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GREEN’S FUNCTION FOR TWO-INTERVAL
STURM-LIOUVILLE PROBLEMS

AIPING WANG, ANTON ZETTL

Dedicated to John W. Neuberger on his 80th birthday

Abstract. We construct the Green’s function and the characteristic function
for two-interval regular Sturm-Liouville problems with separated and coupled,

self-adjoint and non-self-adjoint, boundary conditions. In the self-adjoint case

these problems may have boundary conditions requiring jump discontinuities
of the eigenfunctions or their derivatives. Such conditions are known by various

names including transmission and interface conditions and have been studied
by many authors in the recent literature.

1. Introduction

We construct the Green’s function for two-interval regular self-adjoint and non-
self-adjoint Sturm-Liouville problems. The two intervals may be disjoint, overlap,
or be identical.

In recent years Sturm-Liouville problems with boundary conditions requiring dis-
continuous eigenfunctions or discontinuous derivatives of eigenfunctions have been
studied by many authors. Such conditions are known by various names including:
transmission conditions [1, 2, 9, 10, 11, 27, 28], interface conditions [8, 25, 32],
discontinuous conditions [5, 6, 10, 14, 15], multi-point conditions [7, 21, 31], point
interactions (in the Physics literature), conditions on trees, graphs or networks
[4, 13, 23, 24], etc. For an informative survey of such problems arising in applications
including an extensive bibliography and historical notes, see Pokornyi-Borovskikh
[23] and Prokornyi-Pryadiev [24].

As a special case our construction applies to such problems. It is modeled on a
construction of Neuberger [12] for the one interval case. Neuberger’s construction
differs from the usual one found in textbooks and in most of the literature, in
that the discontinuity of the derivative of the Green’s function along the diagonal
occurs naturally, in contrast to the usual construction as found, for example, in
Coddington and Levinson [3] where this discontinuity is assigned a priori as part
of the construction.
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2. Basic theory and notation

In this section we briefly review the basic theory and make some definitions.
Although we only use the results for the second order case n = 2 we state them
for general n since this does not introduce any additional complexity or length.
Let N = {1, 2, 3, . . . } and denote by L(J,C) the set of complex valued Lebesgue
integrable functions on compact interval J of the real line and AC(J) denotes the
absolutely continuous complex valued functions on J .

Let Mn×m(C) denote the set of n×m matrices with complex entries. If n = m
we write Mn(C) = Mn×n(C). Let Mn(S) be the n by n matrices with entries from
an arbitrary set S.

We start with some definitions and preliminary lemmas.

Lemma 2.1 (Existence and Uniqueness). Let n,m ∈ N. If

P ∈Mn(L(J,C)), (2.1)

F ∈Mn,m(L(J,C)) (2.2)

then every initial value problem

Y ′ = PY + F, (2.3)

Y (u) = C, u ∈ J, C ∈Mn,m(C) (2.4)

has a unique solution defined on all of J . Furthermore, if C, P , F are all real-
valued, then there is a unique real valued solution.

Proofs of the two lemmas above can be found in [33]. Let P ∈Mn(L(J)). From
this Lemma we know that for each point u of J there is exactly one matrix solution
X of

Y ′ = PY on J (2.5)
satisfying X(u) = In where In denotes the n by n identity matrix.

Definition 2.2 (Primary fundamental matrix). For each fixed u ∈ J let Φ(·, u)
be the fundamental matrix of (2.5) satisfying Φ(u, u) = In. Note that for each
fixed u in J , Φ(·, u) belongs to Mn(ACloc(J)). Furthermore, if J is compact and
P ∈Mn(L(J,C)) then u can be an endpoint of J and Φ(·, u) belongs to Mn(AC(J)).
We note that Φ(t, u) is invertible for each t, u ∈ J and Φ(t, u) = Y (t)Y −1(u) for
any fundamental matrix Y of (2.5).

We call Φ the primary fundamental matrix of (2.5). Note that for any constant
n×m matrix C, ΦC is also a solution of Y ′ = PY . If C is a constant nonsingular n×
n matrix then ΦC is a fundamental matrix solution and every fundamental matrix
solution has this form. For these and other basic facts, notation and terminology
see Chapter 1 in [33].

