
3 3
AoV + Aa(z)v® = (%) 02 + Aa(r)v(r)®, « € Bg(o). (6.1)
Let us also recall from Section 3 the following definition of F(¢) for 0 <t < 1:
1
ds
F(t) = —- 6.2
0= [ oo (62

The ideas of the proof of Theorem [6.1] and Lemma that follow, are similar to
those in [6l Lemma 6.1].

Theorem 6.1. Let a(z) € C(Bgr(0)) N L>®(Bg(0)), a(z) > 0, and A > 0. Assume
that a(xz) = a(|z|). Let § > 0, and u solve
1/3

T t
u(z) =ulr) =m— (3)\)1/3/ {/ a(s)u(s)? ds} dt, (6.3)
o tJo
where u(o) = m > 0 is so chosen that w(R) = 6. Then u € C(Bg(0)) and the
following hold.
(i) If \ < Ag and 6 > 0 in (6.3), then u > 0, in B, and u is the unique solution
to

Aot + Aa(z)u® =0, u >0, in Br(o), and u(R) = . (6.4)
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(ii) If X = Ap, in , then there is a positive function v that solves m
B, with m =1, v(R) = 0. Moreover, v is a radial first eigenfunction.
(iii) Let a(x) = k be a positive constant and F be as (6.2]). Then the positive
function u defined by
F(u(r)/m)) = (\k)!*r, (6.5)
is a radial solution to with § > 0. We also have, (\k)/*R = F(5/m).

Proof. We have broken up the proof into five steps. We take 6 > 0. Set u =
supp a(x) and v(r) = infp () a(z).

Step 1. For any m > §, define u to be the local solution to . By Picard’s
iteration, u exists near o and is decreasing in r. Since u € C?, near o (except
perhaps at o), we obtain by a differentiation that u solves (6.4))(see (6.1)) in r > 0,
for small r. We record a simple estimate. For small r > 0, since, u(r) < u(s) < m,
for 0 < s < r, we have that

(340(r)A) Y Bu(r)rd/3 s [T [ aievus1d dsl 7 ap < BN Pmrts?
<o [ [ [ atuteras] T ar < -

4 ) = 4
(6.6)
Step 2. We show that u is a viscosity solution to the differential equation in (6.4),
in a neighborhood of 0. Assume that for some ¢ € C%(Bg(0)), u — 1 has a local
maximum at o, that is, u(z) — u(o) < ¥(z) — (o), for  near o. Employing (6.3),
and noting that r = |z|, we have
(34u)\)1/3m|:v|4/3

- . < u(@) - u(0) < (Dib(0),2) +olfa]), as || — 0.

Take x = —0Dw(0), 8 > 0. Next, dividing both sides by 6 and letting § — 0, we
get Dip(o) = 0. Hence, Asotp(0) + Aa(o)u(0)® > 0, and u is a sub-solution to (6.3).

Suppose that u — 1 has a minimum at o; that is, ¥(z) — (o) < u(z) —u(o) < 0.
Using (6.3) and and arguing as above, we see that Dy (o) = 0. Clearly, now
and lead to

(D*Y(0)z, ) B ()N Bu(r)|a|*/?

2 4 ’
Taking, for instance, x = rey, dividing both sides by r? and then letting r — 0, we
see that D?(0) does not exist. Thus, u —1 can not have a minimum at o. Clearly,
u is a super-solution and, hence, a local solution to .
Step 3. Steps 1 and 2 show that for any m > §, the formula in provides a
local radial solution to (6.4). By Step 1, u exists near o and u is decreasing. Let
€ > 0 be small. For r > ¢, an integration of (also see (6.6)) leads to
1/3

m— (3)\,u /07” u(s)? ds) 1/37“ <wu(r)<m-— (3/\1/(5) /05 u(s)? ds) (r—e).

