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DYNAMIC CONTACT OF VISCOELASTIC BODIES
WITH TWO OBSTACLES: MATHEMATICAL AND

NUMERICAL APPROACHES

JEONGHO AHN, JON CALHOUN

Abstract. The motion of viscoelastic (Kelvin-Voigt model) bodies between

an upper and a lower obstacle is studied both mathematically and numeri-

cally. The two obstacles are assumed to be stationary perfect rigid, therefore,
Signorini contact conditions are imposed at each obstacle, which can be in-

terpreted as a couple of complementarity conditions (CCs). The convergence

of numerical trajectories for general dimensional problems is shown based on
the box constrained variational inequality (VI) which is equivalent to the two

CCs. A one-dimensional example is provided. Unlike higher dimensional cases,
different perspectives are used to prove the results of its existence. Numeri-

cal results are also presented and discussed, showing a typical behavior of the

system

1. Introduction

This article considers a dynamic model for frictionless contact of an elastic or a
viscoelastic body with two flat rigid obstacles situated above and below it, while
most articles (e.g., see [4, 12, 15, 18]) deal with the related problem with only
one obstacle. Thus, we impose Signorini contact conditions on the two obstacles,
since the body may bounce off each of them. We note that mathematical and
numerical approaches for more generalized obstacles seem to be very challenging;
for instance, a more general dynamic case is when a viscoelastic body moves around
inside a room enclosed by a rigid obstacle. Therefore, we commence by considering
dynamic frictionless contact problems with two flat obstacles in order to extend
into more general types of obstacles in our future research.

We remark that many questions on the class of dynamic problems with purely
elastic bodies Ω ⊂ Rd with d ≥ 3, for example, the existence of solutions and their
regularity, remain still open. Adding a viscosity term into the equation of motion
allows us to avoid some of these mathematical difficulties. Petrov and Schatzman
[15] study a one-dimensional problem where a viscoelastic rod is considered in the
half space and the original partial differential equations (PDEs) with unilateral
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boundary conditions are switched to a VI on the end of the rod, using both con-
volution and CCs. In the paper [4], Ahn and Stewart extend the viscoelastic rod
problem into a higher dimensional case. They use the trace theorem to set up the
VI on the boundary ∂Ω which is equivalent to the complementarity problem (CP).
In addition to that, numerical schemes are developed, convergence of numerical
trajectories are shown, and some numerical results are presented, too. One of their
major concerns is to show energy balance because the viscosity in the system causes
energy loss. A significant issue is addressed in the two papers on how the viscos-
ity affects the magnitude of contact forces, i.e., a viscoelastic body produces higher
singularity than a purely elastic body. The paper [15] proves the issue theoretically,
and the paper [4] provides numerical evidences for it. In Kuttler and Shillor’s pa-
per [12], frictional contact is considered which is described by a slip rate dependent
coefficient. They also regularize the nonlocal stress by using an averaging opera-
tor. In the paper [18], Shi studies a contact model with a purely elastic rod and
derives explicit formulas for the rebounding time period and the dependence of the
coefficient of restitution on the initial condition. Indeed, imposing the coefficient
of restitution (see the paper [6]) may be a good idea to show the uniqueness of
solutions.

ΩΓ1 Γ2

ΓBc

ΓTc
N

N

Figure 1. Dynamic contact model with two obstacles

Among the recent works on the contact of beams, the Gao beam [9], which is
highly nonlinear, has received considerable attention. In the recent papers [1, 2], nu-
merical algorithms are proposed and numerical results (simulations) are presented.
In particular, the convergence theory for the Gao beam with dynamic contact has
been initially studied in the paper [1].

Even though the existence of solutions for the purely elastic case (d ≥ 3) is still an
open question, many numerical schemes which are based on the Newmark schemes
[14] have been proposed recently (see the paper [11] and the references therein).
Applying Newmark schemes into the viscoelastic cases can provide a great idea to
obtain higher stability of numerical solutions. This will be our future work when
we develop numerical schemes on higher dimensional problems.

The remaining sections of this paper is structured as follows. Section 2 which
deals with higher dimensional problems (d ≥ 2) consists of two Subsections. In
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Subsection 2.1, some mathematical background and notations are introduced. In
Subsection 2.2, the dynamic contact problem is formulated and its existence re-
sults are shown, using a box constrained VI on the boundary ∂Ω. In Section 3,
a one dimensional problem is considered with different methods, since it satisfies
the strong pointedness unlike the general dimensional problems. The convergence
of numerical trajectories is shown through the first two Subsections 3.1 and 3.2.
Subsection 3.3 proposes the fully numerical schemes, and numerical results are pre-
sented and discussed in Subsection 3.4. This work concludes with some remarks in
the last Section 3.4.