The next lemma is fundamental in the theory of linear differential equations.

Lemma 2.3 (Variation of Parameters Formula, see [33]). Let J be any compact
interval, P ∈Mn(L(J,C)) and let Φ = Φ(·, ·, P ) be the primary fundamental matrix
of Y ′ = PY on J . Let F ∈Mn,m(L(J,C)), u ∈ J and C ∈Mn,m(C). Then

Y (t) = Φ(t, u, P )C +
∫ t

u

Φ(t, s, P )F (s) ds, t ∈ J (2.6)

is the solution of (2.3), (2.4). Note that Y ∈Mn,m(AC(J)).
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3. The Characteristic Function

Next we study the two-interval characteristic function with general, not neces-
sarily self-adjoint, boundary conditions. Let

Jr = (ar, br), −∞ < ar < br <∞, r = 1, 2,

and assume the coefficients and weight functions satisfy

p−1
r =

1
pr
, qr, wr ∈ L(Jr,C), r = 1, 2. (3.1)

Define differential expressions Mr by

Mry = −(pry′)′ + qry on Jr, r = 1, 2. (3.2)

Below we use the notation with a subscipt r to denote the r − th interval. The
subscript r is sometimes omitted when it is clear from the context. We consider
the second order scalar differential equations

− (pry′)′ + qry = λwry on Jr, r = 1, 2, λ ∈ C, (3.3)

together with boundary conditions

A1Y1(a1) +B1Y1(b1) +A2Y2(a2) +B2Y2(b2) = 0, Yr =
[

yr
(pry′r)

]
, r = 1, 2. (3.4)

Here Ar, Br ∈ M4×2(C), r = 1, 2. From (3.1) and the basic theory of linear
ordinary differential equations the boundary condition (3.4) is well defined. Next
We comment on the assumption (3.1), equations (3.2) and condition (3.4).

Remark 3.1. It follows from the basic theory that, under condition (3.1), every
solution yr and its quasi-derivative py′r are continuous on Jr but, pr(t) and y′r(t)
may not exist for some t in J so we use the notation (py′) to indicate that this is
a continuous function which cannot, in general, be separated into p(t)y′(t) for all t
in J .

Remark 3.2. Note that each of 1
pr
, qr, wr can be zero not only at some points of J

but on subintervals and even the whole interval. If qr is zero on J then we simply
have a restricted class of problems. If 1

pr
= 0 or wr = 0 on J, then we have a

degenerate and uninteresting equation. In the latter case there is no λ dependence
and so no need for a Green’s function. Kong, Wu and Zettl and Volkmer, Kong,
and Zettl [20] found a class of S-L problems where each of 1

p , q, w is identically
zero on certain subintervals of J and whose spectrum has n eigenvalues for any
n = 1, 2, 3, . . . . It is for this reason that we do not want to place any unnecessary
restrictions on the coefficients. In the classical one-interval self-adjoint case the
coefficients 1

p , q, w are assumed to be in L(J,R) with p, w > 0 a.e. in J and the
spectral properties are studied in the Hilbert space L2(J,w).

Below we will construct the characteristic function whose zeros are precisely the
eigenvalues of the two-interval SLP. Let

Pr =
[

0 1
pr

qr 0

]
, Wr =

[
0 0
wr 0

]
. (3.5)

Then the scalar equation (3.3) is equivalent to the first-order system

Y ′ = (Pr − λWr)Y =
[

0 1
pr

qr − λwr 0

]
, Y =

[
y
pry
′

]
. (3.6)
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Note that, given any scalar solution yr of −(pry′)′+qry = λwry on Jr the vector Yr
defined by (3.4) is a solution of the system Y ′ = (Pr − λWr)Y on Jr. Conversely,
given any vector solution Yr of system Y ′ = (Pr − λWr)Y its top component yr is
a solution of −(pry′)′ + qry = λwry.

