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STOCHASTIC DYNAMIC EQUATIONS ON
GENERAL TIME SCALES

MARTIN BOHNER, OLEXANDR M. STANZHYTSKYI, ANASTASIIA O. BRATOCHKINA

Abstract. In this article, we construct stochastic integral and stochastic dif-
ferential equations on general time scales. We call these equations stochastic

dynamic equations. We provide the existence and uniqueness theorem for so-

lutions of stochastic dynamic equations. The crucial tool of our construction
is a result about a connection between the time scales Lebesgue integral and

the Lebesgue integral in the common sense.

1. Introduction

This article is dedicated to the investigation of stochastic dynamic equations
on general time scales. Dynamic equations on time scales offer a new direction in
the study of dynamic systems which involve differential equations and difference
equations as special cases. Their origin is connected with Stefan Hilger’s work
[13, 14]. In 1988, Stefan Hilger introduced the definition of a ∆-derivative. The
common derivative and the common forward difference are special cases of the ∆-
derivative. Various mathematical results of time scales theory are presented in
the works of mathematicians such as Agarwal, Bohner, Peterson, and Guseinov
(see [1, 2, 3, 4, 5, 6, 7]). Nowadays the monograph “Dynamic Equations on Time
Scales” (see [6]) serves as a comprehensive treatment of results in this area of
mathematics.

The theory of stochastic dynamic equations on time scales is only in its infancy.
We note the paper [15], where the authors investigated dynamic systems whose
evolutions depend on a process defined on a time scale. We also emphasize the
work of Suman Sanyal [8,17], where, in the case of isolated time scales, the stochas-
tic integral was constructed and stochastic dynamic equations were studied. The
Itô-type stochastic integral was given for isolated time scales. Stochastic integrals
on time scales except the above mentioned ones were not constructed. For this
reason, there currently does not exist a concept of stochastic dynamic equations on
general time scales. In order to fill this gap, we will build the Lebesgue integral on
general time scales. There are two possible ways to construct the Lebesgue mea-
sure and the Lebesgue integral on time scales. The first one consists in defining
the Lebesgue measure over giving the Lebesgue integral first [16]. The second way
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consists in applying the standard Carathéodory extension scheme for time scales
and the construction of the corresponding Lebesgue-type integral [12]. Herewith,
the natural question arises about a connection between such integral (∆-integral)
and the Lebesgue integral with respect to Lebesgue measure on the line. In the
paper [9], this connection was investigated by using a connection between corre-
sponding measures. In the paper [10], the authors observed that such connection
could be obtained by using the formula of the change of variable. In our paper,
we investigate a connection between corresponding Riemann-type integrals as well.
As we obtained the connections between the ∆-Riemann integral and the common
Riemann integral, and between the ∆-Lebesgue integral and the common Lebesgue
integral, it enabled us to construct the Itô-type stochastic integral for general time
scales.

In this article, we introduce the construction of the stochastic integral on general
time scales. We define the concept of stochastic dynamic equations on general time
scales and study the properties of its solutions. The outline of the paper is as follows.
In Section 2, the statement of the problem is made and some auxiliaries results
are given. Also in Section 2, we investigate the connection between ∆-Riemann
integrable functions and Riemann integrable functions as well as the connection
between ∆-Lebesgue integrable functions and Lebesgue integrable functions. In
Section 3, we construct the stochastic integral and the stochastic differential on
general time scales and study its properties. In Section 4, we consider stochastic
dynamic equations on general time scales and prove the existence and uniqueness
result for solutions of stochastic dynamic equations. The Markov property theorem
is given as well.

2. Preliminary definitions and auxiliary results

To build stochastic dynamic equations on general time scales, in the first place
we construct the Itô-type stochastic integral on a general time scale. As noted in
Section 1, such an integral was constructed in [17,8] only for isolated time scales.

2.1. Time scales essentials.

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real
numbers R, where we assume T has the topology that it inherits from the real
numbers R with the standard topology.

Example 2.2. Some “continuous” time scales are T = R and T = [0, 1], some
“discrete” time scales are T = Z, T = N, and T = N0, and some examples of
“isolated” time scales are T = hZ for h > 0 and T = qN0 for q > 1, also called a
“quantum” time scale. An example of a “hybrid” time scale is the finite union of
closed subintervals of R. Another example of a time scale is the Cantor set.

Obviously, a time scale T may or may not be connected. That is why we introduce
the concept of forward and backward jump operators.

