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AN EIGENVALUE PROBLEM FOR THE INFINITY-LAPLACIAN

TILAK BHATTACHARYA, LEONARDO MARAZZI

Abstract. In this work, we study an eigenvalue problem for the infinity-

Laplacian on bounded domains. We prove the existence of the principal eigen-

value and a corresponding positive eigenfunction. This work also contains
existence results, related to this problem, when a parameter is less than the

first eigenvalue. A comparison principle applicable to these problems is also

proven. Some additional results are shown, in particular, that on star-shaped
domains and on C2 domains higher eigenfunctions change sign. When the

domain is a ball, we prove that the first eigenfunction has one sign, radial
principal eigenfunction exist and are unique up to scalar multiplication, and

that there are infinitely many eigenvalues.

1. Introduction

In this work, we study a version of the eigenvalue problem for the infinity-
Laplacian on bounded domains. In a sense, this is a follow-up of the works in
[5, 6] that discuss Dirichlet problems involving right hand sides that depend on the
solution.

To describe the problem better, we introduce some notation. Let Ω ⊂ Rn,
n ≥ 2, be a bounded domain, Ω its closure and ∂Ω its boundary. We take a(x) ∈
C(Ω) ∩ L∞(Ω), a(x) > 0. We seek a pair (λ, u), λ real, and u ∈ C(Ω) which solves

∆∞u+ λa(x)u3 = 0, in Ω and u = 0 on ∂Ω. (1.1)

We refer to λ as an eigenvalue of (1.1) and to u as an eigenfunction corresponding
to λ. The operator ∆∞ is the infinity-Laplacian and it is defined as

∆∞u =
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
.

Since u is only continuous in Ω and the infinity-Laplacian is a nonlinear-degenerate
elliptic operator, solutions are to be understood in the viscosity sense. Questions in-
volving the infinity-Laplacian have been attracting considerable attention recently.
In particular, existence, uniqueness and local regularity have become topics of great
interest. For greater motivation and context, we direct the reader to the works
[1, 4, 8, 9, 18]. Our current work is more along the lines of [5, 6, 16, 17]. From
hereon, we will often refer to (1.1) as the eigenvalue problem.

2000 Mathematics Subject Classification. 35J60, 35J70, 35P30.

Key words and phrases. Infinity-Laplacian; first eigenvalue; comparison principle.
c©2013 Texas State University - San Marcos.

Submitted July 20, 2012. Published February 8, 2013.

1



2 T. BHATTACHARYA, L. MARAZZI EJDE-2013/47

One of the main tasks is to be able to characterize the principal or the first
eigenvalue of (1.1). The seminal work [3] provides us with an approach to achiev-
ing this goal. While [3] treats the case of the Laplacian, the ideas employed in it are
general enough to be applicable to nonlinear operators, as shown in [7]. The work
that comes closest to ours is in [13], which treats the case of the one-homogeneous
infinity-Laplacian. One of the major discussion in [3, 7, 13] is the maximum princi-
ple when the parameter λ is less than the first eigenvalue. Our work also addresses
this issue in the context of (1.1) and we prove analogues of some of the results
known for elliptic operators.

We also mention that there is great interest in studying the equation that arises
when one takes the limit, as p tends to infinity, of the first eigenvalue problem for
the p-Laplacian. The resulting problem is often referred to as the infinity-eigenvalue
problem, see for instance [2, 14, 15]. The results in this current work, however, bear
no relation to the questions that arise from this problem.

We have divided our work as follows. Section 2 contains preliminary results
and estimates that will be needed for the existence of the first eigenvalue and a
positive eigenfunction. We also prove a comparison principle that will be used
quite frequently in this work. We also show that if λ is large enough then solutions
to the problem in (1.1) change sign. A related result appears in Section 5. Section
3 contains results for the case λ < λΩ, where λΩ stands for the first eigenvalue
in (1.1). We prove a version of the maximum principle and show the existence of
solutions to (1.1) with non-trivial boundary data and right hand side. Section 4
contains a proof of the existence of the first eigenvalue and a corresponding positive
eigenfunction. Also included here, is a result about the monotonicity of the first
eigenvalues of the level sets of a positive eigenfunction on Ω. In Section 5, we
study (1.1) on C2 domains and prove some results. This also contains a brief
discussion for star-shaped domains. In particular, we show that eigenfunctions,
corresponding to higher eigenvalues, change sign. It is not clear to us, at this time,
if the above result holds in general domains. Also, we have been unable to decide
if, in general, a first eigenfunction has one sign and if λΩ is simple. A partial result
appears in Section 6. In Section 6, we take up the case of the ball and study the
radial first eigenfunction when a(x) is radial. Next, we discuss the radial version of
the eigenvalue problem when a(x) is a constant function. In particular, we prove
that there are infinitely many eigenvalues that support radial eigenfunctions. In
addition, we present a proof that the first eigenfunction, on the ball, has one sign
and the radial first eigenfunctions are unique up to scalar multiplication.

2. Comparison principles and some preliminary estimates

This section contains a version of a comparison principle which will be used
throughout this work. We also list some estimates which will assist us in proving
the existence of a first eigenvalue of (1.1). In particular, we provide conditions under
which solutions to (1.1) with positive boundary data may have a priori bounds. As
pointed out in the introduction, we also prove that solutions to (1.1) change sign if
λ is large enough.

We start with some notation. We work in Rn, n ≥ 2, and if x ∈ Rn, we will
sometimes write x = (x1, x2, . . . , xn). By e1, e2, . . . , en we denote the unit vectors
along the positive x1, x2, . . . , xn axes respectively. We will use o to denote the
origin. By Bs(p), s > 0, we denote the ball of radius s centered at p. We reserve λ



EJDE-2013/47 AN EIGENVALUE PROBLEM 3

to be a real number and it will represent the parameter in the differential equation
in (1.1). By λΩ, we will mean the first or the principal eigenvalue of the problem
on the domain Ω. A careful definition of λΩ will be provided later in Sections 3 and
4. Unless otherwise mentioned, the functions we encounter in this work will all be
continuous. Also, throughout this work, all differential equations and inequalities
are to be understood in the sense of viscosity, see [10].

We recall that the in-ball of a domain Ω is the largest ball that is contained in
Ω, and the out-ball of Ω is the smallest ball that contains Ω.

Let Ω ⊂ Rn be a domain, f ∈ C(Ω×R,R) and b ∈ C(∂Ω). A function u ∈ C(Ω) is
said to be a viscosity sub-solution to ∆∞u = f(x, u) or said to solve ∆∞u ≥ f(x, u),
in Ω, if the following holds. For any ψ ∈ C2(Ω) such that u−ψ has a local maximum
at a point p ∈ Ω, we have

∆∞ψ(p) ≥ f(p, u(p)).

Similarly, u ∈ C(Ω) is said to be a viscosity super-solution to ∆∞u = f(x, u) or
said to solve ∆∞u ≤ f(x, u), in Ω, if, for any ψ ∈ C2(Ω) such that u − ψ has a
local minimum at q ∈ Ω, we have

∆∞ψ(q) ≤ f(q, u(q)).

A function u ∈ C(Ω) is a viscosity solution to ∆∞u = f(x, u), if it is both a
sub-solution and a super-solution.

We now introduce the following definitions in relation to the problem (1.1). We
define u ∈ C(Ω) to be a sub-solution to the problem

∆∞u = f(x, u(x)), x ∈ Ω, and u = b on ∂Ω, (2.1)

if u satisfies ∆∞u ≥ f(x, u), in Ω, and u ≤ b on ∂Ω. Similarly, u ∈ C(Ω) is a super-
solution to (2.1) if u satisfies ∆∞u ≤ f(x, u), in Ω, and u ≥ b on ∂Ω. We define
u ∈ C(Ω) to be a solution to (2.1), if it is both a sub-solution and a super-solution
to (2.1).

Let us also note that the operator ∆∞ is reflection, rotation and translation
invariant. We will also have the need to employ the radial version of ∆∞u, see
Section 6. Suppose that for some p ∈ Rn and for some ρ > 0, we have u : Bρ(p)→
R. If u(x) = u(r), where r = |x− p|, then we obtain by a differentiation that

∆∞u =
(du
dr

)2 d2u

dr2
, r < ρ. (2.2)

Setting σ = 34/3/4, we also note that if u(x) = σ|x − p|4/3, then ∆∞u = 1, x ∈
Bρ(p), in the sense of viscosity.

We now gather various preliminary results we will need in the rest of this work.
We start with a comparison principle. This is a variant of a result proven in [5],
see Lemma 4.1 therein. We provide details of the proof of this version.

Lemma 2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain, f : Ω × R → R and
g : Ω× R→ R be continuous. Suppose that u ∈ C(Ω) and v ∈ C(Ω).

(a) If supΩ(u−v) > sup∂Ω(u−v) and the following hold, in the sense of viscosity,

∆∞u+ f(x, u(x)) ≥ 0 and ∆∞v + g(x, v(x)) ≤ 0, ∀x ∈ Ω,

then there is a point p ∈ Ω such that

(u− v)(p) = sup
Ω

(u− v) and g(p, v(p)) ≤ f(p, u(p)).
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(b) Analogously, if infΩ(u− v) < inf∂Ω(u− v) and

∆∞u+ f(x, u(x)) ≤ 0 and ∆∞v + g(x, v(x)) ≥ 0 ∀x ∈ Ω,

then there is a point q ∈ Ω such that

(u− v)(q) = inf
Ω

(u− v) and f(q, u(q)) ≤ g(q, v(q)).

Proof. We employ the ideas in [10] and use the concept of sub-jets and sup-jets.
We will prove part (a). The proof of part (b) will follow in an analogous manner.
Set M = supΩ(u− v). By our hypothesis, M > sup∂Ω(u− v). Define, for ε > 0,

wε(x, y) := u(x)− v(y)− 1
2ε
|x− y|2, (x, y) ∈ Ω× Ω. (2.3)

Set Mε := supΩ×Ω wε(x, y), and let (xε, yε) ∈ Ω × Ω be such that Mε is attained
at (xε, yε). The following statements are well-known, see [10].

lim
ε→0

Mε = lim
ε→0

(
u(xε)− v(yε)−

|xε − yε|2

2ε

)
= M, lim

ε→0

|xε − yε|2

2ε
= 0.

Let p ∈ Ω be such that xε and yε → p, as ε→ 0. Clearly, M = u(p)− v(p). Since
M > sup∂Ω(u − v), there is an open set O, compactly contained in Ω, such that
p, xε and yε ∈ O.

Next, since (xε, yε) is a point of maximum of wε(x, y), ((xε − yε)/ε,Xε) ∈
J̄2,+u(xε) and ((xε − yε)/ε, Yε) ∈ J̄2,−v(yε). Moreover, we have, see [10],

−3
ε

(
I 0
0 I

)
≤
(
Xε 0
0 −Yε

)
≤ 3
ε

(
I −I
−I I

)
.

The above clearly implies Xε ≤ Yε, and using the definitions of J̄2,+ and J̄2,−, we
see that

−f(xε, u(xε)) ≤
〈Xε(xε − yε)

ε
,

(xε − yε)
ε

〉
≤
〈Yε(xε − yε)

ε
,

(xε − yε)
ε

〉
≤ −g(yε, v(yε)).

(2.4)

Now let ε→ 0 to conclude that g(p, v(p)) ≤ f(p, u(p)). �

We now state a few consequences of the above lemma. The first is an application
of Lemma 2.1 to the eigenvalue problem (1.1). This version will be used frequently
in the rest of this work.

Lemma 2.2. Let λ1 and λ2 be real numbers, and a(x) ∈ C(Ω)∩L∞(Ω), a(x) > 0.
Suppose that u ∈ C(Ω) and v ∈ C(Ω).