Hence, u > ¢ in some subinterval [0,¢] C [0, R], where ¢t > 0. Set

+ o(|z]?) < u(x) — u(o) < — as |z| — 0.

ry=sup{r:u(t) >4, 0<t<r <R} (6.7)
Step 4. From (6.3) and Step 3, it is clear that u € C(B;, (0)) and solves
Asu+ da(z)u® =0, in By, (0), and u > 4§ on dB,, (o). (6.8)

We also note that any positive scalar multiple of u also solves (6.3). For Cases 1
and 2, we assume that 6 > 0 and A < Ap.
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Case 1: If ry = R then by (6.7), u(R) > 4. If u(R) > 4, scale u such that u(R) = 4.
This provides us with the unique solution to , see Remark
Case 2: Suppose that 7y < R. By the continuity of u, u(ry) = . We continue u
past s, using (6.3). If u(r) > 0, ry <r < R, then we scale u such that u(R) = 4.
Suppose that there is an 7 with ry < 7 < R such that u(7) = 0 (see the estimate
in Step 3). Then u > 0 in B;(o) and satisfies the differential equation in (6.8), in
Byr(0), with u(7) = 0. If 7 < R, by Remarks and we have that A > Ap,
a contradiction. If ¥ = R, then u = 0 in Bs(0), by Lemma Thus v > 0 in
0 < r < R. We may now scale u such that u(R) = §. Uniqueness follows from
Remark This proves part (i).
Step 5. Fix § > 0. For each 0 < A < Ap, part (i) provides us with a unique
solution to which we label as uy. The function u) is positive and radial. As
has been shown, uy also solves . Observe that supg uy = ux(0). Working with
the functions vy = ux/ux(0), and arguing as in Theorem there is a subsequence
vy, — U, a8 Ay — Ap, where v is in C'(B) and solves with v|sp = 0. Moreover,
by ([A.4), 6/ux,(0) — 0. It is clear that v solves (6.3), in B with m = 1, that is,
1/3

o(@) = v(r) =1 — (3\p)"/3 /0 [/Ota(s)v(s)?’ds] dt, v(R)=0.

Thus v is a first eigenfunction in Br(0). Next, if for some A > 0, there is a function
u, given by in B, that is positive and vanishes on |z| = R, then A > Ap. This
follows from Remark since u solves with § = 0. Lemma now implies
that A = Ap.

Part (iii) of the theorem can be obtained by a differentiation. Also see the proof
of Lemma [3.111 O

From hereon we will take a(r) = 1. Our goal will be to show that, on a ball,
an eigenfunction, corresponding to the first eigenvalue, has one sign and all radial
solutions are scalar multiples of each other. Let us set

B = (/0 (1_?4)1/4)4. (6.9)

Remark 6.2. In the statement of Theorem (6.1))(part (iii)), if we take a(z) = 1,
6 =0 and A = A\p, then we obtain
8= AgR*.

We argue its validity as follows. Take A < Ap. For § > 0, the corresponding
solution w is positive and unique, see Lemma[3.5] We now recall the argument used
in Theorem Set m = supg u and recall that m = m(d) becomes unbounded
as A — Apg, see (4.4). Thus, §/m — 0 as A — Ap. As a matter of fact, §/m
depends only on A. Taking limits in the formula given in part (iii) of Theorem [6.1

the formula for A holds. Also the eigenfunction w(z) = u(r), r = |z|, given by
Theorem satisfies the radial version of (6.4); that is,

2
(%)2%‘ + %u?’ =0, in Br(o), «/(0)=0, u(R)=0. (6.10)

We now show that the eigenvalue problem on the ball has infinitely many eigen-
values. We also compute the first eigenvalue of an annulus. For 0 < k < 7 < o
and p € R", let Q = B.(p) \ Bx(p) be the spherical annulus centered at p. Set

2p =7 —r and B = B,(p). One of our results shows that A\g = A = Bp~*. Since,
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Q) contains a ball of the same size as B, this shows that there is no strict domain
monotonicity, in general. We refer the reader to Remark

Lemma 6.3. Let R >0, p € R™ and 3 be as in . Then the problem
Asou+ M =0, in Br(p), and u=0 on dBg(p),

has infinitely many eigenvalues A. Moreover, the following hold.

(i) The eigenvalues given by \¢ = (20 —1)*R~*, ¢ =1,2,..., have correspond-
ing radial eigenfunctions.

(#i) Let 0 < k < 7 < 00, p € R", and Q = B,(p) \ B.(p) be the spherical annulus
centered at p. Set 2R =1 — k and B = Bgr(p). Then \q = Ap = BR™%.

Proof. We carry out the proof in four steps. We refer to Theorem for the
existence of a radial first eigenfunction, also see (6.10f). The proof has ideas similar
to those in [6, Lemma 6.1]. Set u/(r) = du/dr.