Let Φr(·, ur, Pr, wr, λ) be the primary fundamental matrix of (3.6) and we have

Φ′r = (Pr − λWr)Φr on Jr, Φr(ur, ur, λ) = I, ar ≤ ur ≤ br, λ ∈ C, (3.7)

where I denotes 2 by 2 identity matrix.
Here we use the notation Φr = Φr(·, ur, Pr, wr, λ) to indicate the dependence of

the primary fundamental matrix on these quantities. Since Pr, wr are fixed here,
we simplify it to Φr(·, ur, λ). By (3.1), we have Φ(br, ar, λ) exists.

Define the characteristic function ∆ by
∆(λ) = ∆(a1, b1, a2, b2, A1, B1, A2, B2, P1, P2, w1, w2, λ)

= det[(A1 +B1Φ1(b1, a1, λ) | A2 +B2Φ2(b2, a2, λ))], λ ∈ C,
(3.8)

where (A1 + B1Φ1(b1, a1, λ) | A2 + B2Φ2(b2, a2, λ)) denote the 4 by 4 complex
matrix whose first two columns are those of A1 + B1Φ1(b1, a1, λ), and the second
two columns are those of A2 +B2Φ2(b2, a2, λ).

Definition 3.3. By a trivial solution of equation Mry = λwry on some interval
Ir we mean a solution yr which is identical zero on Ir and whose quasi-derivative
(pry′r) is also identically zero on Ir. (Ir may be a subinterval of Jr or it may be the
whole interval Jr.) Note that, under the assumptions (3.1), solution yr might be
identically zero on Ir but its quasi-derivative (pry′r) might not be identically zero
on Ir.

Definition 3.4. By a trivial solution of the two-interval Sturm-Liouville equations
((3.3) we mean a solution y = {y1, y2} each of whose components yr is a trivial
solution of equation Mry = λwry on Jr , r = 1, 2 i.e. yr and (pry′r) both are
identically zero on Jr, r = 1, 2.

Definition 3.5. Let (3.1) hold. A complex number λ is called an eigenvalue of
the two-interval S-L boundary value problems (BVP) consisting of (3.3) and (3.4)
if the two-interval S-L equations (3.3) have a nontrivial solution y satisfying the
boundary conditions (3.4). Such a solution y is called an eigenfunction of λ. Any
multiple of an eigenfunction is also an eigenfunction.

Theorem 3.6. Let (3.1) hold. Then a complex number λ is an eigenvalue of the
boundary value problems (3.3), (3.4) if and only if ∆(λ) = 0.

Proof. If λ is an eigenvalue and y = {y1, y2} an eigenfunction of λ, then there exist
Cr ∈M2×1(C), r = 1, 2 and at least one of the vectors C1 and C2 is nonzero, such
that

Yr(t) = Φr(t, ar, λ)Cr. (3.9)
Note that Φr(ar, ar, λ) = I, r = 1, 2. Substituting (3.9) into the boundary condi-
tions (3.4), we obtain

A1C1 +B1Φ1(b1, a1, λ)C1 +A2C2 +B2Φ2(b2, a2, λ)C2 = 0. (3.10)

Set C =
[
C1

C2

]
. Therefore (3.10) can be written as

(A1 +B1Φ1(b1, a1, λ) | A2 +B2Φ2(b2, a2, λ))C = 0. (3.11)
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Since C 6= 0, and λ is an eigenvalue of BVP (3.3), (3.4) by assumption, it then
follows that

det[(A1 +B1Φ1(b1, a1, λ) | A2 +B2Φ2(b2, a2, λ))] = 0;

i.e., ∆(λ) = 0.
Conversely, suppose ∆(λ) = 0. Then (3.11) has a nontrivial vector C ∈M4×1(C).

We use the notation C1 ∈M2×1(C) denotes the vector whose rows are the first two
rows of C, and C2 ∈M2×1(C) denotes the vector whose rows are the last two rows
of C. At least one of the vectors C1 and C2 is nontrivial. Solve the initial value
problems

Y ′ = (Pr − λWr)Y on Jr, Yr(ar) = Cr, r = 1, 2.
Then

Yr(br) = Φr(br, ar, λ)Yr(ar),

(A1 +B1Φ1(b1, a1, λ))Y1(a1) + (A2 +B2Φ2(b2, a2, λ))Y2(a2) = 0.