(i) If supΩ(u− v) > sup∂Ω(u− v), and

∆∞u+ λ1a(x)u3 ≥ 0 and ∆∞v + λ2a(x)v3 ≤ 0, in Ω,

then there is a point p ∈ Ω such that (u−v)(p) = supΩ(u−v) and λ1u
3(p) ≥ λ2v

3(p).
(ii) Similarly, if infΩ(u− v) < inf∂Ω(u− v), and

∆∞u+ λ1a(x)u3 ≤ 0 and ∆∞v + λ2a(x)v3 ≥ 0, in Ω,

then there is a point q ∈ Ω such that (u−v)(q) = infΩ(u−v) and λ1u
3(q) ≤ λ2v

3(q)

We state below a consequence of Lemma 2.2. Versions of Lemma 2.3 are well-
known in the context of eigenvalue problems for elliptic operators. Also see [3, 7, 13].
Here, we do not require that Ω be bounded.
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Lemma 2.3. Let Ω ⊂ Rn be a domain. Suppose that a(x) ∈ C(Ω), a(x) > 0, and
0 < λ1 < λ2. Let u ∈ C(Ω), and v ∈ C(Ω), v > 0, solve the problems

∆∞u+ λ1a(x)u3 ≥ 0 and ∆∞v + λ2a(x)v3 ≤ 0, in Ω.

Then either u ≤ 0 in Ω, or the following conclusions hold.
(i) Let U ⊂ Ω be a compactly contained sub-domain of Ω such that u > 0

somewhere in U . Then
sup
U

u

v
= sup

∂U

u

v
.

(ii) Assume that u > 0 somewhere in Ω. Suppose that Uk ⊂ Uk+1 ⊂ Ω,
k = 1, 2, . . . , are compactly contained sub domains of Ω, with ∪kUk = Ω. If
limk→∞ supUk u/v <∞, then

sup
Ω

u

v
= lim
k→∞

(
sup
Uk

u

v

)
= lim
k→∞

(
sup
∂Uk

u

v

)
.

Proof. We prove (i). Let U be a compactly contained sub-domain of Ω and assume
that u > 0 somewhere in U . Suppose that p ∈ U is such that supU (u/v) =
u(p)/v(p) > sup∂U u/v. By our hypothesis, u(p) > 0. Thus the function

w(x) = v(p)u(x)− u(p)v(x) ≤ 0, x ∈ U. (2.5)

In particular, w(x) < 0 on ∂U , and w(p) = 0. Thus supU w > sup∂U w. Since
u(p) > 0 and v(p) > 0, we have that for for all x ∈ Ω,

∆∞(v(p)u(x)) + λ1a(x)(v(p)u(x))3 ≥ 0, ∆∞(u(p)v(x)) + λ2a(x)(u(p)v(x))3 ≤ 0.

We may now apply Lemma 2.2(part(i)). It follows that there is a z ∈ U such that
w(z) = supU w and

λ1a(z)u(z)3v(p)3 ≥ λ2a(z)u(p)3v(z)3, (2.6)

that is, τu(p)/v(p) ≤ u(z)/v(z), where τ = (λ2/λ1)1/3
> 1. This is a contradiction.

Thus supU (u/v) = sup∂U (u/v).
We now prove (ii). Let y ∈ Ω be such that u(y) > 0. Take k large, so that

y ∈ Uk. Set µk = sup∂Uk(u/v). By part(i), the µk’s are increasing. It is clear that
the limit µ = supk µk < ∞. If supΩ(u/v) > µ then one can find a set Uk, for k
large, such that supUk(u/v) > µ. This violates the maximum principle in part (i),
as sup∂Uk(u/v) ≤ µ. The lemma holds. �

Remark 2.4. As an application of Lemma 2.3, we record the following. Let Ω ⊂ Rn
be a bounded domain, and 0 < λ1 < λ2. Assume that u, v ∈ C(Ω), v > 0 in Ω,
solve

∆∞u+ λ1a(x)u3 ≥ 0, ∆∞v + λ2a(x)v3 ≤ 0, for x ∈ Ω.
Thus, if u is positive somewhere in Ω then u is positive somewhere on ∂Ω. As a
result, if u ≤ 0, on ∂Ω, then u ≤ 0 in Ω.

We now recall a few results from [5, 6, 16, 17] which we will utilize in our work.
The first three lemmas contain versions of the comparison principle that apply in
our context.

Lemma 2.5. Suppose that f ∈ C(Ω), f > 0, f < 0 or f ≡ 0 in Ω. Let u, v ∈ C(Ω)
satisfy ∆∞u ≥ f(x) and ∆∞v ≤ f(x) in Ω. Then

sup
Ω

(u− v) = sup
∂Ω

(u− v).
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Lemma 2.6. Suppose that f1, f2 ∈ C(Ω) with f1(x) > f2(x) in Ω. Let u, v ∈ C(Ω)
satisfy ∆∞u ≥ f1(x) and ∆∞v ≤ f2(x) in Ω. Then

sup
Ω

(u− v) = sup
∂Ω

(u− v).

Lemma 2.7. Suppose that f(x, t) ∈ C(Ω × R,R) is strictly increasing in t. Let
u, v ∈ C(Ω) satisfy ∆∞u ≥ f(x, u) and ∆∞v ≤ f(x, v) in Ω. If u ≤ v on ∂Ω then
u ≤ v in Ω.

The following estimate will prove useful in this work, see [6, Theorem 5.1]. For
a function g, define g+ = max{g, 0} and g− = min{g, 0}. Set σ = 34/3/4.

Lemma 2.8. Let Ω ⊂ Rn be a bounded domain, and BRo(zo), z0 ∈ Rn, be the
out-ball of Ω. Suppose f ∈ C(Ω) ∩ L∞(Ω), and b ∈ C(∂Ω). If u ∈ C(Ω) solves

∆∞u = f(x), x ∈ Ω, u = b on ∂Ω,

then the following bounds hold.

inf
∂Ω
b− σ(sup

Ω
f+)1/3R4/3

o ≤ u(x) ≤ sup
∂Ω

b− σ(inf
Ω
f−)1/3R4/3

o , x ∈ Ω.

In particular, if f(x) = −λa(x)u3, a > 0, λ > 0, and µ = supΩ a, then a solution
u to (1.1) satisfies

inf
∂Ω
b+ σ(λµ)1/3R4/3

o inf
Ω
u− ≤ u(x) ≤ sup

∂Ω
b+ σ(λµ)1/3R4/3

o sup
Ω
u+, x ∈ Ω.

Setting λ0 = (σ3µR4
0)−1, then the above may be written more compactly as

inf
∂Ω
b+ (λ/λ0)1/3 inf

Ω
u− ≤ u(x) ≤ sup

∂Ω
b+ σ(λ/λ0)1/3 sup

Ω
u+.

We also recall the following existence result proven in [6, Theorem 3.1], also see
Corollary 3.3 and Theorem 5.5 therein. This will be used in showing the existence
of solutions to equations related to the eigenvalue problem.

Theorem 2.9. Let f ∈ C(Ω×R,R) satisfy the condition supΩ×I |f(x, t)| <∞, for
any compact interval I, and b ∈ C(∂Ω). Consider the following Dirichlet problem

∆∞u = f(x, u(x)), in Ω, and u = b on ∂Ω. (2.7)

(a) Suppose that
(i) u∗ ∈ C(Ω) is a sub-solution of (2.7); i.e., ∆∞u∗ ≥ f(x, u∗), in Ω, and

u∗ ≤ b on ∂Ω, and
(ii) u∗ ∈ C(Ω) is a super-solution of (2.7); i.e., ∆∞u∗ ≤ f(x, u∗), in Ω, and

u∗ ≥ b on ∂Ω.
If u∗ ≤ u∗ in Ω then problem (2.7) admits a solution u ∈ C(Ω) such that u∗ ≤ u ≤
u∗ in Ω.
(b) If f is such that any solution to (2.7) has a priori supremum bounds, then there
is a solution u ∈ C(Ω) to (2.7).

We now record a local Lipschitz continuity result, proven in [6, Theorem 2.4].
Also see [17].

Lemma 2.10. Let α be a constant. Any solution u ∈ C(Ω)∩L∞(Ω) of ∆∞u(x) ≥
α, in Ω, is locally Lipschitz continuous in Ω. More specifically, given x0 ∈ Ω there
is a constant C that depends on x0,diam(Ω), |α| and ‖u‖L∞(Ω) such that

|u(x)− u(y)| ≤ C|x− y|, x, y ∈ Bd(x0),
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where d := dist(x0, ∂Ω)/3. A similar result holds if ∆∞u ≤ α in Ω.

We now shift our attention to obtaining estimates for a problem that is related
to (1.1). These will be important in proving the existence of the first eigenvalue
and an associated eigenfunction. To achieve this purpose, we study the following
Dirichlet problem. Let a ∈ C(Ω) ∩ L∞(Ω), a > 0, δ > 0 and λ > 0. Consider
positive solutions to the problem

∆∞u+ λa(x)u3(x) = 0 in Ω, and u = δ on ∂Ω. (2.8)

To show existence we note that the function ψ = δ is a sub-solution to (2.8). For
small λ, we obtain a priori supremum bounds. This will lead to the existence of a
solution u.

Lemma 2.11. Let Ω ⊂ Rn be a bounded domain. Suppose that a(x) ∈ C(Ω) ∩
L∞(Ω), a(x) > 0, δ ≥ 0, and λ > 0. Let Ro be the radius of the out-ball for Ω,
µ = supΩ a, σ = 34/3/4 and λ0 = (σ3µR4

o)
−1. Consider the problem

∆∞u+ λa(x)u3(x) = 0, in Ω, and u = δ on ∂Ω. (2.9)

Assume that u ∈ C(Ω) is a solution to (2.9).
(i) If λ = 0 then u = δ in Ω.
(ii) If λ < 0 and δ > 0 then 0 ≤ u < δ. If δ = 0 then u = 0 is the only solution.

(iii) If δ = 0 and u ∈ C(Ω) is a non-trivial and non-constant solution, then
λ > 0.

(iv) If 0 < λ < λ0 then u is positive in Ω and a priori bounded. More precisely,

δ < u ≤ sup
Ω
u ≤ δ

1− (λ/λ0)1/3
.

Proof. We show (i). If λ = 0 then u is infinity-harmonic and u = δ in Ω. For
part (ii), suppose that λ < 0. Let Ω− denote the set where u < 0. Then ∆∞u =
|λ|a(x)u3 ≤ 0, in Ω−, with u vanishing on ∂Ω−. But u > 0, in Ω−, since u is
infinity super-harmonic in Ω−. It follows that Ω− = ∅ and u ≥ 0, in Ω. Thus, u is
infinity sub-harmonic in Ω, and 0 ≤ u < δ. If δ = 0, we get u = 0 in Ω, for λ ≤ 0.
Clearly, parts (i) and (ii) imply part (iii).

We now prove part (iv). We will assume that δ > 0, the conclusion for δ = 0
follows quite easily. We recall Lemma 2.8,

δ +
( λ
λ0

)1/3

inf
Ω
u− ≤ u(x) ≤ δ +

( λ
λ0

)1/3

sup
Ω
u+. (2.10)

If infΩ u
− < 0, then (2.10) leads to

δ

1− (λ/λ0)1/3
≤ inf

Ω
u− < 0,

a contradiction. Thus (2.10) yields

0 ≤ u ≤ sup
Ω
u ≤ δ

1− (λ/λ0)1/3
.

Since u is infinity super-harmonic, u > δ in Ω. �

Finally, we prove that nontrivial solutions to (2.8), when δ ≥ 0, change sign
for large enough λ. This was first shown in [6] and implies that, in the event
eigenfunctions corresponding to large eigenvalues exist, these eigenfunctions would
change sign, a fact well-known for the case of elliptic operators. Its relevance to our
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current work is in obtaining lower and upper bounds for the first eigenvalue. We
provide a proof of this result for completeness. We do not assume that a(x) > 0
everywhere in Ω.

Theorem 2.12. Let Ω ⊆ RN be a bounded domain, and a(x) ∈ C(Ω) ∩ L∞(Ω),
a(x) ≥ 0, and a(x) 6≡ 0. Set µ = supΩ a, σ = 34/3/4 and λ0 = (σ3µR4

o)
−1, where Ro

is the radius of the out-ball for Ω. For 0 < α < 1, define Ωα = {x ∈ Ω : a(x) > αµ},
and set ρα to be the radius of the in-ball of Ωα. Let δ ≥ 0, and suppose that
(λ, u), u 6≡ 0, solves

∆∞u+ λa(x)u3 = 0, x ∈ Ω, and u = δ on ∂Ω. (2.11)

Set

Λ =
44

33σ3µ

(
inf

0<α≤1

( 1
αρ4

α

))
<∞.