Definition 2.3. We define the forward jump operator by

σ(t) = inf{s ∈ T : s > t} for all t ∈ T such that this set is not empty

and the backward jump operator by

ρ(t) = sup{s ∈ T : s < t} for all t ∈ T such that this set is not empty.
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Let t ∈ T. If σ(t) > t, then t is called right-scattered. If σ(t) = t, then t is called
right-dense. If ρ(t) < t, then t is called left-scattered. If ρ(t) = t, then t is called
left-dense. Moreover, the sets Tκ and Tκ are derived from T as follows: If T has a
left-scattered maximum, then Tκ is the set T without that left-scattered maximum;
otherwise, Tκ = T. If T has a right-scattered minimum, then Tκ is the set T
without that right-scattered minimum; otherwise, Tκ = T.

The distance from a point t ∈ Tκ to the next point is introduced next.

Definition 2.4. We define the graininess function by

µ(t) = σ(t)− t for all t ∈ Tκ.

Example 2.5. If T = R, then σ(t) = t = ρ(t) and µ(t) = 0 for all t ∈ R. If T = Z,
then σ(t) = t + 1, ρ(t) = t − 1, and µ(t) = 1 for all t ∈ Z. If T = hZ with h > 0,
then σ(t) = t+ h, ρ(t) = t− h, and µ(t) = h for all t ∈ hZ. If T = qN0 with q > 1,
then σ(t) = qt and µ(t) = (q−1)t for all t ∈ qN0 and ρ(t) = t/q for all t ∈ qN0 \{1}.
2.2. Connections among integrable functions. Now we introduce the connec-
tion between ∆-Riemann integrable functions and Riemann integrable functions
as well as the connection between ∆-Lebesgue integrable functions and Lebesgue
integrable functions. These results constitute a key point in our construction of
Itô-type stochastic integrals on general time scales.

Let T be a time scale. We choose a couple of finite points a, b ∈ T such that
a < b. Let us consider the segment [a, b]T = [a, b] ∩ T and the real-valued function
f : [a, b]T → R. We now present the definition of the ∆-Riemann integral of the
function f on [a, b]T (see [7, page 118]). Let

P = {a = t0 < t1 < . . . < tn = b : ti ∈ T for 1 ≤ i ≤ n− 1}
be some partition of the interval [a, b]T. We denote the set of all partitions of [a, b]T
by P(a, b).

Definition 2.6. Let f : [a, b]T → R be a function. The upper ∆-Darboux sum
U(f, P ) and the lower ∆-Darboux sum L(f, P ) of f with respect to the partition

P = {a = t0 < t1 < · · · < tn = b : ti ∈ T for all 1 ≤ i ≤ n− 1} ∈ P(a, b)

are given by

U(f, P ) =
n∑
i=1

Mi(ti − ti−1) and L(f, P ) =
n∑
i=1

mi(ti − ti−1),

respectively, where

Mi = sup
t∈[ti−1,ti)T

f(t) and mi = inf
t∈[ti−1,ti)T

f(t) for all 1 ≤ i ≤ n.

The upper ∆-Darboux integral U(f) and the lower ∆-Darboux integral L(f) of f on
the interval [a, b]T are defined by

U(f) = inf
P∈P(a,b)

U(f, P ) and L(f) = sup
P∈P(a,b)

L(f, P ),

respectively. Moreover, if U(f) = L(f), then we say that f is ∆-integrable on the
interval [a, b]T and set ∫ b

a

f∆t = U(f) = L(f),

the common value of the upper and lower ∆-Darboux integrals.
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For the remainder of this section, without loss of generality, we may assume that
0, 1 ∈ T and we put a = 0 and b = 1. As before, we denote [0, 1]T = [0, 1] ∩ T. Let
a function f : [0, 1]T → R be given. We will show that an integral∫ 1

0

f∆t (2.1)

on the time scale [0, 1]T could be defined in another way (different from [7]), and
the value of this integral coincides with the value of (2.1).

Definition 2.7. For a function f : [0, 1]T → R, we define the extension f̃ : [0, 1]→
R by

f̃(t) = f (sup[0, t]T) for all t ∈ [0, 1].

Remark 2.8. Note that f̃(t) = f(t) if t ∈ [0, 1]T. If t ∈ [0, 1] \ [0, 1]T, then
f̃(t) = f(s), where s is the nearest left-hand point to the point t such that s ∈ T.
The function f̃ is well defined by Definition 2.7 as can be seen as follows. For
t ∈ [0, 1], let us define the set S = [0, 1]T ∩ [0, t]. Evidently, the set S is compact.
We consider the function φ(s) = t− s, s ∈ S. It is easy to see that the function φ
is continuous, monotone, and defined on the compact set. Hence, using these facts,
we derive that there exists a unique element s∗ ∈ S satisfying φ(s∗) = infs∈S φ(s).
The point s∗ is the nearest left-hand point to the point t such that s∗ ∈ T, so
f̃(t) = f(s∗). This shows our claim.