Therefore, we have that y = {y1, y2} is an eigenfunction of the BVP (3.3),(3.4),
where yr is the top component of Yr, r = 1, 2. This shows that λ is an eigenvalue
of this BVP. �

4. The Green’s Function

Since, as mentioned above, our method of constructing the Green’s function
- even in the one interval case - is not the standard one generally found in the
literature and in textbooks we make it self-contained by presenting the basic theory
used in the construction for the benefit of the reader.

Let p−1
r , qr, wr satisfy (3.1) and fr ∈ L(Jr,C). We consider the two-interval

boundary-value problem

−(pry′)′ + qry = λwry + fr on Jr = (ar, br), r = 1, 2, λ ∈ C, (4.1)

A1Y1(a1) +B1Y1(b1) +A2Y2(a2) +B2Y2(b2) = 0, Yr =
[
yr
pry
′
r

]
, r = 1, 2. (4.2)

This boundary-value problem is equivalent to the system boundary-value problem

Y ′ = (Pr−λWr)Y +Fr, A1Y1(a1) +B1Y1(b1) +A2Y2(a2) +B2Y2(b2) = 0, (4.3)

where Pr,Wr are defined by (3.5) and

Fr =
[

0
−fr

]
Let Φr = Φr(·, ·, λ) be the primary fundamental matrix of the homogeneous

system
Y ′ = (Pr − λWr)Y. (4.4)

Note that
Φr(t, ur, λ) = Φr(t, ar, λ) Φr(ar, ur, λ)

for ar ≤ t, ur ≤ br.
The next theorem is a special case of the well known Fredholm alternative.

Theorem 4.1. Let (3.1), (4.1)–(4.4) hold. Let λ ∈ C. Then the following three
statements are equivalent:

(1) when f = {f1, f2} = 0, i.e. fr = 0 on Jr, r = 1, 2, the two-interval BVP
(4.1)-(4.2) (and consequently also (4.3)) has only the trivial solution.
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(2) The matrix [A1 +B1Φ1(b1, a1, λ)|A2 +B2Φ2(b2, a2, λ)] has an inverse.
(3) For every f = {f1, f2}, fr ∈ L(Jr,C), r = 1, 2, each of the problems (4.1)-

(4.2) and (4.3) has a unique solution.

Proof. We know that Yr is a solution of

Y ′ = (Pr − λWr)Y + Fr on Jr (4.5)

if and only if yr is a solution of

− (pry′)′ + qry = λwry + fr on Jr, (4.6)

where Yr =
[
yr
pry
′
r

]
. For Cr =

[
cr1
cr2

]
, cr1, cr2 ∈ C, r = 1, 2, determine a solution Yr

of (4.5) on Jr by the initial condition

Yr(ar, λ) = Cr.

Then yr is a solution of (4.6) determined by the initial conditions yr(ar, λ) = cr1,
(pry′r)(ar, λ) = cr2.

By the variation of parameters formula, we have

Yr(t, λ) = Φr(t, ar, λ)Cr +
∫ t

ar

Φr(t, s, λ)Fr(s)ds, ar ≤ t ≤ br. (4.7)

In particular,

Yr(br, λ) = Φr(br, ar, λ)Cr +
∫ br

ar

Φr(br, s, λ)Fr(s)ds.

Let D(λ) = (A1 +B1Φ1(b1, a1, λ) | A2 +B2Φ2(b2, a2, λ)) and C =
[
C1

C2

]
, Then

A1Y1(a1, λ) +B1Y1(b1, λ) +A2Y2(a2, λ) +B2Y2(b2, λ)

= D(λ)C +B1

∫ b1

a1

Φ1(b1, s, λ)F1(s) ds+B2

∫ b2

a2

Φ2(b2, s, λ)F2(s) ds.
(4.8)

When fr = 0 on Jr(r = 1, 2), Y = {Y1, Y2} and y = {y1, y2} are nontrivial
solutions if and only if C is not the zero vector. By (4.8), we have that when fr = 0
on Jr(r = 1, 2), there is a nontrivial solution {Y1, Y2} (and a nontrivial solution
{y1, y2} of (4.1)) satisfying the boundary conditions