(i) If δ = 0, then λ ≥ λ0.
(ii) If δ > 0 and u ≥ 0, then we have the upper bound λ < Λ. If δ = 0 and

u ≥ 0 then λ0 ≤ λ ≤ Λ.
In any case, if λ is large enough then every solution u to (2.11) changes sign in Ω,
regardless of δ.

Proof. For part (i), we refer to parts (iii) and (iv) of Lemma 2.11. By (2.10), if
δ = 0 then u = 0, for λ < λ0.

We now prove part (ii). See Lemma 2.11 (ii) and Theorem 2.9 (b) for the lack
of a lower bound for λ when δ > 0. If δ = 0 and λ ≥ λΩ then u > 0, since u is
infinity super-harmonic.

To show the upper bound for λ, we assume that λ > 0. Let (λ, u), u ∈ C(Ω), u >
0, solve (2.11). Being infinity super-harmonic in Ω, u satisfies the strong minimum
principle and u > δ. For 0 < α < 1, let Bρα(zα) be the in-ball for Ωα. For
0 ≤ r ≤ ρα, define m(r) = inf∂Br(zα) u. Then δ < m(r) ≤ u, in Br(zα), and m(r)
is decreasing. Consider

v(x) = δ + (m(0)− δ)
(

1− |x− zα|
ρα

)
, x ∈ Bρα(zα).

It is clear that v is infinity harmonic in Bρα(zα) \ {zα}. Since u ≥ δ on ∂Bρα(zα)
and u(zα) = m(0), by Lemma 2.5, v ≤ u in Bρ(zα) \ {zα}. Taking |x− zα| = θρα,
for 0 ≤ θ < 1, and noting that v(θρα) ≤ m(θρα), we have

m(0)− δ
m(θρα)− δ

≤ 1
1− θ

. (2.12)

Next we consider, in the ball Bθρα(zα), the function

w(x) = σ(αµλ)1/3m(θρα)
(

(θρα)4/3 − |x− zα|4/3
)

+m(θρα).

Using (2.2), a calculation shows that

∆∞w = −αλµm(θρα)3, in Bθρα(zα), and w = m(θρα) on |x− zα| = θρα.

In Bθρα(zα) ⊂ Ωα, we note that a(x) > αµ and u > m(θρα). Thus

∆∞u = −λa(x)u3 < −αλµm(θρα)3, x ∈ Bθρα(zα),

with u ≥ w on |x−zα| = θρα. Lemma 2.6 yields that w ≤ u in Bθρα(zα). Moreover,

w(zα) = σλ1/3(αµ)1/3m(θρα) (θρα)4/3 +m(θρα) ≤ u(zα) = m(0).
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Recalling that u > δ and rewriting,

σλ1/3(αµ)1/3(m(θρα)− δ) (θρα)4/3 +m(θρα)− δ ≤ m(0)− δ.

Rearranging and using (2.12), we have

σλ1/3(αµ)1/3 (θρα)4/3 + 1 ≤ m(0)− δ
m(θρα)− δ

≤ 1
1− θ

.

Rewriting, we get

σλ1/3(αµ)1/3ρ4/3
α ≤ 1

θ1/3(1− θ)
, 0 < θ < 1.

By computing the minimum of the right hand side, which occurs at θ = 1/4, we
obtain

λ ≤ 44

33σ3µ(αρ4
α)
.

�

3. Existence and properties of solutions to (2.8)

In this section, we derive properties of solutions to (2.8) when u takes positive
values on ∂Ω. This will lead to an existence result for (2.8) with non-trivial right-
hand side. All these will be proven under the condition that λ is less than the first
eigenvalue λΩ of ∆∞. We will adapt the comparison principle in Lemma 2.3 to the
current context and this will lead to uniqueness, under some conditions.

We will begin with a discussion of how to define the first eigenvalue. The basic
idea resembles closely the one employed in [3, 7, 13].

Lemma 3.1. Let Ω ⊂ Rn be a bounded domain. Suppose that a(x) ∈ C(Ω) ∩
L∞(Ω), a(x) > 0, and assume that δ > 0. Define λ0 = (σ3µR4

o)
−1, where σ =

34/3/4, µ = supΩ a, and Ro the radius of the out-ball of Ω. Then the Dirichlet
problem

∆∞u+ λa(x)u3 = 0, in Ω, and u = δ on ∂Ω, (3.1)

has a positive solution u for 0 ≤ λ < λ0.

Proof. We use Theorem 2.9(b) and Lemma 2.11(iv). Since λ < λ0, any solution u
is a priori bounded and Theorem 2.9 leads to a solution. Lemma 2.11 ensures that
u > δ in Ω. �

We now discuss the definition of the first eigenvalue. The fact that it is indeed
an eigenvalue and has at least one eigenfunction will be shown in Section 4. We
define, for each δ > 0,

S = S(Ω) = {λ ≥ 0 : Problem (2.8) (or (3.1)) has positive solutions}. (3.2)

By Lemma 3.1, S is non-empty. By Theorem 2.12, S is bounded above. Now set

λΩ = sup
S
λ. (3.3)

We refer to λΩ as the first or the principal eigenvalue of ∆∞ on Ω.
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Remark 3.2. We record the following conclusions.
(i) By Lemma 2.11, λΩ ≥ (σ3µR4

0)−1. We show that the interval [0, λΩ) ⊂ S.
Let λ ∈ S and u > 0 be a solution to

∆∞u+ λa(x)u3 = 0, in Ω, and u = δ on ∂Ω.

Note that u > δ in Ω. If 0 < λ′ < λ, then u is a super-solution to

∆∞v + λ′a(x)v3 = 0, in Ω, and v = δ on ∂Ω. (3.4)

Clearly, w = δ is a sub-solution; it follows from Theorem 2.9 that there is a solution
v to (3.4) such that δ < v ≤ u. Hence, λ′ ∈ S. That λΩ 6∈ S will follow from Lemma
3.3 below.

(ii) The set S is independent of the value of δ. This follows by scaling.
(iii) We discuss the influence of the weight function a(x). Write in (3.2), S =

S(Ω, a) and in (3.3), λΩ = λΩ(a). We claim that S(Ω, b) ⊂ S(Ω, a), and λΩ(a) ≥
λΩ(b), when 0 ≤ a(x) ≤ b(x), in Ω. To see this, let λ ∈ S(Ω, b). We can find a
function u ∈ C(Ω), u > 0, that solves ∆∞u + λb(x)u3 = 0, in Ω, and u = δ on
∂Ω. Then ∆∞u + λa(x)u3 ≤ 0, in Ω. Since v = δ is a sub-solution, we have from
Theorem 2.9 that there is a function ū ∈ C(Ω), v ≤ ū ≤ u, that solves

∆∞ū+ λa(x)ū3 = 0, in Ω, and ū = δ on ∂Ω.

Thus λ ∈ S(Ω, a) and λΩ(a) ≥ λΩ(b).
(iv) By Theorem 2.12, the set S is bounded from above and λΩ <∞.

Later in this section, we will use (3.2) to state an existence result for boundary
data that has one sign, under the hypothesis 0 ≤ λ < λΩ. A related result is in
Lemma 3.7 where it is shown that if 0 ≤ λ < λΩ and the boundary data is zero
then the zero solution is the only solution.

We restate problem (2.8) for easy reference. Also recall (3.2) and (3.3). We will
study the properties of a solution u ∈ C(Ω), u > 0, to

∆∞u+ λa(x)u3 = 0, in Ω, and u = δ > 0 on ∂Ω. (3.5)

Here 0 < λ ≤ λΩ <∞. We refer the reader to Lemma 2.11 for the case λ ≤ 0.
We show next that if λ ∈ S, then, for some ε > 0, λ + ε is also in S. This will

imply that λΩ 6∈ S, justifying part (iii) in Remark 3.2.

Lemma 3.3. Let a(x) ∈ C(Ω) ∩ L∞(Ω) with a(x) > 0. Suppose that for some
λ > 0, there is a function v ∈ C(Ω), v > 0, such that

∆∞v + λa(x)v3 ≤ 0, in Ω, and v ≥ δ on ∂Ω. (3.6)

Set m = supΩ v. Then, for every ε such that 0 < ε < λ(δ/m)3 the problem

∆∞u+ (λ+ ε)a(x)u3 = 0, in Ω, and u = δ on ∂Ω,

has a positive solution u ∈ C(Ω). Hence, λΩ 6∈ S, where S is as in (3.2).

Proof. We apply Theorem 2.9 to achieve the proof. Let 0 < ε < λ(δ/m)3. Take
0 < α < 1 such that

ε < αλ(δ/m)3. (3.7)

Since v > 0, it follows that v > δ in Ω. Define

w(x) = v(x)− αδ, x ∈ Ω.
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Then (3.6) becomes

∆∞w + λa(x)v3 ≤ 0, in Ω, and w ≥ (1− α)δ on ∂Ω. (3.8)

Writing v = w + αδ and noting w ≤ m in Ω, we expand, using (3.8), to obtain

∆∞w + (λ+ ε)a(x)w3 ≤ a(x)((λ+ ε)w3 − λv3)

= a(x)
(
(λ+ ε)w3 − λ(w + αδ)3

)
≤ a(x)

(
εm3 − λ(3αδw2 + 3α2δ2w + α3δ3)

)
.

(3.9)

Since w ≥ (1− α)δ and α2 − 3α+ 3 > 1, for 0 < α < 1, we have

αδ
(
3w2 + 3αδw + α2δ2

)
≥ αδ3(α2 − 3α+ 3) > αδ3.

Using the above in (3.9) and applying (3.7),

∆∞w + (λ+ ε)a(x)w3 ≤ a(x)
(
εm3 − λαδ3

)
≤ 0, x ∈ Ω. (3.10)

It is clear that if we take 0 < ε < λ(δ/m)3 and any α with (ε/λ)(m/δ)3 < α < 1
(see (3.7)) then the function

h = h(α) =
w

(1− α)
=
v − αδ
1− α

≥ δ, (3.11)

defined in Ω, is a super-solution to

∆∞f + (λ+ ε)a(x)f3 = 0, in Ω, and f = δ on ∂Ω. (3.12)

Next, we observe that the function g(x) = δ, x ∈ Ω is a sub-solution of (3.12).
Since g ≤ h in Ω, invoking Theorem 2.9, we obtain that (3.12) has a solution u
such that g ≤ u ≤ h in Ω. �

We prove now a comparison principle by employing Lemmas 2.3 and 3.3. This
will imply the uniqueness of solutions to (3.5) for 0 ≤ λ < λΩ. We will utilize
the function h defined in (3.11). Also, see [3, 7, 13]. We do not assume that Ω is
bounded.

Lemma 3.4. Suppose that a(x) ∈ C(Ω) ∩ L∞(Ω), a(x) > 0 and λ > 0. Let
u, v ∈ C(Ω), v > 0, solve the problems

∆∞u+ λa(x)u3 ≥ 0, ∆∞v + λa(x)v3 ≤ 0 in Ω.

Either u ≤ 0 in Ω, or the following holds.
(a) If U is a compactly contained sub-domain of Ω and u > 0 somewhere in U ,

then supU (u/v) = sup∂U (u/v).
(b) Suppose that u > 0 somewhere in Ω and {Um}, m = 1, 2, . . . is an increas-

ing sequence of compactly contained sub-domains of Ω, with ∪∞m=1Um = Ω.
If limm→∞ sup∂Um(u/v) = k <∞, then k > 0 and u ≤ kv in Ω.