2. General dimensional problems

This dynamic contact problem is considered with the Lipschitz domain Ω ⊂ Rd
(with d = 2, 3 in applications) over the bounded time interval [0, T ]. The deforma-
tion field and velocity of viscoelastic bodies are denoted by the functions u = u(t,x)
and v = v(t,x), where x = (x1, x2, . . . , xd) ∈ Ω is a material particle and time
t ∈ [0, T ], respectively. The bodies move between two fixed rigid foundations which
are expressed by functions xd = ϕB(x1, x2, . . . , xd−1) and xd = ϕT (x1, x2, . . . , xd−1)
and ϕB < ϕT for all points (x1, x2, . . . , xd−1) on the boundary ∂Ω ⊂ Rd−1. By
the proper transformation, we shall assume that ϕB < 0 < ϕT , which may assist
to avoid geometrical complexities. The stress and the strain are denoted by the
tensors σ = (σij) and ε = (εij) for 1 ≤ i, j ≤ d. In this paper, all vectors or tensors
are written by boldface characters or component forms.

Since our viscoelastic bodies are of type of the Kelvin-Voigt, we introduce its
constitutive relation

σ[u,v] = Aε(u) +Bε(v), (2.1)
where A is is called a linear elasticity operator and B is called a linear viscosity
operator and the linearized strain tensor is expressed by

ε(u) =
∇u + (∇u)T

2
.

Those tensors are the symmetric; i.e., (σij) = (σji) and (εij) = (εji). In the tensor
form (2.1), A and B can be reformed by the fourth order tensor in the component
form;

σij = aijklεki(u) + bijklεki(v) = aijkluk,l + bijklvk,l,

where A = (aijkl) and B = (bijkl) with 1 ≤ k, l ≤ d are an elasticity tensor and a
viscosity tensor, respectively, and uk,j = ∂uk/∂xj and vk,j = ∂vk/∂xj are partial
derivatives.

Since there are the upper and lower rigid obstacles, we assume that the boundary
of the body consists of four disjoint subsets; ∂Ω = Γ1 ∪ΓTc ∪Γ2 ∪ΓBc and Γ1 ∩ΓTc ∩
Γ2 ∩ ΓBc = ∅ with meas(Γ1),meas(Γ2) ≥ 0 such that contact forces do not take a
place at Γ1,Γ2 ⊂ ∂Ω. Thus, on ΓTc and ΓBc the body may come in contact with the
upper obstacle xd = ϕT and the lower obstacle xd = ϕB . Those stationary obstacles
are perfectly rigid and thus do not allow penetration of the viscoelastic body. The
boundary ∂Ω of the body is assumed to have the unit outward normal vector
n(x) = (n1(x), n2(x), . . . , nd(x)) for almost all x ∈ ∂Ω. This physical situation is
illustrated in Figure 1.

Thus, we are led to formulate the following PDEs:

v̇ = ∇ · σ[u,v] + f in (0, T ]× Ω, (2.2)
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σ[u,v] = Aε(u) +Bε(v), (2.3)

σ[u,v] · n = N(t) n in (0, T ]× (ΓTc ∪ ΓBc ), (2.4)

σ[u,v] · n = 0 in (0, T ]× ∂Ω\(ΓTc ∪ ΓBc ), (2.5)

0 ≥ N(t) ⊥ u · n− ϕT ≤ 0 in (0, T ]× ΓBc , (2.6)

0 ≤ N(t) ⊥ u · n− ϕB ≥ 0 in (0, T ]× ΓTc , (2.7)

u0 = u(0,x), v0 = v(0,x) in Ω, (2.8)

where u0 and v0 are initial data and f is a body force and the normal contact forces
N are occurring at the top and the bottom obstacles. Defining the normal contact
forces σijnj = Nni in (2.4) enables them to be frictionless, since the normal stress
σn = σijninj and the tangential stress (σT )i = σijnj−σnni = N ni−σijninjni = 0.
A couple of CCs (2.6)–(2.7) which is equivalent to Signorini’s contact conditions
will be explained in the next Subsection 2.1.

The two natural boundary conditions (2.4)–(2.5) do not guarantee the coercivity
of operators for the static or even quasistatic problems. Nevertheless, we are still
able to verify the existence of solutions for this type of dynamic frictionless contact
problems.