A1Y1(a1) +B1Y1(b1) +A2Y2(a2) +B2Y2(b2) = 0

if and only if D(λ) is singular. It also follows from (4.8) that there is a unique solu-
tion {Y1, Y2} satisfying the boundary conditions (4.2) for every fr ∈ L(Jr,C), r =
1, 2, if and only if D(λ) is nonsingular. Similarly there is a unique solution y =
{y1, y2} satisfying the boundary conditions (4.2) for every f = {f1, f2}, fr ∈
L(Jr,C),r = 1, 2 if and only if D(λ) is nonsingular. �

Next we construct the Green’s function for two-interval boundary-value prob-
lems. Assume that

D(λ) = (A1 +B1Φ1(b1, a1, λ) | A2 +B2Φ2(b2, a2, λ))
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is nonsingular. We use the notation D1(λ) denotes the 2 by 4 matrix whose rows
are the first two rows of D−1(λ), and D2(λ) denotes the 2 by 4 matrix whose rows
are the last two rows of D−1(λ). Let

G1(t, s, λ) =

{
−Φ1(t, a1, λ)D1(λ)B1Φ1(b1, s, λ), a1 ≤ t < s ≤ b1,
−Φ1(t, a1, λ)D1(λ)B1Φ1(b1, s, λ) + Φ1(t, s, λ), a1 ≤ s ≤ t ≤ b1,

G̃1(t, s, λ) = −Φ1(t, a1, λ)D1(λ)B2Φ2(b2, s, λ), a1 ≤ t ≤ b1, a2 ≤ s ≤ b2.
G2(t, s, λ) = −Φ2(t, a2, λ)D2(λ)B1Φ1(b1, s, λ), a2 ≤ t ≤ b2, a1 ≤ s ≤ b1,

G̃2(t, s, λ) =

{
−Φ2(t, a2, λ)D2(λ)B2Φ2(b2, s, λ), a2 ≤ t < s ≤ b2,
−Φ2(t, a2, λ)D2(λ)B2Φ2(b2, s, λ) + Φ2(t, s, λ), a2 ≤ s ≤ t ≤ b2.

Theorem 4.2. Assume D(λ) is nonsingular; i.e., [A1 + B1Φ1(b1, a1, λ) | A2 +
B2Φ2(b2, a2, λ)]−1 exists, then for any f = {f1, f2}, fr ∈ L(J,C), r = 1, 2, the
unique solution y = {y1, y2} of (4.1)-(4.2) and the unique solution Y = {Y1, Y2}
of (4.3), respectively, are given by

y1(t) = −
∫ b1

a1

G1,(12)(t, s, λ)f1(s) ds−
∫ b2

a2

G̃1,(12)(t, s, λ)f2(s) ds, a1 ≤ t ≤ b1,

(4.9)

y2(t) = −
∫ b1

a1

G2,(12)(t, s, λ)f1(s) ds−
∫ b2

a2

G̃2,(12)(t, s, λ)f2(s) ds, a2 ≤ t ≤ b2,

(4.10)

Y1(t) =
∫ b1

a1

G1(t, s, λ)F1(s) ds+
∫ b2

a2

G̃1(t, s, λ)F2(s) ds, a1 ≤ t ≤ b1, (4.11)

Y2(t) =
∫ b1

a1

G2(t, s, λ)F1(s) ds+
∫ b2

a2

G̃2(t, s, λ)F2(s) ds, a2 ≤ t ≤ b2. (4.12)

Set K(t, s, λ) = {K1(t, s, λ),K2(t, s, λ)}, where

K1(t, s, λ) =

{
G1(t, s, λ) a1 ≤ s ≤ b1,
G̃1(t, s, λ), a2 ≤ s ≤ b2,

a1 ≤ t ≤ b1,

K2(t, s, λ) =

{
G2(t, s, λ) a1 ≤ s ≤ b1,
G̃2(t, s, λ), a2 ≤ s ≤ b2,

a2 ≤ t ≤ b2.

We call K(t, s, λ) = K(t, s, λ, P1, P2,W1,W2, A1, A2, B1, B2) (Here we use the
complete notation to highlight the dependence of K on these quantities.) the Green’s
matrix of the regular boundary value problem (3.6), (3.4). And we call K12 =
{K1,(12),K2(12)} the Green’s function of two-interval boundary value problem (3.3),
(3.4).