Proof. We take part (a). Let U , compactly contained in Ω, be such that u > 0
somewhere in U . Set ` = `(U) = inf∂U v. Being infinity super-harmonic, v > ` in
U . If we define, for 0 < α < 1,

h =
v − α`
1− α

, in U ,

then a simple calculation shows that h ≥ v ≥ `(1 − α) in U . By (3.10), we also
have

∆∞h+ (λ+ ε)a(x)h3 ≤ 0, in U,
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where 0 < ε < λα(`/ supU v)3. By Lemma 2.3, we have that for every 0 < α < 1,

sup
U

u

h
= sup

∂U

u

h
.

Letting α ↓ 0, we obtain that

sup
U

u

v
= sup

∂U

u

v
.

Part (b) of the lemma follows by applying the arguments of Lemma 2.3 and Remark
2.4. �

As a consequence of Lemma 3.4, we obtain the uniqueness of solutions to the
Dirichlet problem (3.5) with inf∂Ω b > 0.

Remark 3.5. Let Ω ⊂ Rn be a domain, 0 < λ < ∞, and a(x) ∈ C(Ω) ∩
L∞(Ω), a(x) > 0. Suppose that u, v ∈ C(Ω), with u > 0 and v > 0, solve

∆∞u+ λa(x)u3 = 0 in Ω, and ∆∞v + λa(x)v3 = 0.

Suppose that {Um}, m = 1, 2, . . . , is an increasing sequence of compactly contained
sub-domains of Ω with ∪∞m=1Um = Ω. If the two limits, limm→∞(sup∂Um(u/v)) and
limm→∞(sup∂Um(v/u)), exist then

lim
m→∞

(
inf
∂Um

u

v

)
≤ u(x)
v(x)

≤ lim
m→∞

(
sup
∂Um

u

v

)
, x ∈ Ω.

These limits, if they exist, are independent of the sequence.
As an application, if Ω is bounded, u, v ∈ C(Ω), b ∈ C(∂Ω) is such that

inf∂Ω b > 0 and u = v = b on ∂Ω, then we have that u = v in Ω.

Next we record an application of Lemma 2.3. This will be used in Section 4,
where we show the existence of the first eigenvalue.

Remark 3.6. Let 0 < λ < λ′. Suppose that (λ, u), u > 0, and (λ′, v), v > 0,
solve the problem (3.5). As u and v take the same boundary data, by Lemma 2.3,
u ≤ v in Ω. Thus, if λk ↑ λΩ then the corresponding unique solutions {vk} form an
increasing sequence.

We now show that if δ = 0 in (3.5) and λ < λΩ, then the only solution is the
zero solution. The proof requires the existence of a solution that is positive in Ω.
Note that this is guaranteed by the nature of the set S, see (3.2).

Lemma 3.7. Let a(x) ∈ C(Ω) ∩ L∞(Ω), a(x) > 0, and λ > 0. Suppose that
v ∈ C(Ω), v > 0, and v solves

∆∞v + λa(x)v3 ≤ 0, in Ω.

If inf∂Ω v > 0, and u ∈ C(Ω) solves

∆∞u+ λa(x)u3 ≥ 0, in Ω, and u = 0 on ∂Ω, (3.13)

then u ≤ 0 in Ω. If equality holds in (3.13) then u = 0 in Ω.

Proof. We use Lemma 3.4. If u solves (3.13) and u is positive somewhere in Ω then
supΩ(u/v) = sup∂Ω(u/v) > 0. This being a contradiction, we have u ≤ 0 in Ω. If,
instead of the inequality in (3.13), equality holds, then both u and −u are solutions.
We conclude that u = 0 in Ω. Incidentally, if 0 < λ < λΩ then such a function v
exists, by (3.2). �
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A related result follows below.

Remark 3.8. Let a(x) ∈ C(Ω) ∩ L∞(Ω), a(x) > 0, 0 < λ1 < λ2 and δ > 0.
Suppose that u, v ∈ C(Ω) solve the problems

∆∞u+ λ1a(x)u3 ≥ 0 and ∆∞v + λ2a(x)v3 ≤ 0, in Ω.

Assume also that u ≤ δ ≤ v on ∂Ω. Set α = (λ1/λ2)1/3. If v > 0 and u is positive
somewhere in Ω, then we claim that

u(x) ≤ δ1−α(sup
Ω
vα), ∀x ∈ Ω.

To see this, we make the following observation. Let λ > 0 and w ∈ C(Ω) be positive.
If ∆∞w+ λa(x)w3 ≥ 0, in Ω, then for any β > 1, we have ∆∞wβ + λβ3a(x)w3β ≥
0. If instead, ∆∞w + λa(x)w3 ≤ 0, then for any 0 < β < 1, it follows that
∆∞wβ + λβ3a(x)w3β ≤ 0.

Now take β = α. Since α < 1, we invoke Lemma 3.4 to conclude that u/vα ≤
sup∂Ω(u/vα) = δ1−α. The claim holds.

We surmise that a stronger estimate holds, namely, that u(x) ≤ Cδ, ∀x ∈ Ω,
where C = C(λ1, λ2,Ω). However, a proof is not yet clear to us.

We now state the first of the two existence results of this section. We include a
partial result about uniqueness. Also see [13].

Theorem 3.9. Let Ω ⊂ Rn be a bounded domain, and a(x) ∈ C(Ω) ∩ L∞(Ω) with
a(x) ≥ 0. Suppose that 0 ≤ λ < λΩ and b ∈ C(∂Ω). Then there is a function
u ∈ C(Ω) that solves the following Dirichlet problem; that is,

∆∞u+ λa(x)u3 = 0, in Ω, and u = b on ∂Ω. (3.14)

In addition, we have the following.
(i) If b = 0 on ∂Ω, then u = 0, in Ω.
(ii) Suppose that b 6= 0 on ∂Ω. If inf∂Ω b ≥ 0 or sup∂Ω b ≤ 0 then every solution

u ∈ C(Ω) is non-vanishing in Ω.
(iii) If inf∂Ω |b| > 0 then u is unique.

Proof. We first show the existence of a solution to (3.14). Let m = sup∂Ω b and
` = inf∂Ω b. If ` = m, Remark 3.2 gives us a solution. Take m1 > max(m, 0), and
`1 < min(0, `).

By Remark 3.2, there is a w1 ∈ C(Ω), w1 > 0, that solves

∆∞w1 + λa(x)w3
1 = 0, in Ω, and w1 = m1 on ∂Ω. (3.15)

By (3.15), the function w2 = (`1/m1)w1 solves

∆∞w2 + λa(x)w3
2 = 0, in Ω, and w2 = `1 on ∂Ω.

Clearly, w2 ≤ w1, in Ω, and w2 ≤ b ≤ w1 on ∂Ω. By Theorem 2.9, there is a
solution u ∈ C(Ω) to (3.14) such that w2 ≤ u ≤ w1.

It is clear that part (i) of the lemma follows from Remark 3.2 and Lemma 3.7.
We prove part (ii). We will assume that b ≥ 0 (if b ≤ 0, we work with −u). Suppose
that u changes sign in Ω. Call Ω− = {u < 0}. Then u solves

∆∞u+ λa(x)u3 = 0, and u = 0 on ∂Ω−.

Since λ < λΩ, by Remark 3.2, there is a solution v ∈ C(Ω), for δ > 0, to

∆∞v + λa(x)v3 = 0, v > 0, in Ω, and v = δ on ∂Ω.
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Since v ≥ δ, in Ω−, applying Lemma 3.7 to u and v in Ω−, we obtain a contradiction.
Thus, u ≥ 0 in Ω, and being infinity super-harmonic we have that u > 0 in Ω. Part
(iii) follows from Remark 3.5, also see Lemma 3.4. �

We now state an existence result for non-homogenous right hand sides. We will
prove this under the somewhat restrictive assumption that infΩ a(x) > 0. We do
not address the issue of uniqueness. We borrow an idea from Lemma 3.3. Also see
[13].

Theorem 3.10. Let Ω ⊂ Rn be a bounded domain, a(x) ∈ C(Ω) ∩ L∞(Ω), with
infx∈Ω a(x) > 0, and 0 ≤ λ < λΩ. Suppose that h ∈ C(Ω)∩L∞(Ω) and b ∈ C(∂Ω).
Then there is a function u ∈ C(Ω) that solves the following Dirichlet problem,

∆∞u+ λa(x)u3 = h(x), in Ω, and u = b on ∂Ω. (3.16)

Proof. Our approach is similar to Lemma 3.9. Let m = sup∂Ω b, ` = inf∂Ω b,
M = supΩ |h| and ν = infΩ a. Take m1 > max(m, 0) and `1 < min(0, `,−m1). We
will construct a sub-solution and a super-solution to (3.16).

(i) We first construct a super-solution. Let w1 ∈ C(Ω), w1 > 0, be a solution to

∆∞w1 + λa(x)w3
1 = 0, in Ω, with w1 = m1 on ∂Ω.

Existence follows from Remark 3.2. Being infinity super-harmonic, w1 > m1. For
0 < α < 1, take w2 = w1−αm1. Thus ∆∞w2 +λa(x)(w2 +αm1)3 = 0. Expanding,

∆∞w2 + λa(x)w3
2 = −λa(x)

(
3αm1w

2
2 + 3α2m2

1w2 + α3m3
1

)
.

Noting that w2 ≥ (1− α)m1, in Ω, we obtain that

∆∞w2 + λa(x)w3
2 ≤ −λνm3

1

(
3α(1− α)2 + 3α2(1− α) + α3

)
.

Set w = w2/(1− α). Selecting α close enough to 1, we obtain from above that

∆∞w + λa(x)w3 ≤ −λνm3
1

(
3α

(1− α)
+

3α2

(1− α)2
+

α3

(1− α)3

)
< −M.

Thus w ∈ C(Ω) solves

∆∞w ≤ h(x)− λa(x)w3, w > 0, in Ω, and w = m1 ≥ b on ∂Ω.

(ii) We now construct a sub-solution v ∈ C(Ω) that satisfies

∆∞v + λa(x)v3 ≥M, v < 0, in Ω, and v = `1 on ∂Ω.

If we take v = (`1/m1)w, where w is as in part (i), we obtain that

∆∞v + λa(x)v3 >
M |`1|3

m3
1

≥ h(x), v < 0, in Ω, and v = `1 ≤ b on ∂Ω.

Invoking Theorem 2.9, we obtain the existence of a solution u ∈ C(Ω), v ≤ u ≤ w,
to (3.16). �

We conclude this section with a result about distance estimates regarding how
close the points of a level set, of any positive solution u of (2.8), are to the boundary
∂Ω. Define

F (t) =
∫ 1

t

1
(1− s4)1/4

ds, 0 ≤ t ≤ 1.
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Lemma 3.11. Suppose that a(x) ∈ C(Ω) ∩ L∞(Ω), a(x) > 0, λ > 0 and δ ≥ 0.
Let u ∈ C(Ω), u > 0, solve the problem

∆∞u+ λa(x)u3 = 0, in Ω, and u = δ on ∂Ω. (3.17)

Set ν = infΩ a(x) and d(x) = dist(x, ∂Ω), x ∈ Ω. It follows that

d(x) ≤ F (δ/u(x))
(λν)1/4

≤ F (0)
(λν)1/4

.

If m = supΩ u and z ∈ Ω is such that u(z) = m, then d(z) ≤ F (δ/m)/(λν)1/4.

Proof. First notice that the integral F (0) < ∞. Let x ∈ Ω. Set d = d(x) and
consider the ball Bd(x). For 0 ≤ r ≤ d, define m(r) = infBr(x) u. Since u is
infinity superharmonic, m(r) = inf∂Br(x) u, m(r) is concave and is decreasing. Also
m(0) = u(x) and m(d) = δ.

For y ∈ Bd(x), set r = |x− y|. Let w(y) = w(r) ∈ C(Bd(x)) be defined as

w(r) = w(0)− (3λν)1/3

∫ r

0

(∫ t

0

m(s)3 ds
)1/3

dt . (3.18)

Here w(0) is so chosen that w(d) = δ. Note that w′(0) = 0. Using (2.2), one can
show that w is a viscosity solution to

∆∞w(y) + λνm(r)3 = 0, in Bd(x), and w = δ on ∂Bd(x).