Step 1: Set r = |z — p|, and let u(x) = u(r), 0 <r < R, be a positive radial first
eigenfunction of Ao, on B. We scale supg u = 1, and extend « to the rest of R” as
follows. To aid our construction, we recall and set a(x) = 1; that is,

. T t 1/3
u@y:mm:1fanyﬁ/mL/u@ﬁ@] dt, '(0)=u(R)=0. (6.11)
0 0
First we use an odd reflection about » = R. Define

ur(r) = { U 0<r<R,
n —u(2R—7r), R<r<2R.

Thus, u; satisfies

dul 2d27.L1

Car) @

in (0,2R), except perhaps at = R. Next we use an even reflection about r = 2R
and define

+ Apud =0,

) ur(r), 0<r<2R,
ug(r) =
2 u1(4R—7r), 2R <r <A4R.

Finally, we use a 4R-periodic extension of uy to all of [0,00). More precisely, for
0<r<oo,let k=1,2,..., besuch that 4kR < r < 4(k + 1)R. Now, define

Uso (1) = ug(r — 4kR), for 4kR <r < 4(k+ 1)R.
Step 2: Our goal is to show that us, solves

It is clear from Step 1 that we need check this assertion only at » = R,2R. We
prove this first for » = R. We work with u;. Suppose that 1 € C?(R"), and u; — 1
has a maximum at a point ¢ € 0Bgr(p). We may assume that the segment pq lies
along the positive x,, axis. Let e, denote the unit vector along the positive x,, axis.
By our construction and (6.11), u1(g) = u1(R) = 0, thus implying that

ui(x) < ¢(x) —P(g) = (D(g),z —q) +o(|lz —q), asz—q. (6.13)

Take z € OBg(p). Since ui(xz) = 0, dividing both sides by |z — ¢| and letting
x — q, we get Di(q) = £|D(q)|en. Next, for small 6, select x = g + fe,,. Since
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u(r) = u(R + 0), we have

R+6 0

u1(|9|+) < m(D@[J(q),en) +o(l), asf—0.

We select 6 < 0 and note that ui (R + 0) > 0, see (6.11)) and Step 1. Noting that
u}(R) = v/ (R—), we obtain (Dv(q), e,,) < u}(R). Now choosing 6 > 0 and recalling
that uy (R + 6) < 0, we obtain D (q) = u}(R)e,. Next, a simple calculation leads
to Asot(p) = (U} (R))?Dpntb(p). To determine the sign of D,,,1(p), we use (6.13)
to obtain

(D*P(q)(z — q), 2 — q)

2
Taking x = g + fe,,, where 6 is small, it follows that

(@) < (u (p)ensx —q) + to(le—ql?), asz—q. (6.14)

92
ui(R +0) < 0u(R) + (E)szp(q) +o(6?), asf — 0.

Using (6.11) and Step 1, a differentiation yields that uf(R—) = u{(R+) = 0.
Clearly, u; is C2 near r = R, if we define u/(R) = 0. Using Taylor’s expansion of
uy at r = R, we obtain, for small 6,

2 2
ur (R +0) — 0u(R) = Sl (R) + o(6?) < & Dla) + 0(6?), as0 0.

Hence, D,,»,1(q) > 0 and now recalling that u(g) = 0, we have A (q)+Apu(q) =
() (R))?Dyntb(q) > 0. Thus u is a sub-solution near |z| = R.

Now suppose that for some 1) € C2, u; — 1) has a minimum at some ¢ € OBg(p).
Then (—u1) — (—%) has a maximum at ¢. Arguing as above we conclude that u; is
a super-solution near |z| = R.

To prove that us solves near |z| = 2R, we observe that u._(0+) =
ul (2R) = 0. This together with the arguments employed in Theorem (see Step
2) may be now used to treat the case r = 2R. Thus holds.

Step 3. From our construction of us, in Step 1, it is clear that us((2—1)R) = 0,
for £ =1,2,.... Next, by a differentiation, we see that the function w(r) = us((20—
1)r) provides us with an eigenfunction on Br(p) corresponding to the eigenvalue
e = (2¢ — 1)*3/R*. This proves part (i).