Proof. Let

C = D−1(λ)(−B1

∫ b1

a1

Φ1(b1, s, λ)F1(s) ds−B2

∫ b2

a2

Φ2(b2, s, λ)F2(s) ds).

By (4.8), we have

A1Y1(a1) +B1Y1(b1) +A2Y2(a2) +B2Y2(b2) = 0.
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Recall the notation D1(λ) and D2(λ), we have

C1 = D1(λ)(−B1

∫ b1

a1

Φ1(b1, s, λ)F1(s) ds−B2

∫ b2

a2

Φ2(b2, s, λ)F2(s) ds),

C2 = D2(λ)(−B1

∫ b1

a1

Φ1(b1, s, λ)F1(s) ds−B2

∫ b2

a2

Φ2(b2, s, λ)F2(s) ds).

From (4.7), we obtain that

Y1(t) =Φ1(t, a1, λ)D1(λ)(−B1

∫ b1

a1

Φ1(b1, s, λ)F1(s) ds

−B2

∫ b2

a2

Φ2(b2, s, λ)F2(s) ds) +
∫ t

a1

Φ1(t, s, λ)F1(s) ds

=
∫ b1

a1

[Φ1(t, a1, λ)D1(λ)(−B1Φ1(b1, s, λ)F1(s))] ds+
∫ t

a1

Φ1(t, s, λ)F1(s) ds

+
∫ b2

a2

[Φ1(t, a1, λ)D1(λ)(−B2Φ2(b2, s, λ)F2(s))] ds

=
∫ b1

a1

G1(t, s, λ)F1(s) ds+
∫ b2

a2

G̃1(t, s, λ)F2(s) ds, a1 ≤ t ≤ b1.

(4.13)

Y2(t) =Φ2(t, a2, λ)D2(λ)(−B1

∫ b1

a1

Φ1(b1, s, λ)F1(s) ds

−B2

∫ b2

a2

Φ2(b2, s, λ)F2(s) ds) +
∫ t

a2

Φ2(t, s, λ)F2(s) ds

=
∫ b1

a1

[Φ2(t, a2, λ)D2(λ)(−B1Φ1(b1, s, λ)F1(s))] ds+
∫ t

a2

Φ2(t, s, λ)F2(s) ds

+
∫ b2

a2

[Φ2(t, a2, λ)D2(λ)(−B2Φ2(b2, s, λ)F2(s))] ds

=
∫ b1

a1

G2(t, s, λ)F1(s) ds+
∫ b2

a2

G̃2(t, s, λ)F2(s) ds, a2 ≤ t ≤ b2.

(4.14)

Note that (4.9) and (4.10), respectively, follow from the identities (4.13) and
(4.14) by taking the upper right component; i.e.,

y1(t) = −
∫ b1

a1

G1,(12)(t, s, λ)f1(s) ds−
∫ b2

a2

G̃1,(12)(t, s, λ)f2(s) ds, a1 ≤ t ≤ b1,

y2(t) = −
∫ b1

a1

G2,(12)(t, s, λ)f1(s) ds−
∫ b2

a2

G̃2,(12)(t, s, λ)f2(s) ds, a2 ≤ t ≤ b2.

�

Remark 4.3. Note that the above construction of the Green’s function and the
characteristic function does not assume any symmetry or self-adjointness of the
problem. The coefficients pr, qr, wr may be complex valued and the boundary
conditions need not be self-adjoint. If wr is identically zero on the whole interval
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Jr there is no λ dependence and the problem becomes degenerate. Similarly the
case when 1/pr is identically zero on Jr the problem can be considered degenerate.