Next we give the result about the connection between the ∆-Riemann integral
of f on the interval [0, 1]T and the Riemann integral of f̃ on the interval [0, 1].

Theorem 2.9. The function f : [0, 1]T → R is ∆-Riemann integrable on the in-
terval [0, 1]T if and only if the function f̃ : [0, 1]→ R is Riemann integrable on the
interval [0, 1], and then the following integrals are equal:∫ 1

0

f(t)∆t =
∫ 1

0

f̃(t)dt. (2.2)

Proof. We prove this statement using Darboux sums. Let P ∈ P(0, 1) be some
partition of the interval [0, 1]T:

P = {0 = t0 < t1 < . . . < tn = 1 : ti ∈ T for all 1 ≤ i ≤ n− 1}.
The lower ∆-Darboux sum for this partition is

L(f, P ) =
n∑
i=1

mi(ti − ti−1), where mi = inf
t∈[ti−1,ti)T

f(t), 1 ≤ i ≤ n.

This partition is also a partition for the whole interval [0, 1]. Thus

L(f̃ , P ) =
n∑
i=1

m̃i(ti − ti−1), where m̃i = inf
t∈[ti−1,ti)

f̃(t), 1 ≤ i ≤ n.

Since the set of f̃ values on [ti−1, ti) coincides with the set of f values on [ti−1, ti)T,
we obtain mi = m̃i for all 1 ≤ i ≤ n and hence L(f, P ) = L(f̃ , P ). Similarly, we
can show U(f, P ) = U(f̃ , P ). This proves that any ∆-Darboux sum for f with
respect to the partition P is the same as the Darboux sum for f̃ with respect to
the same partition P . Now let P̃(0, 1) be the set of all partitions of the interval
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[0, 1], and as before denote by P(0, 1) the set of all partitions of the interval [0, 1]T.
Obviously,

P(0, 1) ⊂ P̃(0, 1). (2.3)
From (2.3), we obtain

L(f) = sup
P∈P(0,1)

L(f, P ) ≤ supeP∈ eP(0,1)

L(f̃ , P̃ ) = L(f̃)

≤ U(f̃) ≤ infeP∈ eP(0,1)
U(f̃ , P̃ ) ≤ inf

P∈P(0,1)
U(f, P ).

Consequently,
L(f) ≤ L(f̃) ≤ U(f̃) ≤ U(f). (2.4)

From (2.4), we conclude that if the function f is ∆-Riemann integrable, then the
function f̃ is Riemann integrable and (2.2) holds.

On the other hand, let f̃ be Riemann integrable. We will show that f is ∆-
Riemann integrable. Let us use the criterion of ∆-integrability (see [7, Theorem
5.6]) which says that a function f is ∆-integrable if and only if for any ε > 0, there
exists P ∈ P(0, 1) such that

U(f, P )− L(f, P ) < ε.

We check this criterion. First we fix some ε > 0. Since the function f̃ is Riemann
integrable, there exists P̃ ∈ P̃(0, 1) such that the inequality

U(f̃ , P̃ )− L(f̃ , P̃ ) < ε (2.5)

holds. Let

P̃ = {0 = t0 < t1 < . . . < tn = 1 : ti ∈ T for 1 ≤ i ≤ n− 1} ∈ P̃(0, 1).

Using P̃ , we construct a subpartition in the subsequent way. If t1 ∈ [0, 1]T, then
we pass to the next point of P̃ . If t1 /∈ [0, 1]T, then there exist points s1, s2 ∈ [0, 1]T
(possibly s1 = 0, s2 = 1) such that 0 ≤ s1 < t1 < s2 and subsequently

f̃(t) = f(s1), t ∈ [s1, s2).

Without loss of generality, we may choose s2 < t2. We add the points s1, s2 to the
partition P̃ . It is obvious that

inf
t∈[s1,t1)

f̃(t) = inf
t∈[t1,s2)

f̃(t) = f(s1).

Consequently

m1s1 + f(s1)(t1 − s1) + f(s1)(s2 − t1) = m1s1 + f(s1)(s2 − s1).

This shows that the “part” of the lower Darboux sum for f̃ with respect to the
points 0 < s1 < t1 < s2 of the partition of [0, 1] coincides with the “part” of the
lower Darboux sum for f with respect to the points 0 < s1 < s2. From s2 to t2,
we repeat this procedure, and so on, until we go over all the points of the partition
P̃ . As a result, we obtain two partitions. First, Q̃ ∈ P̃ is a partition of the interval
[0, 1] which is constructed by adding the points {si} to the points {ti}. The second
partition Q ∈ P(0, 1) consists of all points {si}. In view of these subpartitions’
constructions, it is easy to see that

L(f̃ , Q̃) = L(f,Q). (2.6)
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Similarly,
U(f̃ , Q̃) = U(f,Q). (2.7)