Step 4: We now address part (ii) of the lemma. Recall that Q@ = {z: x < |z| < T}
and 2R = 7—k. If, for some £ = 0,1,2,..., kK = (2+1)R then 7 = (2(+3)R. From
Step 1, for every ¢, uoo((2¢+1)R) = 0 and uc, has one sign in [(2(+1)R, (2(+3)R).
Hence, s = 0, on 09, and us, has one sign in €. Thus, and Lemma
imply that ue(r), restricted to [, 7], is a first eigenfunction on €2, and A\g = Ap.
If 20+ 1)R < k < (2¢+ 3)R for some /¢, then the function v(r) = U (r — 9), 6 =
Kk — (20 + 1)R is a first eigenfunction in [k, 7]. If 0 <k < R and § = R — k, then
v(r) = uso(r +9), K <r < 7, is the desired eigenfunction. Note that the ordinary
differential equation in Remark is translation invariant. In any case, A\q = Ap.
Note also that if A = By,(p) \ {p} then g4 = Ap. O

Finally, we prove that the first eigenfunction, on the ball, has one sign, and radial
solutions are unique up to scalar multiplication. Simplicity of Ap would follow if
every solution is radial. However, it is not clear to us if this is indeed true.

Theorem 6.4. Let R > 0, let u € C(Br(0)) solve the eigenvalue problem
Asu+ Apu® =0, in Br(o), and wu=0 on dBg(0).
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1t follows that (i) uw has one sign in Bg(o), and (i) if u is radial and supgu = 1
then u is unique.

Proof. Set B = Bg(0); scale u so that u(o) = 1. Set BY = {z € B: u(z) > 0}
and B~ = {z € B: u(z) < 0}. Note that u is infinity super-harmonic in B+ and
infinity sub-harmonic in B~.

We prove part (i). Assume that u changes sign in B. We discuss the case when
a component C of B~ is compactly contained in B. Since u is an eigenfunction on
B~, Remark implies that A\c < Ap. This contradicts the strict monotonicity
shown in Remark Thus, if B~ is non-empty then B~ N dB,.(0) is non-empty,
for every r close to R.

We derive bounds for w. Set m = infgu and M = supgu. By our hypothesis,
m <0< M. For any L # 0, select b = b(L) such that (b4 3LR)*/3 — b*/3 = —4L.
Then the function

V(@) =(|z,L) =1+ ﬁ [(b+ 3L|z)? — 43|, for x € B,

satisfies
Aty =L, in B\ {o}, ¥(0)=1, ¥(R)=0
Set ¢M($) = ¢(|$|a _8)‘BM3) and d}m(x) = w(|$|78)‘3‘m‘3) Then

Asothpr = —8Ap M3 < Au = —Apu® < A, = 8Apm/>.

Since u(0) = ¥ (0) = ¥pr(0) = 1, and ¥, (R) = Y (R) = w = 0 on IB, Lemma
[2.6] implies
Um(z) <ulz) < Yu(z), forz € B. (6.15)

Consider all rotations of B about 0. Let A be an n x n, orthogonal matrix. Define

we(z) = igfu(Ax), for x € Q.

Set r = |x|, clearly, ug(x) = ue(r) = infyp (o) u and u(o) = ug(o) = 1. Since A is
rotation invariant, u(Az) is an eigenfunction. Arguing as in [6l Theorem 3.1] (this
appears in the Perron method and uses a perturbation, see equations (3.2)-(3.4)
therein), uy is a super-solution; that is,

Asug+ Apuf <0,in B, and wuy(R) =0.

Since every u(Az) satisfies (6.15]), we have ¥, (z) < ug(z) < ¥pr(z) in Q. Thus,
by Lemma [2.10] g is locally Lipschitz continuous in B, and u,(r) assumes the zero
boundary data continuously.

Define rg = sup{r : us(t) > 0, VO < ¢ < r}. Recalling that u(o) = 1 and B~
is non-empty, we see that 0 < 7o < R and wuy(rg) = 0. Since every component
of B~ meets 9B, uy(r) < 0inrg <r < R. Set A ={x: ro < |z|] < R} and
d= (R —rg)/2. We take v = —uy to obtain

Aoov—l—/\Bv?’ZO, v>0,inA and v=0onJdA.

Next, Lemma implies that Ay = Ap, (o) > Ap. By Remark and Lemma
we get v < 0 in A. This is a contradiction and it follows that v > 0 in B, and
hence, u > 0.

We now prove part (ii). Let v > 0 be the radial solution in B given by part (ii)
of Theorem Suppose that u is a radial first eigenfunction on B. Since every
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eigenfunction has one sign, we may use Remark [3.5]in B,(0), 0 < r < R. Thus

g:u(r)<@<u(r): ap L o0<t<r
v

o(r) T u(t) T o(r)  oB o)V

Thus v(r) = (v(0)/u(0))u(r) for any 0 < r < R. Thus u is a scalar multiple of v
and uniqueness follows. (Il

Acknowledgments. We thank the anonymous referee for reading the paper care-
fully and for his/her comments. We also thank Ahmed Mohammed for some dis-
cussions at the initial stages of this work.