See [6, Lemma 4.1] for a proof. Next, u solves (3.17), in Bd(x), with u ≥ δ, on
∂Bd(x). Thus, Lemma 2.6 implies that w ≤ u, and w(r) ≤ m(r), in Bd(x). Thus,

(w′(r))2w′′(r) + λνw3 ≤ 0, in Bd(x), and w(d) = δ.

Noting that w′(r) ≤ 0 and w(r) > 0, and multiplying both sides by w′(r), an
integration leads to

(λν)1/4d ≤
∫ w(0)

δ

ds

(w(0)4 − s4)1/4
≤
∫ 1

(δ/u(x))

ds

(1− s4)1/4
.

The conclusion of the lemma holds. �

4. Existence of the first eigenvalue and the first eigenfunction

In this section, we will show that λΩ, defined in (3.3), is the first eigenvalue of
∆∞ on Ω. The proof will also provide us with the existence of a first eigenfunction
which turns out to be positive. As was shown in Lemma 3.7, solutions to (1.1),
for λ < λΩ, are the zero-solutions. Thus λΩ is the smallest value of λ, in (1.1),
that supports a non-trivial solution. This section also contains some monotonicity
results about the first eigenvalues of the level sets of a positive first eigenfunction
on Ω.

In this section, we will always take Ω ⊂ Rn to be a bounded domain. For a
better exposition, recall (2.8), (3.2) and (3.3). In Section 3, we showed that if
a(x) ∈ C(Ω)∩L∞(Ω), a(x) > 0, δ > 0 and 0 ≤ λ < λΩ, then there exists a positive
solution u ∈ C(Ω) to

∆∞u+ λa(x)u3 = 0, in Ω, and u = δ on ∂Ω. (4.1)
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Moreover, by Remark 3.5, u is unique. We recall Remark 3.6, where it is shown
that if {λk}∞k=1, λk ∈ S, is an increasing sequence and if uk is the positive solution
to (4.1) corresponding to λk, then uk+1 ≥ uk in Ω. We record this fact in

uk, k = 1, 2, . . . , is an increasing sequence. (4.2)

We now prove the main result of this section. Also see [13].

Theorem 4.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain, and a(x) ∈ C(Ω)∩L∞(Ω)
with a(x) > 0. Let S be as defined in (3.2) and λΩ = supS. Then there is a solution
v ∈ C(Ω), v > 0 to the eigenvalue problem

∆∞v + λΩa(x)v3 = 0 in Ω, and v = 0 on ∂Ω.

Proof. For k = 1, 2, . . . , let λk ∈ S, be an increasing sequence with limk↑∞ λk = λΩ.
Fix δ > 0 and let uk > 0 solve the problem

∆∞uk + λka(x)u3
k = 0, in Ω, and uk = δ on ∂Ω. (4.3)

Set mk = supΩ uk, it follows from (4.2) that mk is increasing. We claim that

lim
k→∞

mk =∞. (4.4)

We provide a lower bound for mk by using Remark 3.2 and Lemma 3.3. By Lemma
3.3, for each k = 1, 2, . . . , there is a ûk > 0 such that

∆∞ûk + (λk + ε)a(x)û3
k = 0, in Ω, and ûk = δ on ∂Ω,

where 0 < ε < λk(δ/mk)3. We claim that λΩ − λk ≥ λk(δ/mk)3. If this were false
then by taking ε = λΩ − λk in Lemma 3.3, we would obtain a positive solution to
∆∞η + λΩa(x)η3 = 0, in Ω, and η = δ on ∂Ω. This would imply that λΩ < supS,
this contradicts the definition of λΩ. In other words, the claim holds and

mk ≥ δ
( λk
λΩ − λk

)1/3

.

Thus (4.4) holds.
Next, define vk = uk/mk. Then sup vk = 1 and

∆∞vk + λka(x)v3
k = 0, in Ω, and vk = δ/mk. (4.5)

As vk’s are uniformly bounded, by Lemma 2.10, they are uniformly locally Lipschitz
continuous. There is a subsequence, which we continue to denote by {vk}, that
converges locally uniformly to some function v ∈ C(Ω) such that v ≥ 0. By [5,
Lemma 5.1], it follows that v solves

∆∞v + λΩa(x)v3 = 0, v ≥ 0, in Ω, and sup
Ω
v = 1. (4.6)

To show that v > 0 and v ∈ C(Ω), we will employ an upper bound and a lower
bound.

We first construct an upper bound. Set µ = supΩ a(x), and let η ∈ C(Ω) solve
the problem

∆∞η = −2λΩµ, in Ω, and η = 0.
The existence of η follows from [5, 6, 16]. Also, the function η + δ/mk solves the
same differential equation with δ/mk as the boundary data. Since (4.5) implies
that δ/mk ≤ vk ≤ 1, it is easy to see that 2λΩµ ≥ λΩa(x)v3

k. It follows from (4.5)
and Lemma 2.5, that δ/mk ≤ vk ≤ η + δ/mk, k = 1, 2, . . . . Thus 0 ≤ v ≤ η,
in particular, v = 0 on ∂Ω and v ∈ C(Ω). In order to show that v > 0 in Ω, we
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construct a lower bound. Since vk’s are continuous in Ω and supΩ vk = 1, there is
a point xk ∈ Ω such that vk(xk) = 1. We may now find a subsequence of vk and xk
(which we continue to call them as vk and xk) with xk → x. Since v is small near
∂Ω, it follows that x ∈ Ω and v(x) = 1. Let h ∈ C(Ω \ {x}) solve

∆∞h = 0 in Ω \ {x}, with h(x) = 2/3 and h = 0 on ∂Ω.

By Lemma 2.6 and (4.5), 0 < h ≤ vk, for large k. Thus, 0 < h ≤ v ≤ η. The
conclusion of the theorem follows. �

From hereon we will refer to λΩ as the first eigenvalue of the infinity-Laplacian
and a non-trivial solution u ∈ C(Ω) to the problem

∆∞u+ λΩa(x)u3 = 0, in Ω, and u = 0 on ∂Ω, (4.7)

as a first eigenfunction. As is clear from Theorem 4.1, an eigenfunction, having one
sign in Ω, exists. In the rest of this section, we will derive some properties of λΩ.
We start with an observation about domain monotonicity of the first eigenvalue.

Remark 4.2. In (3.2), let us write S = S(Ω). Suppose that Ω′ ⊂ Ω is a sub-
domain. If λ > 0 is such that there is a function v ∈ C(Ω) that solves

∆∞v + λa(x)v3 = 0, v > 0, in Ω, and v = δ on ∂Ω,

then v also solves the same equation in Ω′ with v ≥ δ on ∂Ω′. Thus S(Ω) ⊂ S(Ω′)
and λΩ ≤ λΩ′ .

Suppose that Ω′ is compactly contained in Ω and u > 0 solves (4.7), see Theorem
4.1. If we set θ = infΩ′ u, then θ > 0. Since one can use u as a super-solution and
the function v = θ as a sub-solution of (4.7), Theorem 2.9 provides us with a
positive solution w ∈ C(Ω′) to the problem

∆∞w + λΩa(x)w3 = 0, in Ω′, and w = θ on ∂Ω′.

By Lemma 3.3, we can find an ε > 0 and a function w ∈ C(Ω′) that solves

∆∞w̄ + (λΩ + ε)a(x)w̄3 = 0, w̄ > 0, in Ω′, and w̄ = θ on ∂Ω′.

By the definition of the set S, we see that λΩ′ ≥ λΩ + ε > λΩ. We have thus strict
domain monotonicity in case Ω′ is compactly contained in Ω. However, in general,
there is no strict domain monotonicity, see Lemma 6.3 in Section 5.

Remark 4.3. We also observe that if u ∈ C(Ω), u 6= 0, solves

∆∞u+ λa(x)u3 = 0, in Ω, and u = 0 on ∂Ω,

then λ ≥ λΩ. This can be seen as follows. Firstly, by Lemma 2.11, λ > 0. Next, if
λ < λΩ, then Remark 3.2 and Lemma 3.7 would imply that u = 0 in Ω. Thus the
claim holds.

In the next lemma, we make an observation related to Remark 4.2. This ad-
dresses the monotonicity property of the first eigenvalue of a level set of an eigen-
function.

Lemma 4.4. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain, and a(x) ∈ C(Ω)∩L∞(Ω)
with a(x) > 0. Let u ∈ C(Ω), u > 0, and supΩ u = 1 be a first eigenfunction, that
is,

∆∞u+ λΩa(x)u3 = 0, in Ω, and u = 0 on ∂Ω.
For 0 < t ≤ 1, set Ωt = {x ∈ Ω : u(x) > t}. Then λΩt is increasing and
limt↑1 λΩt =∞.
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Proof. First note that by Remark 4.2, λΩ < λΩt < λΩs , for 0 < t < s < 1, and

∆∞u+ λΩa(x)u3 = 0 in Ωt, and u = t on ∂Ωt, ∀0 ≤ t < 1. (4.8)

For notational ease, call λt = λΩt . Now, for any fixed 0 < α < 1 and 0 < t < 1,
and, for any t ≤ s ≤ 1,

s3 − (s− αt)3 = 3αst(s− αt) + α3t3 ≥ α3t3. (4.9)

Take 0 < α < 1 and ε > 0 to be chosen later. As done in Lemma 3.3, we write
w = u− αt and obtain

∆∞w + (λΩ + ε)a(x)w3 = a(x)
(
(λΩ + ε)(u− αt)3 − λΩu

3
)
, in Ωt, (4.10)

with w = (1− α)t on ∂Ωt. Rearranging the right side we obtain that

a(x){(λΩ + ε)(u− αt)3 − λΩu
3} = a(x)[ε(u− αt)3 − λΩ{u3 − (u− αt)3}].

Using (4.9) and t < u ≤ 1 in (4.10), we conclude

∆∞w + (λΩ + ε)a(x)w3 ≤ a(x)
(
ε(1− αt)3 − λΩα

3t3
)
,

For 0 < θ < 1, select

εθ = θ
α3t3λΩ

(1− αt)3
,

to obtain

∆∞w + (λΩ + εθ)a(x)w3 ≤ 0, in Ω, and w = t(1− α) > 0 on ∂Ωt.

By Remark 3.2,

λt ≥ λΩ

(
1 + θ

α3t3

(1− αt)3

)
.

By Remark 4.2,

lim
t↑1

λt ≥ λt ≥ λΩ

(
1 + θ

α3t3

(1− αt)3

)
.

The inequality holds for any 0 < α < 1 and 0 < t < 1, hence the claim. �

We make a related observation regarding λΩ. In the previous lemma, we dis-
cussed the limit limt↑1 λt. In the next lemma we study the limit limt↓0 λt.

Lemma 4.5. Suppose that a(x) ∈ C(Ω) ∩ L∞(Ω) with a(x) > 0. Let T be the set
of all λ’s such that λ ≥ λΩ and the problem

∆∞v + λa(x)v3 = 0, in Ω, and v = 0 on ∂Ω.

has a positive solution v ∈ C(Ω). Let u > 0 be an eigenfunction corresponding to
λΩ. Assume that supΩ u = 1. For 0 < t < 1, define Ωt = {x : u(x) > t} and
λt = λΩt . Then

λΩ = inf T ≤ supT = inf
t
λt = lim

t↓0
λt.

In particular, T is a singleton set if and only if λΩ = limt↓0 λt.

Proof. Firstly, supT <∞, by Theorem 2.12. If 0 < t < s < 1 then Ωs ⊂ Ωt, and by
Remark 4.2, λt ≤ λs and limt↓0 λt = inft λt. Our goal is to show that λt ≥ supT ,
for all 0 < t < 1. Suppose not. Let λ ∈ T be such that λ > λt, for some 0 < t < 1.
By the definition of T , there is a function v that solves

∆∞v + λa(x)v3 = 0, v > 0, in Ω, with v = 0 on ∂Ω.
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Since Ωt is compactly contained in Ω, inf∂Ωt v > 0. Next, let w > 0 be a first
eigenfunction on Ωt, that is,

∆∞w + λta(x)w3 = 0, in Ωt, and w = 0 on ∂Ωt.