Remark 4.4. If pr, qr, wr are real valued and wr > 0 on Jr, r = 1, 2, the self-
adjoint operators in the separate Hilbert spaces H1 = L2(J1, w1), H2 = L2(J2, w2)
with their usual inner products

(f, g)r =
∫
Jr

fgwr, r = 1, 2 (4.15)

is well known [33] and it is a routine exercise to show that if Sr is a self-adjoint
operator in Hr, r = 1, 2 then the direct sum of S1 and S2 is a self-adjoint operator
in the direct sum space Hu = L2(J1, w1)u L2(J2, w2) where each of H1 and H2 is
endowed with the usual inner product (4.15). Everitt and Zettl [18] showed that
there are many self-adjoint operators in Hu which are not generated as direct sums
in this way. These ‘new’ self-adjoint operators involve interactions between the
the intervals J1 and J2. In [18] all these interactions are characterized in terms of
boundary conditions at the endpoints. Mukhtarov and Yakubov [9] observed that
the theory in [18] can be significantly extended by using different multiples of the
inner usual inner products ((4.15):

(f, g)r = hr

∫
Jr

fgwr, hr > 0, r = 1, 2. (4.16)

Wang, Sun and Zettl [16] exploited this observation to characterize this enlarged
set of self-adjoint operators in terms of boundary conditions at the endpoints. Re-
cently Wang and Zettl in [17] further enlarged this set by removing the positivity
restriction on hr.This requires a different proof since (4.16) is not an inner product
if hr is negative. In Section 5 we give some examples to illustrate these interactions
between the two intervals which generate self-adjoint extensions including those
found in [9] and [17] and relate these to the comments we made in the Introduction
about transmission and interface conditions.

5. Examples

In this section we give examples to illustrate that the construction of the two-
interval Green’s function applies to problems with transmission and interface con-
ditions as mentioned in the Introduction.

These examples are taken from [17]. They are for the special case when the right
endpoint of J1 is the same as the left endpoint of J2, i.e. a2 = b1. In order to
avoid unnecessary subscripts and to make the notation more consistent with the
literature on transmission and interface conditions we let

J1 = (a, b), J2 = (c, d), b = c (5.1)

and use c+ = b for the right endpoint of J1 and c− = c for the left endpoint of J2.
Also we let A = A1, B = B1, C = A2, D = B2 in (3.4).

Using this notation we make the following simple but key observation.

Remark 5.1. To apply the above construction of the Green’s function to problems
with transmission and interface conditions a simple but important observation is
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that when b = c the direct sum of the Hilbert spaces from the two intervals can be
identified with the Hilbert space of the ‘outer’ interval:

L2((a, b), w1)u L2((c, d), w2) = L2((a, d), w) (5.2)

where w1 is the restriction of w to J1 and w2 is the restriction of w to J2. In
each example below the given boundary conditions generate a self-adjoint operator
in the Hilbert space L2((a, d), w).

The first example has separated boundary conditions: these are generally called
‘transmission conditions’ in the literature.

Example 5.2 (Transmission Conditions). Separated boundary conditions:

A1y(a) +A2y
[1](a) = 0, A1, A2 ∈ R, (A1, A2) 6= (0, 0);

B1y(b) +B2y
[1](b) = 0, B1, B2 ∈ R, (B1, B2) 6= (0, 0);

C1y(c) + C2y
[1](c) = 0, C1, C2 ∈ R, (C1, C2) 6= (0, 0);

D1y(d) +D2y
[1](d) = 0, D1, D2 ∈ R, (D1, D2) 6= (0, 0).

(5.3)

Let

A =


A1 A2

0 0
0 0
0 0

 , B =


0 0
B1 B2

0 0
0 0

 , C =


0 0
0 0
C1 C2

0 0

 , D =


0 0
0 0
0 0
D1 D2

 .
In this case the 4× 8 matrix (A,B,C,D) has full rank and

0 = AEA∗ = BEB∗ = CEC∗ = DED∗. (5.4)

Considering (a, c]∪ [c, d) as one interval (a, d) the next example has transmission
conditions at the outer endpoint a, d and interface conditions at c. This example
is chosen to highlight the (discontinuous) interface conditions at an interior point
c. The roles of the endpoints a, c+, c−, d can be interchanged in this example (but
care must be taken regarding the signs of the matrices A,B,C,D, see [17]).

Example 5.3. Let h, k ∈ R, h 6= 0 6= k. Separated boundary conditions at a and
at d and coupled jump conditions at c.