2.1. Mathematical preliminaries. In this Subsection, mathematical background
and notation are introduced to present the existence results. The solution spaces
that we mostly deal with are based on the Gelfand triples; V ⊂ H = H ′ = V ′ (see
the book [20]), where all spaces are separable Hilbert spaces and all inclusions are
densely compact. Here (′) denotes the dual space. For Banach space X, the duality
pairing between X ′ and X is denoted by 〈·, ·〉X′×X . When a duality pairing is
defined on a known space, the simpler notation 〈·, ·〉 may be used. In our problem,
the Hilbert space V will be Sobolev spaces typically.

Now we define the linear operators A and B from V to V ′ with appropriate
boundary conditions by

〈Au,w〉 :=
∫

Ω

Aε(u) : ε(u)dx,

〈Bu,w〉 :=
∫

Ω

Bε(u) : ε(u)dx,

where the notation (:) means the product of tensors.
In general, the CCs 0 ≤ a⊥ b ≥ 0 implies that a, b ≥ 0 and a·b = 0, and similarly,

0 ≥ a⊥ b ≤ 0 means that a, b ≤ 0 and a · b = 0. Due to the nonpenetration of
the rigid obstacles, the CCs (2.6)–(2.7) can be understood in the following way. If
viscoelastic bodies are not in contact with either of the obstacles; i.e., N(t) = 0,
then u(t,x) · n(x) − ϕB > 0 for x ∈ ΓBc and u(t,x) · n(x) − ϕT < 0 for x ∈ ΓTc .
However, if the body is in contact with the the bottom obstacle, then N(t) ≥ 0
and u(t,x) · n(x) − ϕB = 0 for all x ∈ ΓBc . If the body is in contact with the top
obstacle, then N(t) ≤ 0 and u(t,x) · n(x) − ϕT = 0 for all x ∈ ΓTc . Interpreting
Signorini’s contact conditions as CCs is an easier way to develop finite dimensional
approaches and numerical algorithms, while using the indicator function and its
subdifferential for Signorini’s contact conditions can be a more theoretical way to
prove the existence of solutions in the infinite dimension (see the paper [13] and
references therein).
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In this dynamic contact problem, applying trace theorems (see the books [10,
pp.83-89]) plays an essential role in deriving a box constrained (VI) on the boundary
∂Ω which is equivalent to the PDEs and CCs (2.2)–(2.8). Since our dynamic contact
problem is frictionless, we are able to apply the trace operator γ from H1(Ω) =
(H1(Ω))donto H1/2(∂Ω) = (H1/2(∂Ω))d such that

γn(w) = γ(w) · n for w ∈ H1(Ω),

where γn from H1(Ω) onto H1/2(∂Ω) is the normal trace operator. Let the Sobolev
spaces H1(Ω) and H1/2(∂Ω) be V and W , respectively. Now the formal adjoint
operator γ∗n : W ′ → V ′ can be defined to be

〈$, γnw〉W ′×W = 〈γ∗n$,w〉V ′×V for all $ ∈W ′ and w ∈ V. (2.9)

Since γn is subjective, there is an extension operator E : W → V so that IW =
γnE : W →W is the identity operator.

2.2. Existence results for the general dimensional problems. Let K = [a, b]
be a closed interval with a < b; therefore, K is a closed convex set. Then, we
introduce the following complementarity problem (CP) which consists of a couple
of CCs; given a mapping F : R→ R.

find x ∈ K : 0 ≤ x− a ⊥ F (x) ≥ 0 and 0 ≥ x− b ⊥ F (x) ≤ 0. (2.10)

Also, the interval (box) constrained VI is formally defined below;

find x ∈ K : (y − x)F (x) ≥ 0 for all y ∈ K. (2.11)

The equivalence of the CP (2.10) and the box constrained VI (2.11) will be shown
in the following Lemma 2.1. Readers may refer to the book [8, Section 1.2] to see
other relations and equivalences between problem classes, i.e., the modified CCs
and VIs.

Lemma 2.1. Let K = [a, b] ⊂ R be a closed interval. x ∈ K solves the CP (2.10)
if and only if x solves the interval constrained VI (2.11).

Proof. Suppose that x ∈ K solves the two CPs in (2.10). Then it is easy to see
that the two CCs are equivalent to the following; find x ∈ K such that case I:
a < x < b⇒ F (x) = 0, case II: x = a⇒ F (x) ≥ 0, and case III: x = b⇒ F (x) ≤ 0.
Choose any y ∈ K. Then the case II and III give the inequality (2.11). In case I,
we have (y − x)F (x) = 0.