Since λ > λt, applying Lemma 2.3 to v and w in Ωt, we obtain 0 ≤ (w/v) ≤
sup∂Ωt(w/v) = 0, a contradiction. Hence, λt ≥ supT , for all 0 < t < 1. By
Theorem 4.1,

λΩ = inf T ≤ supT ≤ inf
t
λt.

Next, we show that supT = inft λt. To see this, for 0 < t < t0, t0 small, consider
the family of first eigenfunctions wt that solve

∆∞wt + λta(x)w3
t = 0, wt > 0, in Ωt, and wt = 0 on ∂Ωt.

Scale wt such that supwt = 1. Calling λ0 = inft λt and arguing as in Theorem 4.1
(see [5, Lemma 5.1]), we obtain a convergent subsequence {wtl}∞l=1 (with tl ↓ 0) of
{wt}t<t0 and a function w0 ∈ C(Ω) such that limtl→∞ wtl = w0 with supw0 = 1.
Also,

∆∞w0 + λ0a(x)w3
0 = 0, w0 ≥ 0, in Ω, and w0 ≥ 0 on ∂Ω.

To show that w0 ∈ C(Ω) and w0 = 0 on ∂Ω, we employ an upper bound similar to
that in Theorem 4.1. Set µ = supΩ a and let η ∈ C(Ω) be the solution to

∆∞η = −2λt0µ, in Ω and η = 0 on ∂Ω.

Since for any 0 < t < t0, Ωt ⊂ Ω, λt ≤ λt0 , 0 ≤ wt ≤ 1 and η > 0 in Ωt, Lemma
2.6 implies that wt ≤ η in Ωt. Thus 0 ≤ w0 ≤ η in Ω, and thus, w0 ∈ C(Ω) and
w0 = 0 on ∂Ω.

We now prove that w0 > 0 in Ω. Let xl ∈ Ωtl , l = 1, 2, . . . , be such that
wtl(xl) = 1. Then for some p ∈ Ω, xl → p as l → ∞ (choose a subsequence, if
needed). Since wtl ≤ η, it follows that p ∈ Ω. Hence, wtl(p) > 1/2, for tl close
to 0. Take s, close to 0, such that p ∈ Ωs (any s < u(p) will do). We take ζ to
be a positive infinity harmonic function in Ωs \ {p} with ζ(p) = 1/2 and ζ = 0
on ∂Ωs. Since wtl is positive and infinity super-harmonic in Ωtl and Ωs ⊂ Ωtl , for
0 < tl < s, Lemma 2.5 implies that wtl ≥ ζ in Ωs. Thus w0 ≥ ζ > 0 in Ωs. In
particular, w0 > 0 in Ωs, for any s close to 0. Since Ωs exhausts Ω as s decreases
to 0, we have that w0 > 0 in Ω. Thus inft λt = supT . The claim holds. �

Remark 4.6. Let the function u ∈ C(Ω), the sets Ωt, the eigenvalues λt, 0 < t < 1,
and T be as in the statement of Lemma 4.5. We claim that the set T is either a
singleton set or the interval [λΩ, supT ]. Set λT = supT , and assume that T is
not a singleton set. Choose ε > 0 such that λT − ε > λΩ. Fix δ > 0, and for each
0 < t < 1, consider the family of problems

∆∞vt + (λT − ε)a(x)v3
t = 0, vt > 0, in Ωt, with vt = δ on ∂Ωt.

By Lemma 4.5, λt > λT − ε. Hence, Theorem 3.9 (also see Remark 3.2) implies
that the above has a unique solution vt ∈ C(Ωt), vt > δ, for every 0 < t < 1. If
0 < t1 < t2 < 1, then Ωt2 ⊂ Ωt1 and λt1 < λt2 , and we conclude from Lemma 3.4
that vt2 ≤ vt1 , in Ωt2 . Call mt = supΩt vt, then mt increases as t decreases. We
claim that limt↓0mt = ∞. To see this, first we employ Lemma 2.3, noting that
λt > λΩ, to observe that supΩt(u/vt) = sup∂Ωt(u/vt) = t/δ. If suptmt < ∞ then
it follows that u ≤ (tmt)/δ, in Ωt. Letting t decrease to 0, we get u = 0 in Ω. This
is a contradiction and the claim holds.
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Define wt = vt/mt, in Ωt. Noting that supΩt wt = 1 and arguing as in Theorem
4.1 and Lemma 4.5 (see [5, Lemma 5.1]), one can find a convergent subsequence
{wtl} of {wt}(with tl → 0) and w ∈ C(Ω) such that limtl→0 wtl → w. Moreover,

∆∞w + (λT − ε)a(x)w3 = 0, w > 0, in Ω, with w = 0 on ∂Ω.

This proves our assertion.

5. Additional results on some special domains

In Sections 5 and 6, we will discuss some results regarding the first eigenvalue
problem on some special domains. The present section contains a discussion related
to the eigenvalue problem (4.7) on C2 domains and on star-shaped domains. If λt
and T are as in the statement of Lemma 4.5, we will show that T is a singleton set
when Ω is a C2 domain, in other words, limt↓0 λt = λΩ, see Remark 5.2.

We begin this section by proving that the eigenfunctions corresponding to higher
eigenvalues change sign. This fact is well-known in the context of elliptic operators
on general domains. We provide a proof in this context for C2 domains and star-
shaped domains. In this context, recall the result in Theorem 2.12 that holds on
any bounded domain.

Lemma 5.1. Let Ω ⊂ Rn be a bounded domain. Suppose that either Ω has C2

boundaries or is star-shaped. We assume that (i) a(x) ∈ C(Ω) and, infΩ a(x) > 0,
if Ω is star-shaped, and (ii) that a(x) ∈ C(Ω) ∩ L∞(Ω), a(x) > 0, if Ω has a C2

boundary. Let λ > λΩ and v ∈ C(Ω) be such that

∆∞v + λa(x)v3 = 0, in Ω, sup
Ω
v = 1, v = 0 on ∂Ω. (5.1)

Then v changes sign in Ω.

Proof. We start with the case when Ω is a star-shaped domain. Without any loss
of generality, we may assume that Ω is star-shaped with respect to the origin o.
Suppose that v > 0 in Ω. We scale v as follows. For 0 < t < ∞, set y = tx,
wt(y) = v(x) and Ωt = {tx : x ∈ Ω}. Note that Ωs ⊂ Ω ⊂ Ωt, 0 < s < 1 < t. A
simple calculation leads to

∆∞wt +
λ

t4
a(y/t)w3

t = 0, in Ωt, and wt = 0 on ∂Ωt.

Taking t > 1, close to 1, and using the uniform continuity of a, we have

λΩa(y) ≤ λ

t4
a(y/t), y ∈ Ω.

Hence,
∆∞wt + λΩa(y)w3

t ≤ 0, in Ω, and inf
∂Ω
wt > 0.

This contradicts the definition of λΩ, see Remark 3.2 and Lemma 3.3. The claim
holds.

We now prove the lemma when Ω is C2. We achieve this in six steps. We assume
that v > 0 in (5.1).
Step 1: By Theorem 4.1, one can find an eigenfunction u > 0 such that

∆∞u+ λΩa(x)u3 = 0, in Ω, sup
Ω
u = 2, u = 0 on ∂Ω. (5.2)
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Step 2: We construct two auxiliary functions. Set σ = 34/3/4, and consider the
ball BR(o), for R > 0. Take m > 0, define

ψ(x) = ψ(m,R, |x|) = c|x| − b|x|4/3, x ∈ BR(o), (5.3)

where c = (1/R) + (8σ/3)R1/3m1/3, and b = σm1/3. Using (2.2), for x 6= o, we
have

∆∞ψ = (−4b
9

)
(
c− 4b|x|1/3

3

)2

|x|−2/3

= (−4σ
9

)
[
m1/3|x|−2/3

(
c2 − 8cb|x|1/3

3
+

16b2|x|2/3

9

)]
= (−4σ

9
)
[
m1/3|x|−2/3

(
c2 − 8cb|x|1/3

3

)
+

16m1/3b2

9

]
=
[
(−4σ

9
)cm1/3|x|−2/3

(
c− 8σm1/3|x|1/3

3

)]
−m

= (−4σ
9

)cm1/3|x|−2/3
( 1
R

+
8σm1/3

3
(
R1/3 − |x|1/3

))
−m ≤ −m.

We record this and other useful facts for ψ, see (5.3),

(i) ψ(o) = 0, (ii) ψ(R) > 1, (iii) ∆∞ψ(x) ≤ −m, ψ(x) > 0, x ∈ BR(o) \ {o}.
(5.4)

For ` > 0, define

η(x) = η(`, R, |x|) = `
(

1− |x|
R

)
, ∀x ∈ BR(o).

We note also the following for future reference.

(i) η(R) = 0, (ii) η(o) = `, (iii) ∆∞η(x) = 0, x ∈ BR(o) \ {o}. (5.5)

We introduce additional notation that will be used in Steps 3, 4, 5. Being a
C2 domain, Ω satisfies an uniform interior ball condition at every point of ∂Ω.
Let 2ρ denote the radius of the optimal ball. For every z ∈ ∂Ω, let ν(z) denote
the unit inward pointing normal. Then the ball B2ρ(z + 2ρν(z)) ⊂ Ω and z ∈
∂Ω ∩ ∂B2ρ(z + 2ρν(z)). For every z ∈ ∂Ω, set y = z + ρν(z).
Step 3: For every z ∈ ∂Ω, define

Ω∗ = Ω \
(
∪z∈∂ΩBρ/2(z + ρν(z)/2)

)
. (5.6)

Also, set
`u = inf

Ω∗
u and `v = inf

Ω∗
v, (5.7)

where u is as in Step 1 and v is as in (5.1).
Step 4: We work in the balls Bρ(y) and B2ρ(z). Here, Bρ(y) ⊂ Ω ∩ B2ρ(z).
We recall the constructions in Step 2, (5.3)-(5.5) and (5.7). Let µ = supΩ a(x).
Recalling Step 1, take mu = λΩµ and mv = λµ. For each fixed z ∈ ∂Ω, set in (5.3),

ψu(x) = ψ(mu, 2ρ, |x− z|), ψv(x) = ψ(mv, 2ρ, |x− z|), x ∈ B2ρ(z). (5.8)

Next, in Step 2, take

ηu(x) = η(`u, ρ, |x− y|), ηv(x) = η(`v, ρ, |x− y|), x ∈ Bρ(y). (5.9)

We also note that if x ∈ Bρ(y) and lies on the segment yz, then

ηu(x) =
`u|x− z|

ρ
, ηv(x) =

`v|x− z|
ρ

. (5.10)
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Step 5: We claim that for each z ∈ ∂Ω and x ∈ Bρ(y)

ηu(x) ≤ u(x) ≤ 2ψu(x), ηv(x) ≤ v(x) ≤ ψv(x). (5.11)

We present details for u, the proof for v will follow analogously. We apply the
properties of ψu from (5.4) in B2ρ(z) ∩ Ω, call w = 2ψu. Using Step 1, (5.4) and
(5.8), we see that

∆∞w ≤ −8λΩµ, and ∆∞u ≥ −8λΩµ, in B2ρ(z) ∩ Ω.

From (5.2), (5.4) (ii) and (iii), we see that w(x) > 2 ≥ u(x), x ∈ ∂B2ρ(z) ∩ Ω, and
w ≥ u on ∂Ω∩B2ρ(z). The comparison principles in the Lemmas 2.5 and 2.6 yield
that u ≤ 2ψu, in B2ρ(z) ∩ Ω. To show that ηu ≤ u, in Bρ(y), we note

∆∞ηu = 0, and ∆∞u ≤ 0, in Bρ(y) \ {y}.

Using (5.5)-(5.7) and (5.10), we have that ηu(x) ≤ u(x), x ∈ ∂Bρ(y) and `u =
ηu(y) ≤ u(y). Thus, Lemma 2.5 implies that ηu ≤ u in Bρ(y). Thus (5.11) holds.