Apparently, Q̃ is a subpartition of P̃ . It follows that

L(f̃ , P̃ ) < L(f̃ , Q̃) < U(f̃ , Q̃) < U(f̃ , P̃ ). (2.8)

Due to (2.5), (2.6), (2.7), and (2.8), we obtain

U(f,Q)− L(f,Q) = U(f̃ , Q̃)− L(f̃ , Q̃) < U(f̃ , P̃ )− L(f̃ , P̃ ) < ε,

which establishes the integrability criterion. Therefore, f is ∆-integrable so that
U(f) = L(f). From (2.3), we obtain (2.2). This completes the proof. �

Finally we give the result about the connection between the ∆-Lebesgue integral
of f on the interval [0, 1]T and the Lebesgue integral of f̃ on the interval [0, 1]. The
proof of this result can be done using similar techniques as in the proof of Theorem
2.9. A proof can also be found in [9]. For related results, see [10,16].

Theorem 2.10. The function f : [0, 1]T → R is ∆-Lebesgue integrable on the
interval [0, 1]T if and only if the function f̃ : [0, 1] → R is Lebesgue integrable on
the interval [0, 1], and then the following integrals are equal:∫

[0,1)T

f(t)λ∆(dt) =
∫

[0,1)

f̃(t)λ(dt),

where λ(·) is the Lebesgue measure and λ∆(·) is the ∆-Lebesgue measure on T.

3. Stochastic integral and stochastic differential

Theorem 2.10 allows us to construct the stochastic integral on general time
scale. Let (Ω,F , P ) be a probability space. Let W be a standard Wiener process
and suppose

{W (t+ h)−W (t) : h ≥ 0} is independent of Ft := σ {W (s) : 0 ≤ s ≤ t} ,
where FR := {Ft : t ∈ R} is a filtration on R, and with σ{·}, we mean the σ-algebra
generated by ·. We construct a ∆-stochastic integral on [0, 1]T, denoted by∫ 1

0

f(t)∆W (t).

First of all we determine the class H2([0, 1]T) of random processes.

Definition 3.1. We say that the random process f : T × Ω → R belongs to class
H2([0, 1]T) if the following conditions hold:

(i) f is adapted to FT; i.e., f(t, ·) is Ft-measurable for all t ∈ [0, 1]T.
(ii) P

( ∫ 1

0
|f(t, ω)|2 ∆t <∞

)
= 1.

Utilizing f ∈ H2([0, 1]T), we define the random process f̃ on [0, 1] by

f̃(t, ω) = f (sup[0, t]T, ω) .

Note that f̃ is well defined according to Subsection 2.2.

Proposition 3.2. The process f̃ has the following properties:
(i) f̃ is adapted to FR, i.e., f̃(t, ·) is Ft-measurable for all t ∈ [0, 1].

(ii) P
( ∫ 1

0

∣∣∣f̃(t, ω)
∣∣∣2 dt <∞

)
= 1.
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Proof. The first property follows from the construction of f̃ . The second property
follows from Theorem 2.10. �

By Proposition 3.2, starting with the processes f ∈ H2([0, 1]T) creates a family
of processes f̃ for which the Itô stochastic integral in the common sense is defined.
Hence, the ∆-stochastic integral in the subsequent definition is well defined.

Definition 3.3. We say that the random process f ∈ H2([0, 1]T) has a ∆-stochastic
integral on [0, 1]T provided the corresponding process f̃ has a stochastic integral in
the common sense on [0, 1], and then we set∫ 1

0

f(t)∆W (t) :=
∫ 1

0

f̃(t)dW (t).

Remark 3.4. We note that in the case of T = R, the integral given as in Defini-
tion 3.3 coincides with the common Itô stochastic integral, and in the case of an
isolated time scale, the integral given as in Definition 3.3 coincides with the integral
introduced by Suman Sanyal [17,8].

It follows from the Definition 3.3 that the ∆-stochastic integral has all the prop-
erties of the common Itô stochastic integral.

Proposition 3.5. The ∆-stochastic integral has the following properties:

(i) If f1, f2 ∈ H2([0, 1]T) and c1, c2 ∈ R, then∫ 1

0

(c1f1(t) + c2f2(t)) ∆W (t) = c1

∫ 1

0

f1(t)∆W (t) + c2

∫ 1

0

f2(t)∆W (t).

(ii) If E
( ∫ 1

0
|f(t)|2 ∆t

)
<∞, then

E
(∫ 1

0

f(t)∆W (t)
)

= 0

and the Itô-isometry holds:

E
((∫ 1

0

f(t)∆W (t)
)2)

= E
(∫ 1

0

f2(t)∆t
)
.