Suppose that x ∈ K solves the box constrained VI. Let x = a. Then we choose
any y ∈ K such that a < y < b. Thus (y − x)F (x) ≥ 0 means that F (x) ≥ 0.
Similarly, if x = b, then F (x) ≤ 0. Now we claim that if a < x < b, then F (x) = 0.
We take any y ∈ K such that a < x < y < b. The box VI (2.11) gives F (x) ≥ 0.
On the other hand, we also choose y ∈ K such that a < y < x < b. Similarly, we
can obtain F (x) ≤ 0 from (2.11). Thus F (x) = 0. The proof is complete. �

The previous Lemma 2.1 can be easily extended to a vector solution and a
vector-valued mapping. When we consider dynamic contact problems with multiple
contact zones, vector forms with CPs will be useful to compute numerical solutions
and applying box constrained VIs will be helpful to show the existence of solutions.

The formulations (2.2)–(2.8) can be easily switched into the following formula-
tions in the distributional senses:

v̇ = −Au− Bv + f + γ∗nN(t) in (0, T ]× Ω, (2.12)
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0 ≥ N(t) ⊥ γnu(t)− ϕT ≤ 0 on (0, T ], (2.13)

0 ≤ N(t) ⊥ γnu(t)− ϕB ≥ 0 on (0, T ], (2.14)

u0 = u(0,x), v0 = v(0,x) in Ω. (2.15)

Then, we can set up the interval VI which is equivalent to the two CCs (2.13)–(2.14):
for almost all t ∈∈ [0, T ]

find u(t) ∈ K : 〈N(t), γn(w(t)− u(t))〉W ′×W ≥ 0 for all w ∈ K, (2.16)

where K = {w | w : [0, T ] → V, ϕB ≤ γnw(t) ≤ ϕT }. Additionally, the VI
(2.16) has to be understood over the time space [0, T ] in the sense of measures; i.e.,∫
B
〈N(t), γn(w(t)− u(t))〉W ′×W ≥ 0 for any Borel set B ⊆ [0, T ].
Finally, using (2.12) and the VI (2.16), we arrive at the following main result

for the general dimensional problems, thanks to normal trace operator γn and its
adjoint operator γ∗n.

Theorem 2.2. Let the initial data be u0,v0 ∈ V . We assume that ϕB < ϕT
and ϕB , ϕT ∈ W and f ∈ L∞(0, T ;H). There exist solutions u ∈ L∞(0, T ;V ) ∩
C1/2(0, T ;V )∩K and v ∈ L2(0, T ;V )∩L∞(0, T ;H) and v̇ ∈ L2(0, T ;V ) such that∫ T

0

〈v̇,w(t)− u(t)〉dt+
∫ T

0

〈Au(t),w(t)− u(t)〉dt+
∫ T

0

〈Bu(t),w(t)− u(t)〉dt

≥
∫ T

0

〈f(t),w(t)− u(t)〉dt for all w ∈ W,

where W = {w ∈ L2(0, T ;V ) | ϕB ≤ γnw(t) ≤ ϕT for almost all t ∈ [0, T ]}.

The notation for the Hölder space C1/2 will be explained in the next Subsec-
tion 3.1. The previous Theorem 2.2 can be easily proved, using the similar approach
of the paper [4]. Therefore the proof shall be omitted. However, we will analyze
the one-dimensional problem, keeping a couple of CCs and using the strong point-
edness. The detailed illustration will be presented in the following Section 3. We
remark that the previous Theorem 2.2 for one obstacle with frictional contact has
been initially proved in the paper [12].

v0

ϕT

ϕB

0

l

NT

NB

Figure 2. Rod model
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3. One dimensional problem

In this Section, a viscoelastic rod (d = 1) which moves between two horizontal
obstacles is modeled and studied, where its deformation and velocity are denoted
by u = u(t, x) and v = v(t, x) for all (t, x) ∈ [0, T ]× [0, l], respectively. Therefore l
is the initial length of the rod. This example is originally motivated by the Routh
model [17] where only the endpoint of an elastic rod is in contact.

3.1. Continuous formulations for the model and the existence results. In
this Subsection, we establish continuous formulations of a one dimensional problem
and thus we assume that a viscoelastic rod moves vertically and impacts each
obstacle only at its two end points x = 0, l. So it has a longitudinal motion. Using
the change of a variable, the actual displacement of the rod can be written by
w(t, x) = u(t, x) + x for all (t, x) ∈ [0, T ] × [0, l]. Let v = v(t, x) = ut(t, x). We
notice that the contact forces N are decomposed into NT on the top and NB at
the bottom.