REFERENCES

[1] G. Aronson, M. Crandall, P. Juutinen; A tour of the theory of absolute minimizing functions,
Bull. Amer. Math. Soc., 41 (2004), 439-505.

[2] M. Belloni, B. Kawohl; The pseudo p-Laplace eigenvalue problem and viscosity solutions as
p — 0o, ESAIM Control Optim. Calc. Var., 10(2004), 28-52.

[3] H. Berestycki, L. Nirenberg, S.R.S Varadhan; The principal eigenvalue and the mazimum
principle for second order elliptic operators in general domains, Comm. Pure. Appl. Math.
47(1) (1994) 47-92.

[4] T. Bhattacharya, E. DiBenedetto, J. J. Manfredi; Limits as p — oo of Apup = f and related
extremal problems, Some topics in nonlinear PDEs (Turin, 1989), Rend. Sem. Mat.Univ.
Politec. Torino 1989, Special Issue, 15-68 (1991).

[5] T. Bhattacharya, A. Mohammed; On solutions to Dirichlet problems involving the infinity-
Laplacian, Advances in Calculus of Variations, vol 4, issue 4 (2011) 445-487.

[6] T. Bhattacharya, A. Mohammed; Inhomogeneous Dirichlet problems involving the infinity-

Laplacian, Advances in Differential Equations, vol 17, nos 3-4, (2012) 225-266.

I. Birindelli, F. Demengel; First eigenvalue and mazimum principle for fully nonlinear sin-

gular operators, Adv. Differential Equations 11(1) (2006), 91-119.

[8] M. G. Crandall; A wvisit with the co-Laplace equation, Calculus of Variations and Nonlinear
Partial Differential Equations, Lecture Notes in Math. 1927. pp 75-12, Springer Berlin, 2008.

[9] M. G. Crandall, L. C. Evans, R. F. Gariepy; Optimal Lipschitz extensions and the infinity-
Laplacian, Calc. Var. Partial Differential Equations 13(2001), no. 2, 123-139.

[10] M. G. Crandall, H. Ishii, P. L. Lions; User’s guide to wviscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc. 27(1992) 1-67.

[11] L. C. Evans, C. K. Smart; Everywhere differentiability of infinity-harmonic functions. To

appear.
[12] L. C. Evans, O. Savin; C1® regularity for infinity-harmonic functions in two variables, Calc.
Var. Partial Differential Equations, 32 (2008), 325-347.

[13] P. Juutinen; Principal eigenvalues of a very badly degenerate operator and applications, J.
Differential Equations 236 (2007), no. 2, 532-550.

[14] P. Juutinen, P. Lindqvist, J. J. Manfredi; The co-eigenvalue problem, Arch. Rat. Mech. Anal.
148(2) (1999) 89-105.

[15] P. Juutinen, P. Lindqvist; On the higher eigenvalues for the oco-eigenvalue problem, Calc.
Var. Partial Differential Equations, 23(2005), no 2, 169-192.

[16] G. Lu, P. Wang; Inhomogeneous infinity-Laplace equation, Adv. Math. 217 no 4 (2008),
1838-1868.

[17] G. Lu, P. Wang; Infinity-Laplace Equation with non-trivial right-hand side, Electron. J.
Differential Equations, 2010 (2010), no 77, 1-12.

[18] Y. Peres, O. Schramm, S. Sheffield, D. Wilson; Tug of war and the infinity-Laplacian, J.
Amer. Math. Soc. 22 (2009), no 1, 167-210.

[7

TILAK BHATTACHARYA
DEPARTMENT OF MATHEMATICS, WESTERN KENTUCKY UNIVERSITY, BOWLING GREEN, KY 42101,
USA

E-mail address: tilak.bhattacharya@wku.edu



30 T. BHATTACHARYA, L. MARAZZI EJDE-2013/47

LEONARDO MARAZZI
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506-0027, USA
E-mail address: leonardo.marazziQuky.edu



	1. Introduction
	2. Comparison principles and some preliminary estimates
	3. Existence and properties of solutions to (2.8)
	4. Existence of the first eigenvalue and the first eigenfunction
	5. Additional results on some special domains
	6. Case of the ball
	Acknowledgments

	References