The proof of the above proposition follows directly from Definition 3.3.
Now we may define the ∆-stochastic differential in a standard way (see for ex-

ample [11]).

Definition 3.6. If for all t1, t2 ∈ [0, 1]T such that t1 < t2 we have

X(t2)−X(t1) =
∫ t2

t1

b(t,X)∆t+
∫ t2

t1

B(t,X)∆W (t), (3.1)

where b is Lebesgue integrable on [0, 1]T and B ∈ H2([0, 1]T), then we say that the
process X has a ∆-stochastic differential indicated by the notation

∆X(t) = b(t,X)∆t+B(t,X)∆W (t).

In the equality (3.1), the first integral is the common Lebesgue integral, and the
second integral is the ∆-stochastic integral.
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4. Stochastic dynamic equations

Definition 3.6 gives us an opportunity to introduce the concept of stochastic
dynamic equations on general time scales. Let T be a general time scale such that
sup T =∞. We consider the stochastic dynamic equation on [0, a]T ⊂ T

∆X(t) = b(X, t)∆t+B(X, t)∆W (t) (4.1)

with initial condition
X(0) = X0, (4.2)

where X0 is a random variable, independent of W (t). In the following, under
filtration, we understand Ft = σ{X0,Ws : s ≤ t}.

Definition 4.1. We say that a random process X(t) with X(0) = X0 is a solution
of the stochastic dynamic equation (4.1) on [0, a]T if the following conditions hold:

(i) X is adapted to the filtration F.
(ii) For all t ∈ [0, a]T, we have almost surely

X(t) = X0 +
∫ t

0

b(X(s), s)∆s+
∫ t

0

B(X(s), s)∆W (s). (4.3)

We now present an existence and uniqueness theorem. For this purpose, we first
give the subsequent definition.

Definition 4.2. We say that the function ϕ : [0, a]→ R is continuous at the point
t0 ∈ [0, a]T if for each sequence {tn ∈ [0, a]T} such that tn → t0 as n→∞, we have
ϕ(tn)→ ϕ(t0) as n→∞.

Next we have a result on the existence and uniqueness of solutions of stochastic
dynamic equations.

Theorem 4.3. Let the following conditions hold:

(i) The functions b, B : R× [0, a]T → R are continuous.
(ii) There exists a constant L > 0 such that for each x1, x2 ∈ R and all t ∈

[0, a]T, we have

|b(x1, t)− b(x2, t)| ≤ L |x1 − x2| , |B(x1, t)−B(x2, t)| ≤ L |x1 − x2| , (4.4)

and
|b(x, t)| ≤ L(1 + |x|), |B(x, t)| ≤ L(1 + |x|). (4.5)

(iii) The real-valued random variable X0 satisfies the inequality E
(
|X0|2

)
< ∞

and is independent of W (t) for t > 0.

Then there exists with probability P = 1 a continuous solution X on [0, a]T of the
stochastic dynamic equation (4.1) with initial condition (4.2) such that

E
(∫ t

0

X2(τ)∆τ
)
<∞. (4.6)

Moreover, if X and X̃ are both such solutions, then

P
(

sup
t∈[0,a]T

|X(t)− X̃(t)| = 0
)

= 1.
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Proof. First we show uniqueness. Obviously, the set [0, a]T is closed and bounded
and thus is compact. Due to compactness of the set [0, a]T, for all ε > 0, there
exists a finite ε-net {t1, t2, . . . , tn}. Hence we can chose the sequence {εj} such that
for each εj = (1/2)j−1, there exists a finite εj-net Sεj = {tj1, . . . , tjn} for [0, a]T.
Now let Sε = ∪jSεj . In view of the construction, the set Sε is everywhere dense
on [0, a]T. Let the processes X and X̃ be solutions of equation (4.1) with initial
condition (4.2). On the basis of the a.s. continuity of the solutions and the fact
that the set Sε is everywhere dense, it follows that

P
(

sup
t∈Sε

|X(t)− X̃(t)| = 0
)

= P
(

sup
t∈[0,a]T

|X(t)− X̃(t)| = 0
)

= 1.