A1y(a) +A2(py′)(a) = 0, A1, A2 ∈ R, (A1, A2) 6= (0, 0);

D1y(d) +D2(py′)(d) = 0, D1, D2 ∈ R, (D1, D2) 6= (0, 0).

and

Y (c) = eiγKY (b), Y =
[
y
y[1]

]
, K = (kij), kij ∈ R, 1 ≤ i, j ≤ 2,

detK 6= 0, −π < γ ≤ π .
(5.5)

Let A,D be as in Example 5.2, then rank(A,D) = 2 and k AEA∗−hDED∗ = 0
for any h, k since 0 = AEA∗ = DED∗. Let

C =


0 0
−1 0
0 −1
0 0

 , B = eiγ


0 0
k11 k12

k21 k22

0 0

 , −π < γ ≤ π. (5.6)

Then a straightforward computation shows that

hCEC∗ = k BEB∗
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is equivalent to

hE = k (detK)E

which is equivalent to

h = k detK. (5.7)

Since (5.7) holds for any h, k ∈ R, h 6= 0 6= k, it follows from [17, Theorem 2] that
the boundary conditions of this example are self-adjoint for any K ∈ M2(R) with
det(K) 6= 0.

The next remark highlights a remarkable comparison with the well known clas-
sical one-interval self adjoint boundary conditions, see [33].

Remark 5.4. It is well known that in the one-interval theory detK = 1 is required
for self-adjointness of the boundary conditions. We find it remarkable that the one-
interval condition detK = 1 extends to det(K) 6= 0 in the two-interval theory. And
that this generalization follows from two simple observations: (i) The Mukhtarov-
Yakubov [9] observation that for h > 0 and k > 0 using inner product multiples
produces an interaction between the two intervals yielding det(K) > 0 and (ii)
the Wang-Zettl observation that the boundary value problem is invariant under
muliplication by −1 and this yields the further extension det(K) 6= 0. Note that
the parameters h, k play no role in Example 5.2.

The next example illustrates the situation when there are two sets of coupled i.e.
‘jump’ boundary conditions, in one case the jumps are between the outer endpoints
a, d and the other between the inner ‘endpoints, b = c+ and c = c−.

Example 5.5. Two pairs of coupled conditions, with −π < γ1, γ2 ≤ π,

Y (d) = eiγ1GY (a), G = (gij), gij ∈ R, i, j = 1, 2, detG 6= 0,

Y (c) = eiγ2KY (b), K = (kij), kij ∈ R, i, j = 1, 2, detK 6= 0,

Y =
[
y
y[1]

]
.

(5.8)

Proceeding as in the previous example we obtain the equivalence of the conditions
for self-adjointness:

k GEG∗ = hE and kKEK∗ = hE;
k detG = h and k detK = h;

i.e.,

detG = detK =
h

k
.

This shows that (5.8) are self-adjoint boundary conditions for any h, k positive or
negative.

More examples can be found in [17] where singular analogues of the regular
self-adjoint boundary conditions are also found. We plan to construct the Green’s
function for singular self-adjoint problems in a subsequent paper.
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6. The Neuberger Construction

The remark below is written by J. W. Neuberger and published here with his
permission. We believe it is of interest not only because we refer to ‘a construction
of Neuberger’ in the Introduction but also for pedagogical reasons.

Remark 6.1 (J. W. Neuberger). In the spring of 1958, I taught my first graduate
course. It was an introduction to functional analysis by means of Sturm-Liouville
problems. As was, and still is, my custom, I didn’t lecture, but rather I broke up
material for the class into a sequence of problems. The night before I was concerned
with finding problems which gave a good introduction to Green’s functions to the
class. The standard ‘recipe’ with its prescribed discontinuity, seemed contrived.
I managed to come up with the algebraic method mentioned at the start of this
paper. Problems for some simple examples quickly led to the general case, again
algebraically. To me this remains an example of how ‘teaching’ and ‘research’ can
impact one another, particularly in a non lecture situation. If I had been lecturing,
I would have given the standard approach, the only one I knew the day before. The
algebraic approach to Green’s functions might have never seen the light of day and
some nice mathematics would have been missed.

Acknowledgements. A. Wang was supported by the National Natural Science
Foundation of China (Grant No. 10901119).
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