If x ∈ Ω \ Ω∗ (see (5.6)), then one can find a closest point z ∈ ∂Ω, such that
x ∈ Bρ(y), where y = z + ρν(z). As a result, we have

ηu(x)
ψv(x)

≤ u(x)
v(x)

≤ 2ψu(x)
ηv(x)

.

Next, we observe that x lies on the segment yz. From Step 2 and (5.10), we conclude
that there are positive constants k1, k2 and d, depending only on `u, `v, λ, λΩ, µ
and ρ, such that

k1 ≤
u(x)
v(x)

≤ k2, for every x ∈ Ω with dist(x, ∂Ω) < d. (5.12)

Step 6: We recall (5.1), (5.2), (5.12) and Lemma 2.2. Choose 1 < τ < (λ/λΩ)1/3.
Since u− v = 0 on ∂Ω, supΩ u = 2 and supΩ v = 1, the function u− v will assume
a positive maximum in Ω. We will show that this leads to a contradiction thus
proving the lemma.

Since supΩ(u − v) > sup∂Ω(u − v), by Lemma 2.2, there is a point x1 ∈ Ω,
where u− v takes its supremum and (λ/λΩ)1/3v(x1) ≤ u(x1). As (u− τv)(x1) > 0
and (u − τv) = 0 on ∂Ω, the function u − τv has a positive maximum in Ω. An
application of Lemma 2.2 to u and τv yields that there is an x2 ∈ Ω such that

sup
Ω

(u− τv) = (u− τv)(x2) > 0, and τ
( λ
λΩ

)1/3
v(x2) ≤ u(x2).

We iterate this argument. Suppose that we have shown for some m = 1, 2, . . . , that
there is an xm ∈ Ω such that

sup
Ω

(u− τm−1v) = (u− τm−1v)(xm) > 0, τm−1
( λ
λΩ

)1/3
v(xm) ≤ u(xm).

Since u − τmv = 0 on ∂Ω, the function u − τmv has a positive maximum in Ω.
Applying Lemma 2.2 to u and τmv, we see that there is an xm+1 ∈ Ω such that

sup
Ω

(u− τmv) = (u− τmv)(xm+1) > 0, τm
( λ
λΩ

)1/3
v(xm+1) ≤ u(xm+1).

Thus, we have shown that for each m = 1, 2, . . . , there is an xm ∈ Ω such that

u(xm) ≥ τmv(xm).
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Recall that the functions u and v are in C(Ω), u > 0, v > 0, in Ω, and u = v = 0 on
∂Ω. It follows that v(xm) → 0 as m → ∞. that is, xm is close to ∂Ω for large m.
Combining this with (5.12), we obtain τm ≤ k2, for all values of m that are large
enough. This is a contradiction and the lemma holds. Incidentally, (5.1), (5.2),
(5.12) and Lemma 2.3 lead to u ≤ k2v in Ω. This could have been used instead to
achieve the last part of the proof. �

Remark 5.2. Lemma 5.1 leads to the following conclusions.
(i) Suppose that λ = λΩ, and u and v are two positive eigenfunctions. Adapting

the arguments in Step 2-5 of Lemma 5.1 and applying Remark 3.5, we have that
k1 ≤ u/v ≤ k2, in Ω.

(ii) By Lemma 4.5, Remark 4.6 and Lemma 5.1, it follows that limt↓0 λt = λT =
λΩ. Thus T is a singleton set.

6. Case of the ball

We now turn our attention to the case of the ball. We will take the weight
function a(x) to be radial. We will study the radial version of the eigenvalue problem
and present some properties of the radial eigenfunction. Under the hypothesis that
a(x) is a constant function, we provide a description of the eigenvalues that support
radial eigenfunctions and show that there are infinitely many such eigenvalues. We
end the section by presenting a proof of the fact that if the weight function is a
constant then the first eigenfunction has one sign and all radial first eigenfunctions
are unique up to scalar multiplication.

We begin by recalling that the existence of the first eigenvalue and a positive first
eigenfunction is guaranteed by Theorem 4.1. We apply now the results of Section
3 and 4 to show that there is a first eigenfunction u that is positive and radial.

For R > 0, let Ω = BR(o), and we take a(x) = a(|x|) > 0. For ease of notation,
we set λB = λBR(o) and r = |x|. If v(x) = v(r) then the radial expression for the
infinity-Laplacian in (2.2) gives us

∆∞v + λa(x)v3 =
(dv
dr

)2 d2v

dr2
+ λa(r)v(r)3, x ∈ BR(o). (6.1)

Let us also recall from Section 3 the following definition of F (t) for 0 ≤ t ≤ 1:

F (t) =
∫ 1

t

ds

(1− s4)1/4
. (6.2)

The ideas of the proof of Theorem 6.1 and Lemma 6.3, that follow, are similar to
those in [6, Lemma 6.1].

Theorem 6.1. Let a(x) ∈ C(BR(o)) ∩ L∞(BR(o)), a(x) > 0, and λ > 0. Assume
that a(x) = a(|x|). Let δ ≥ 0, and u solve

u(x) = u(r) = m− (3λ)1/3

∫ r

0

[ ∫ t

0

a(s)u(s)3 ds
]1/3

dt, (6.3)

where u(o) = m > 0 is so chosen that u(R) = δ. Then u ∈ C(BR(o)) and the
following hold.

(i) If λ < λB and δ > 0 in (6.3), then u > 0, in B, and u is the unique solution
to

∆∞u+ λa(x)u3 = 0, u > 0, in BR(o), and u(R) = δ. (6.4)
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(ii) If λ = λB, in (6.3), then there is a positive function v that solves (6.3) in
B, with m = 1, v(R) = 0. Moreover, v is a radial first eigenfunction.

(iii) Let a(x) = k be a positive constant and F be as (6.2). Then the positive
function u defined by

F (u(r)/m)) = (λk)1/4r, (6.5)

is a radial solution to (6.4) with δ ≥ 0. We also have, (λk)1/4R = F (δ/m).

Proof. We have broken up the proof into five steps. We take δ > 0. Set µ =
supB a(x) and ν(r) = infBr(o) a(x).
Step 1. For any m > δ, define u to be the local solution to (6.3). By Picard’s
iteration, u exists near o and is decreasing in r. Since u ∈ C2, near o (except
perhaps at o), we obtain by a differentiation that u solves (6.4)(see (6.1)) in r > 0,
for small r. We record a simple estimate. For small r > 0, since, u(r) ≤ u(s) ≤ m,
for 0 ≤ s ≤ r, we have that

(34ν(r)λ)1/3u(r)r4/3

4
≤ (3λ)1/3

∫ r

0

[ ∫ t

0

a(s)u(s)3 ds
]1/3

dt ≤ (34µλ)1/3mr4/3

4
.

(6.6)
Step 2. We show that u is a viscosity solution to the differential equation in (6.4),
in a neighborhood of o. Assume that for some ψ ∈ C2(BR(o)), u − ψ has a local
maximum at o, that is, u(x)− u(o) ≤ ψ(x)− ψ(o), for x near o. Employing (6.3),
(6.6) and noting that r = |x|, we have

− (34µλ)1/3m|x|4/3

4
≤ u(x)− u(o) ≤ 〈Dψ(o), x〉+ o(|x|), as |x| → 0.

Take x = −θDψ(o), θ > 0. Next, dividing both sides by θ and letting θ → 0, we
get Dψ(o) = 0. Hence, ∆∞ψ(o) + λa(o)u(o)3 ≥ 0, and u is a sub-solution to (6.3).

Suppose that u−ψ has a minimum at o; that is, ψ(x)−ψ(o) ≤ u(x)−u(o) ≤ 0.
Using (6.3) and (6.6) and arguing as above, we see that Dψ(o) = 0. Clearly, now
(6.3) and (6.6) lead to

〈D2ψ(o)x, x〉
2

+ o(|x|2) ≤ u(x)− u(o) ≤ − (34ν(r)λ)1/3u(r)|x|4/3

4
, as |x| → 0.

Taking, for instance, x = re1, dividing both sides by r2 and then letting r → 0, we
see that D2ψ(o) does not exist. Thus, u−ψ can not have a minimum at o. Clearly,
u is a super-solution and, hence, a local solution to (6.4).
Step 3. Steps 1 and 2 show that for any m > δ, the formula in (6.3) provides a
local radial solution to (6.4). By Step 1, u exists near o and u is decreasing. Let
ε > 0 be small. For r > ε, an integration of (6.3) (also see (6.6)) leads to

m−
(

3λµ
∫ r

0

u(s)3 ds
)1/3

r ≤ u(r) ≤ m−
(

3λν(ε)
∫ ε

0

u(s)3 ds
)1/3

(r − ε).

Hence, u > δ in some subinterval [0, t] ⊂ [0, R], where t > 0. Set

rλ = sup{r : u(t) > δ, 0 ≤ t < r ≤ R}. (6.7)

Step 4. From (6.3) and Step 3, it is clear that u ∈ C(Brλ(o)) and solves

∆∞u+ λa(x)u3 = 0, in Brλ(o), and u ≥ δ on ∂Brδ(o). (6.8)

We also note that any positive scalar multiple of u also solves (6.3). For Cases 1
and 2, we assume that δ > 0 and λ < λB .
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Case 1: If rλ = R then by (6.7), u(R) ≥ δ. If u(R) > δ, scale u such that u(R) = δ.
This provides us with the unique solution to (6.4), see Remark 3.5.
Case 2: Suppose that rλ < R. By the continuity of u, u(rλ) = δ. We continue u
past rδ, using (6.3). If u(r) > 0, rλ < r ≤ R, then we scale u such that u(R) = δ.
Suppose that there is an r̄ with rλ < r̄ ≤ R such that u(r̄) = 0 (see the estimate
in Step 3). Then u > 0 in Br̄(o) and satisfies the differential equation in (6.8), in
Br̄(o), with u(r̄) = 0. If r̄ < R, by Remarks 4.2 and 4.3, we have that λ ≥ λB ,
a contradiction. If r̄ = R, then u = 0 in Br̄(o), by Lemma 3.7. Thus u > 0 in
0 ≤ r ≤ R. We may now scale u such that u(R) = δ. Uniqueness follows from
Remark 3.5. This proves part (i).
Step 5. Fix δ > 0. For each 0 < λ < λB , part (i) provides us with a unique
solution to (6.4) which we label as uλ. The function uλ is positive and radial. As
has been shown, uλ also solves (6.3). Observe that supB uλ = uλ(0). Working with
the functions vλ = uλ/uλ(0), and arguing as in Theorem 4.1, there is a subsequence
vλk → v, as λk → λB , where v is in C(B) and solves (6.4) with v|∂B = 0. Moreover,
by (4.4), δ/uλk(o)→ 0. It is clear that v solves (6.3), in B with m = 1, that is,

v(x) = v(r) = 1− (3λB)1/3

∫ r

0

[ ∫ t

0

a(s)v(s)3 ds
]1/3

dt, v(R) = 0.

Thus v is a first eigenfunction in BR(o). Next, if for some λ > 0, there is a function
u, given by (6.3) in B, that is positive and vanishes on |x| = R, then λ ≥ λB . This
follows from Remark 4.3 since u solves (6.4) with δ = 0. Lemma 5.1 now implies
that λ = λB .

Part (iii) of the theorem can be obtained by a differentiation. Also see the proof
of Lemma 3.11. �

From hereon we will take a(r) = 1. Our goal will be to show that, on a ball,
an eigenfunction, corresponding to the first eigenvalue, has one sign and all radial
solutions are scalar multiples of each other. Let us set

β =
(∫ 1

0

ds

(1− s4)1/4

)4

. (6.9)

Remark 6.2. In the statement of Theorem (6.1)(part (iii)), if we take a(x) = 1,
δ = 0 and λ = λB , then we obtain

β = λBR
4.