Now we show existence. We will employ the method of iteration. For this
purpose, we define

X0(t) := X0,

Xn(t) := X0 +
∫ t

0

b(Xn−1(s), s)∆s+
∫ t

0

B(Xn−1(s), s)∆W (s),

where n ∈ N and t ∈ [0, a]T. Also we introduce

δn(t) := E(|Xn+1(s)−Xn(s)|).
Let us show that the inequality

δn(t) ≤Mn+1hn+1(t, 0) (4.7)

holds for some constant M , which depends on L, a and X0, and for all n ∈ N,
t ∈ [0, a]T, where hn are the generalized monomials [6, Section 1.6]. Let us check
(4.7) for n = 0:

δ0(t) = E
(∣∣X1(s)−X0(s)

∣∣2)
= E

(∣∣∣ ∫ t

0

b(X0, s)∆s+
∫ t

0

B(X0, s)∆W (s)
∣∣∣2)

≤ 2E
(∣∣∣ ∫ t

0

L(1 + |X0|)∆s
∣∣∣2)+ 2E

(∫ t

0

L2(1 + |X0|)2∆s
)

≤ tM = Mh1(t, 0),

where we set M = 4L2(1 + |X0|)2. This confirms (4.7) for n = 0. Suppose now
that the inequality (4.10) holds for some n− 1. Then

δn(t) = E
(∣∣Xn+1(s)−Xn(s)

∣∣2)
= E

(∣∣∣ ∫ t

0

(
b(Xn(s), s)− b(Xn−1(s), s)

)
∆s

+
∫ t

0

(
B(Xn(s), s)−B(Xn−1(s), s)

)
∆W (s)

∣∣∣2)
≤ 2E

(∣∣∣ ∫ t

0

(
b(Xn(s), s)− b(Xn−1(s), s)

)
∆s
∣∣∣2)

+ 2E
(∣∣∣ ∫ t

0

(
B(Xn(s), s)−B(Xn−1(s), s)

)
∆W (s)

∣∣∣2)
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≤ 2E
(∣∣∣ ∫ t

0

(
b(Xn(s), s)− b(Xn−1(s), s)

) ∣∣∣2∆s
)

+ 2E
(∣∣∣ ∫ t

0

(
B(Xn(s), s)−B(Xn−1(s), s)

) ∣∣∣2∆s
)

≤ 2aL2E
(∫ t

0

∣∣Xn(s)−Xn−1(s)
∣∣2 ∆s

)
+ 2L2E

(∫ t

0

∣∣Xn(s)−Xn−1(s)
∣∣2 ∆s

)
≤ 2(a+ 1)L2E

(∫ t

0

∣∣Xn(s)−Xn−1(s)
∣∣∆s)

= 2(a+ 1)L2

∫ t

0

δn−1(τ)∆τ

≤ 2(a+ 1)L2

∫ t

0

Mnhn(s, 0)∆s

≤Mn+1hn+1(t, 0),

where we choose M ≥ 2(a+ 1)L2. This proves the inequality (4.7).
Using the Lipschitz property of the function b(X, t), we have

sup
t∈[0,a]T

∣∣Xn+1(t)−Xn(t)
∣∣2

≤ 2aL2

∫ t

0

∣∣Xn(s)−Xn−1(s)
∣∣2 ∆s

+ 2 sup
t∈[0,a]T

∣∣∣ ∫ t

0

(
B(Xn(s), s)−B(Xn−1(s), s)

)
∆W (s)

∣∣∣2.
As a result, the martingale inequality [11] and the inequality (4.7) imply

E
(

sup
t∈[0,a]T

∣∣Xn+1(t)−Xn(t)
∣∣2 ) ≤ 2aL2

∫ t

0

E
(∣∣Xn(s)−Xn−1(s)

∣∣2)∆s

+ 8L2

∫ t

0

E
(∣∣Xn(s)−Xn−1(s)

∣∣2)∆s

≤ CMnhn(a, 0),

where C = 2L2(a+ 4). Therefore, let us apply the Borel–Cantelli lemma [11], since

P
(

sup
t∈[0,a]T

∣∣Xn+1(t)−Xn(t)
∣∣ > 1

2n
)
≤ 4nE

(
sup

t∈[0,a]T

∣∣Xn+1(t)−Xn(t)
∣∣2 )

≤ 4nCMnhn(a, 0)

and
∞∑
n=1

4nCMnhn(a, 0) <∞

imply

P
(

sup
t∈[0,a]T

∣∣Xn+1(t)−Xn(t)
∣∣ > 1

2n
)

= 0.
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In view of this, for almost every ω, the series

X0 +
n−1∑
j=0

(
Xj+1 −Xj

)
converges uniformly. The partial sum of this series is an a.s. uniform bound of Xn

and so Xn → X as n→∞. Thus we have

X(t) = X0 +
∫ t

0

b(X(s), s)∆s+
∫ t

0

B(X(s), s)∆W (s) for all t ∈ [0, a]T.

The process X is continuous being an a.s. uniform bound of a.s. continuous pro-
cesses.

Let us show that (4.6) is valid. We observe

E
(∣∣Xn+1(t)

∣∣2) ≤ CE
(
|X0|2

)
+ CE

(∣∣∣ ∫ t

0

b(Xn(s), s)∆s
∣∣∣2)

+ CE
(∣∣∣ ∫ t

0

B(Xn(s), s)∆W (s)
∣∣∣2)

≤ C
(
1 + E

(
|X0|2

))
+ C

∫ t

0

E
(
|Xn|2

)
∆s,

where by C we denote a constant. By induction, we get

E
(∣∣Xn+1(t)

∣∣2) ≤ (C + C2h1(t, 0) + . . .+ Cn+2hn+1(t, 0)
) (

1 + E
(
|X0|2

))
.