We argue its validity as follows. Take λ < λB . For δ > 0, the corresponding
solution u is positive and unique, see Lemma 3.5. We now recall the argument used
in Theorem 4.1. Set m = supB u and recall that m = m(δ) becomes unbounded
as λ → λB , see (4.4). Thus, δ/m → 0 as λ → λB . As a matter of fact, δ/m
depends only on λ. Taking limits in the formula given in part (iii) of Theorem 6.1,
the formula for λB holds. Also the eigenfunction u(x) = u(r), r = |x|, given by
Theorem 6.1, satisfies the radial version of (6.4); that is,(du

dr

)2 d2u

dr2
+

β

R4
u3 = 0, in BR(o), u′(0) = 0, u(R) = 0. (6.10)

We now show that the eigenvalue problem on the ball has infinitely many eigen-
values. We also compute the first eigenvalue of an annulus. For 0 ≤ κ < τ < ∞
and p ∈ Rn, let Ω = Bτ (p) \ Bκ(p) be the spherical annulus centered at p. Set
2ρ = τ − κ and B = Bρ(p). One of our results shows that λΩ = λB = βρ−4. Since,



26 T. BHATTACHARYA, L. MARAZZI EJDE-2013/47

Ω contains a ball of the same size as B, this shows that there is no strict domain
monotonicity, in general. We refer the reader to Remark 4.2.

Lemma 6.3. Let R > 0, p ∈ Rn and β be as in (6.9). Then the problem

∆∞u+ λu3 = 0, in BR(p), and u = 0 on ∂BR(p),

has infinitely many eigenvalues λ. Moreover, the following hold.
(i) The eigenvalues given by λ` = β(2`−1)4R−4, ` = 1, 2, . . . , have correspond-

ing radial eigenfunctions.
(ii) Let 0 ≤ κ < τ <∞, p ∈ Rn, and Ω = Bτ (p)\Bκ(p) be the spherical annulus

centered at p. Set 2R = τ − κ and B = BR(p). Then λΩ = λB = βR−4.

Proof. We carry out the proof in four steps. We refer to Theorem 6.1 for the
existence of a radial first eigenfunction, also see (6.10). The proof has ideas similar
to those in [6, Lemma 6.1]. Set u′(r) = du/dr.
Step 1: Set r = |x− p|, and let u(x) = u(r), 0 ≤ r ≤ R, be a positive radial first
eigenfunction of ∆∞ on B. We scale supB u = 1, and extend u to the rest of Rn as
follows. To aid our construction, we recall (6.3) and set a(x) = 1; that is,

u(x) = u(r) = 1− (3λB)1/3

∫ r

0

[ ∫ t

0

u(s)3 ds
]1/3

dt, u′(0) = u(R) = 0. (6.11)

First we use an odd reflection about r = R. Define

u1(r) =

{
u(r), 0 ≤ r ≤ R,
−u(2R− r), R ≤ r ≤ 2R.

Thus, u1 satisfies (du1

dr

)2 d2u1

dr2
+ λBu

3
1 = 0,

in (0, 2R), except perhaps at r = R. Next we use an even reflection about r = 2R
and define

u2(r) =

{
u1(r), 0 ≤ r ≤ 2R,
u1(4R− r), 2R ≤ r ≤ 4R.

Finally, we use a 4R-periodic extension of u2 to all of [0,∞). More precisely, for
0 ≤ r <∞, let k = 1, 2, . . . , be such that 4kR ≤ r ≤ 4(k + 1)R. Now, define

u∞(r) = u2(r − 4kR), for 4kR ≤ r ≤ 4(k + 1)R.

Step 2: Our goal is to show that u∞ solves

∆∞u∞ + λBu
3
∞ = 0, in Rn. (6.12)

It is clear from Step 1 that we need check this assertion only at r = R, 2R. We
prove this first for r = R. We work with u1. Suppose that ψ ∈ C2(Rn), and u1−ψ
has a maximum at a point q ∈ ∂BR(p). We may assume that the segment pq lies
along the positive xn axis. Let en denote the unit vector along the positive xn axis.
By our construction and (6.11), u1(q) = u1(R) = 0, thus implying that

u1(x) ≤ ψ(x)− ψ(q) = 〈Dψ(q), x− q〉+ o(|x− q|), as x→ q. (6.13)

Take x ∈ ∂BR(p). Since u1(x) = 0, dividing both sides by |x − q| and letting
x → q, we get Dψ(q) = ±|Dψ(q)|en. Next, for small θ, select x = q + θen. Since
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u(r) = u(R+ θ), we have

u1(R+ θ)
|θ|

≤ θ

|θ|
〈Dψ(q), en〉+ o(1), as θ → 0.

We select θ < 0 and note that u1(R + θ) > 0, see (6.11) and Step 1. Noting that
u′1(R) = u′(R−), we obtain 〈Dψ(q), en〉 ≤ u′1(R). Now choosing θ > 0 and recalling
that u1(R + θ) < 0, we obtain Dψ(q) = u′1(R)en. Next, a simple calculation leads
to ∆∞ψ(p) = (u′1(R))2Dnnψ(p). To determine the sign of Dnnψ(p), we use (6.13)
to obtain

u1(x) ≤ 〈u′1(ρ)en, x− q〉+
〈D2ψ(q)(x− q), x− q〉

2
+o(|x− q|2), as x→ q. (6.14)

Taking x = q + θen, where θ is small, it follows that

u1(R+ θ) ≤ θu′1(R) +
(θ2

2

)
Dnnψ(q) + o(θ2), as θ → 0.

Using (6.11) and Step 1, a differentiation yields that u′′1(R−) = u′′1(R+) = 0.
Clearly, u1 is C2 near r = R, if we define u′′1(R) = 0. Using Taylor’s expansion of
u1 at r = R, we obtain, for small θ,

u1(R+ θ)− θu′1(R) =
θ2

2
u′′1(R) + o(θ2) ≤ θ2

2
Dnnψ(q) + o(θ2), as θ → 0.

Hence, Dnnψ(q) ≥ 0 and now recalling that u(q) = 0, we have ∆∞ψ(q)+λBu3(q) =
(u′1(R))2Dnnψ(q) ≥ 0. Thus u∞ is a sub-solution near |x| = R.

Now suppose that for some ψ ∈ C2, u1−ψ has a minimum at some q ∈ ∂BR(p).
Then (−u1)− (−ψ) has a maximum at q. Arguing as above we conclude that u1 is
a super-solution near |x| = R.

To prove that u∞ solves (6.12) near |x| = 2R, we observe that u′∞(0+) =
u′∞(2R) = 0. This together with the arguments employed in Theorem 6.1 (see Step
2) may be now used to treat the case r = 2R. Thus (6.12) holds.
Step 3. From our construction of u∞ in Step 1, it is clear that u∞((2`− 1)R) = 0,
for ` = 1, 2, . . . . Next, by a differentiation, we see that the function w(r) = u∞((2`−
1)r) provides us with an eigenfunction on BR(p) corresponding to the eigenvalue
λ` = (2`− 1)4β/R4. This proves part (i).
Step 4: We now address part (ii) of the lemma. Recall that Ω = {x : κ < |x| < τ}
and 2R = τ−κ. If, for some ` = 0, 1, 2, . . . , κ = (2`+1)R then τ = (2`+3)R. From
Step 1, for every `, u∞((2`+1)R) = 0 and u∞ has one sign in [(2`+1)R, (2`+3)R].
Hence, u∞ = 0, on ∂Ω, and u∞ has one sign in Ω. Thus, (6.12) and Lemma 5.1
imply that u∞(r), restricted to [κ, τ ], is a first eigenfunction on Ω, and λΩ = λB .
If (2`+ 1)R < κ < (2`+ 3)R for some `, then the function v(r) = u∞(r − δ), δ =
κ − (2` + 1)R is a first eigenfunction in [κ, τ ]. If 0 ≤ κ < R and δ = R − κ, then
v(r) = u∞(r + δ), κ ≤ r ≤ τ , is the desired eigenfunction. Note that the ordinary
differential equation in Remark 6.10 is translation invariant. In any case, λΩ = λB .
Note also that if A = B2ρ(p) \ {p} then λA = λB . �

Finally, we prove that the first eigenfunction, on the ball, has one sign, and radial
solutions are unique up to scalar multiplication. Simplicity of λB would follow if
every solution is radial. However, it is not clear to us if this is indeed true.

Theorem 6.4. Let R > 0, let u ∈ C(BR(o)) solve the eigenvalue problem

∆∞u+ λBu
3 = 0, in BR(o), and u = 0 on ∂BR(o).
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It follows that (i) u has one sign in BR(o), and (ii) if u is radial and supB u = 1
then u is unique.

Proof. Set B = BR(o); scale u so that u(o) = 1. Set B+ = {x ∈ B : u(x) > 0}
and B− = {x ∈ B : u(x) < 0}. Note that u is infinity super-harmonic in B+ and
infinity sub-harmonic in B−.

We prove part (i). Assume that u changes sign in B. We discuss the case when
a component C of B− is compactly contained in B. Since u is an eigenfunction on
B−, Remark 4.3 implies that λC ≤ λB . This contradicts the strict monotonicity
shown in Remark 4.2. Thus, if B− is non-empty then B− ∩ ∂Br(o) is non-empty,
for every r close to R.

We derive bounds for u. Set m = infB u and M = supB u. By our hypothesis,
m < 0 < M . For any L 6= 0, select b = b(L) such that (b+ 3LR)4/3 − b4/3 = −4L.
Then the function

ψ(x) = ψ(|x|, L) = 1 +
1

4L

[
(b+ 3L|x|)4/3 − b4/3

]
, for x ∈ B,

satisfies
∆∞ψ = L, in B \ {o}, ψ(0) = 1, ψ(R) = 0

Set ψM (x) = ψ(|x|,−8λBM3) and ψm(x) = ψ(|x|, 8λB |m|3). Then

∆∞ψM = −8λBM3 ≤ ∆∞u = −λBu3 ≤ ∆∞ψm = 8λB |m|3.

Since u(o) = ψm(0) = ψM (0) = 1, and ψm(R) = ψM (R) = u = 0 on ∂B, Lemma
2.6 implies

ψm(x) ≤ u(x) ≤ ψM (x), for x ∈ B. (6.15)

Consider all rotations of B about o. Let A be an n× n, orthogonal matrix. Define

u`(x) = inf
A
u(Ax), for x ∈ Ω.

Set r = |x|, clearly, u`(x) = u`(r) = inf∂Br(o) u and u(o) = u`(o) = 1. Since ∆∞ is
rotation invariant, u(Ax) is an eigenfunction. Arguing as in [6, Theorem 3.1] (this
appears in the Perron method and uses a perturbation, see equations (3.2)-(3.4)
therein), u` is a super-solution; that is,

∆∞u` + λBu
3
` ≤ 0, in B, and u`(R) = 0.

Since every u(Ax) satisfies (6.15), we have ψm(x) ≤ u`(x) ≤ ψM (x) in Ω. Thus,
by Lemma 2.10, u` is locally Lipschitz continuous in B, and u`(r) assumes the zero
boundary data continuously.

Define r0 = sup{r : u`(t) > 0, ∀0 ≤ t < r}. Recalling that u(o) = 1 and B−

is non-empty, we see that 0 < r0 < R and u`(r0) = 0. Since every component
of B− meets ∂B, u`(r) < 0 in r0 < r < R. Set A = {x : r0 < |x| < R} and
d = (R− r0)/2. We take v = −u` to obtain

∆∞v + λBv
3 ≥ 0, v > 0, in A and v = 0 on ∂A.

Next, Lemma 6.3 implies that λA = λBd(o) > λB . By Remark 3.2 and Lemma 3.7,
we get v ≤ 0 in A. This is a contradiction and it follows that u ≥ 0 in B, and
hence, u > 0.

We now prove part (ii). Let v > 0 be the radial solution in B given by part (ii)
of Theorem 6.1. Suppose that u is a radial first eigenfunction on B. Since every
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eigenfunction has one sign, we may use Remark 3.5 in Br(o), 0 < r < R. Thus

inf
∂Br(o)

u

v
=
u(r)
v(r)

≤ u(t)
v(t)

≤ u(r)
v(r)

= sup
∂Br(o)

u

v
, 0 ≤ t ≤ r.

Thus v(r) = (v(o)/u(o))u(r) for any 0 ≤ r < R. Thus u is a scalar multiple of v
and uniqueness follows. �
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