It follows that
E
(∣∣Xn+1(t)

∣∣2) ≤ C (1 + E
(
|X0|2

))
eC(t, 0),

where eC(·, 0) is a time scales exponential function [6, Section 2.2]. As n→∞, we
obtain

E
(
|X(t)|2

)
≤ C

(
1 + E

(
|X0|2

))
eC(t, 0) for all t ∈ [0, a]T,

and thus

E
(∫ t

0

|X(τ)|2 ∆τ
)

=
∫ t

0

E
(
|X(τ)|2

)
∆τ

≤
(
1 + E

(
|X0|2

)) ∫ t

0

CeC(τ, 0)∆τ

=
(
1 + E

(
|X0|2

))
(eC(t, 0)− 1) <∞,

which proves (4.6). �

Now we turn to the Markov property of solutions of stochastic dynamic equa-
tions. Notice that Theorem 2.10 could be reformulated in an obvious way for the
case when instead of [0, a]T, we consider [u, a]T ⊂ T, where u > 0. Thus we consider
the equation

Z(t) = ξ +
∫ t

u

b(Z(s), s)∆s+
∫ t

u

B(Z(s), s)∆W (s) (4.8)

with initial condition
Z(u) = ξ (4.9)
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This solution Z we denote by Zξ(t), t ∈ [u, a]T. For the process X = {X(t) : t ∈
[0, a]T}, which is a solution of equation (4.1), (4.2), we have

X(t) = X0 +
∫ t

0

b(X(s), s)∆s+
∫ t

0

B(X(s), s)∆W (s)

= X0 +
∫ u

0

b(X(s), s)∆s+
∫ u

0

B(X(s), s)∆W (s)

+
∫ t

u

b(X(s), s)∆s+
∫ t

u

B(X(s), s)∆W (s)

= X(u) +
∫ t

u

b(X(s), s)∆s+
∫ t

u

B(X(s), s)∆W (s).

We will need the following auxiliary results.

Lemma 4.4. Let the process Y = {Y (s) : s ∈ T} be progressively measurable on
the time scale T with respect to the filtration FT = (Fs)s∈T in F . Let the real-valued
function a(s, x) be defined on T×R and suppose it is B(T)⊗B(R)-measurable. Then
the process U = {U(t) = a(Y (t), t) : t ∈ T} is progressively FT-measurable.

Proof. First we show B([0, t])⊗Ft | B([0, t])⊗B(R)-measurability of the mappings
(s, ω) 7→ (s, Ys(ω)) for 0 ≤ s ≤ t and ω ∈ Ω. Let 0 ≤ u ≤ t and B ∈ B(R). Then

{(s, ω) ∈ [0, t]⊗ Ω : (s, Ys(ω)) ∈ [0, u]⊗B}
= {(s, ω) ∈ [0, t ∧ u]⊗ Ω : Ys(ω) ∈ B}
⊂ B([0, t ∧ u])⊗Ft∧u ⊂ B([0, t])⊗Ft.

For (s, x) ∈ [0, t] × Ω, the mapping (s, x) 7→ a(s, x) is B([0, t]) ⊗ B(R)-measurable
as a superposition of measurable mappings. �

Assume that the functions b and B satisfy conditions (4.4) and (4.5). Let
X(0)(t) = Z, t ∈ T, and set for n ∈ N

X(n)(t) = Z +
∫ t

0

b(s,X(n−1)(s))∆s+
∫ t

0

B(s,X(n−1)(s))∆W (s). (4.10)

The fact that such a procedure is well defined is provided by the subsequent auxil-
iary result.

Lemma 4.5. Let the functions b, B : T × R → R satisfy conditions (4.4) and
(4.5). Suppose that the value Z is F0-measurable and that E

(
Z2
)
< ∞. Then the

process X(n) = {X(n)(t) : t ∈ T} is well defined by expression (4.10), and it is also
progressively measurable. Thus supt∈T E

(
|X(n)(t)|2

)
< ∞ for all n ∈ N and the

right-hand side of (4.10) can be chosen a.s. continuous on T.

Proof. The process Ys(ω) = Z(ω), where s ∈ T and ω ∈ Ω, is progressively measur-
able since Z ∈ F0|B(R). Due to Lemma 4.4, the functions b(s, Z(ω)) and B(s, Z(ω))
are progressively measurable. In view of conditions (4.4) and (4.5) on the function
B, we have

sup
s∈T

E
(
B2(s, Z)

)
≤ c(1 + E

(
Z2)

)
<∞.

As a result, we have {B(s, Z) : s ∈ T} ∈ AT ∩ L2
T , and

∫ t
0
B(s, Z)∆W (s) for t ∈ T

can be chosen a.s. continuous. Taking into account the progressive measurability
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of {b(s, Z) : s ∈ T} and conditions (4.4) and (4.5), we have

E
(∫ a

0

|b(s, Z)|∆s
)
≤
(
ac(1 + E

(
Z2
))1/2

<∞.

In light of Fubini’s theorem, the integral
∫ a

0
b(s, Z)∆s is finite for almost all ω,

and for such ω, the process
∫ t

0
b(s, Z)∆s is continuous for t ∈ T. This implies

that
∫ t

0
b(s, Z)∆s is progressively measurable. In the same way, the a.s. continuity

and progressive measurability of the right-hand side of (4.10) are verified provided
{X(n+1)(t) : t ∈ T} is progressively measurable and sups∈T E

(
|X(n+1)(s)|2

)
< ∞.

Moreover,

E
((
X(n)(t)

)2) ≤ 3E
(
Z2
)

+ 3E
((∫ t

0

b(s,X(n+1)(s))∆s
)2)

+ 3E
((∫ t

0

B(s,X(n+1)(s))∆W (s)
)2)

≤ 3E
(
Z2
)

+ 3aL
∫ a

0

E
(

1 + |X(n+1)(s)|2
)

∆s

+ 3L
∫ a

0

E
(

1 + |X(n+1)(s)|2
)

∆s

≤ 3
(
E
(
Z2
)

+ (a+ 1)L
(

1 + sup
s∈T

E
(
|X(n+1)(s)|2

)))
<∞.

It follows that supt∈T E
(
|X(n)(t)|2

)
<∞. This completes the proof. �

Lemma 4.6. Let the functions b, B : T×R→ R satisfy conditions (4.4) and (4.5).
Then for all t ∈ [u, a]T and for all ξ ∈ Fu|B(R) such that E

(
ξ2
)
< ∞, the value

Zt(ξ, ω) is measurable with respect to the σ-algebra

A[u,a]T = σ{ξ,W (s) +W (u) : s ∈ [u, a]T},

which is extended by the class of zero measure events.

Proof. Using the proof of Theorem 4.3, we obtain that Zt(ξ, ω) is an a.s. bound of
the values Z(n)

t (ξ, ω) as n→∞, where Z(0)
t (ξ, ω) = ξ for t ∈ [u, a]T. If n ∈ N, then

for t ∈ [u, a]T, we have

Z
(n)
t (ξ, ω) = ξ +

∫ t

u

b(s, Z(n−1)
s (ξ, ω))∆s+

∫ t

u

B(s, Z(n−1)
s (ξ, ω))∆W (s).

Obviously, Z(0)
t ∈ A[u,a]T |B(R). By induction and due to Lemma 4.5, we get the

A[u,a]T-measurability of Z(n)
t (ξ, ω) for all n ∈ N. �

Theorem 4.7. Assume that all conditions of Theorem 4.3 hold. Then a solution
of the stochastic dynamic equation (4.1) is a Markov process, and its transition
probability is given by

P (s, Y, t, B) = P ({Xs,Y (t) ∈ B}) .

Proof. It is sufficient to verify that for 0 ≤ u ≤ t ≤ a and any Borel bounded
function f : R→ R, we have

E (f(X(t))|Fu) = E (f(X(t))|X(u)) .
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Since Xt(ω) = Zt(Xu(·), ω) a.s., instead of f(X(t)), we consider f(Zt(X(u), ω)).
Due to Lemma 4.6, the value f(Zt(X(u), ω)) is bounded and A[u,a]T-measurable.
Therefore, f(Zt(X(u), ω)) can be presented as an a.s. bound and as L2(Ω,F , P )-
bound of a linear combination of random variables such that

η = g(X(u))h1(W (s1)−W (u)) · · ·hm(W (sm)−W (u)),

where the functions g, h1, . . . , hm are Borel and bounded, u ≤ s1 < . . . < sm ≤ t,
m ∈ N. Since X(u) is Fu-measurable and W (s) −W (u) is independent of Fu for
s ≥ u, we have

E (η|Fu) = g(X(u))E
(
h1(W (s1)−W (u)) · · ·hm(Ws(m) −W (u)

)
and

E (η|X(u)) = g(X(u))E (h1(W (s1)−W (u)) · · ·hm(W (sm)−W (u)) .

Consequently, passing to the limit, we obtain the required equality

E (f(X(t))|Fu) = E (f(X(t))|X(u)) .

This completes the proof. �
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