This one-dimensional dynamic contact model is formulated by the following
PDEs:

vt = cuxx + αvxx + f(t, x) in (0, T ]× (0, l), (3.1)

NB(t) = c(ux(t, 0) + 1) + αvx(t, 0) on (0, T ], (3.2)

NT (t) = c(ux(t, l) + 1) + αvx(t, l) on (0, T ], (3.3)

0 ≤ NB(t) ⊥ u(t, 0)− ϕB ≥ 0 on (0, T ], (3.4)

0 ≥ NT (t) ⊥ u(t, l) + l − ϕT ≤ 0 on (0, T ], (3.5)

u0(x) = u(0, x), v0(x) = v(0, x) in (0, l), (3.6)

where c > 0 is the coefficient of elasticity. Since there are not simultaneously occur-
ring contact forces at the two obstacles, we could impose the orthogonal condition∫

[0,T ]
NB(t)NT (t)dt = 0 for all t ∈ [0, T ]. However, it seems not necessary for

improving the existence results. In addition, another possible contact model will
be the compression of the rod applied by contact forces at each obstacle, without
taking into consideration moving of the rod.

For now, H,V will become the spaces L2(0, l), H1(0, l), respectively. We also
define the self adjoint operator A : V → V ′ by

〈Au,w〉 :=
∫ l

0

uxwxdx.

While we apply the trace operator for higher dimensional problems, we use two
restriction operators βB(u) = u(0) and βT (u) = u(l) which are bounded operators
βB , βT : V → W . Moreover, the bounded operators provide the adjoint operators
β∗B , β

∗
T : W ′ → V ′, where β∗B(NB) = NB(t) δ(x) and β∗T (NT ) = NT (t) δ(x−l). Here

δ is the Dirac delta function which is the identity in the set of all distributions.
Using integration by parts with the two natural boundary conditions (3.2)–(3.3)
and applying the convergence of distributions, we can get to the following.

Lemma 3.1. If NT (t), NB(t) ∈ W ′ with all t ∈ [0, T ] are given, then (3.1)–(3.3)
are equivalent to the variational formulation; for all t ∈ [0, T ]

u(t) ∈ V : 〈vt, w〉V ′×V = −〈cAu+ αAv, w〉V ′×V + (f, w)H
+ 〈NT (t)δ(x− l)−NB(t)δ(x), w〉V ′×V for all w ∈ V.
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Referring to [5, Lemma 1.1] will be helpful for understanding the proof. The vari-
ational formulation in Lemma 3.1 will be used to set up the semi discrete numerical
formulations in the time interval [0, T ].

A set K is called a cone if λx ∈ K when x ∈ K and λ ≥ 0. Then, its dual cone
denoted by K ′ is defined as

K ′ = {y ∈W ′ | 〈y, x〉W ′×W ≥ 0 for all x ∈ K}.
To prove the existence of solutions, the CCs will be interpreted with closed convex
cones rather than with the original CCs (3.4) and (3.5). Let K1 and K2 be closed
convex cones such that K1 ∩K2 = {0}. Finally, the equation of motion with two
contact conditions is reformulated in a more abstract setting:

vt = cAu+ αAv + β∗T (NT )− β∗B(NB) + f(t, x) in (0, T ]× (0, l), (3.7)

W ′ ⊃ K ′1 3 NB(t) ⊥ βBu− ϕB ∈ K1 ⊂W on (0, T ], (3.8)

W ′ ⊃ K ′2 3 NT (t) ⊥ βTu+ l − ϕT ∈ K2 ⊂W on (0, T ], (3.9)

u0(x) = u(0, x), v0(x) = v(0, x) in (0, l). (3.10)

Unlike the higher dimensional problems, we are able to show the boundedness of
contact forcesNT , NB on a suitable space. In order to do so, we require the following
definition.

Definition 3.2. A dual cone K ′ is said to be strongly pointed if there exist κ ∈ K
and η > 0 such that for any ξ ∈ K ′,

η‖ξ‖W ′ ≤ 〈ξ, κ〉W ′×W .

This definition can be founded in the papers [3, 19]. Indeed, definition 3.2 is not
a perfect sufficient condition for purely elastic problems, since they require a gap
in the scale of interpolation spaces. See the paper [3] for the detailed illustration.
However, in this viscoelastic problem, being strongly pointed without considering
a gap between interpolations spaces is sufficient to show the existence results. For
now, we set W = R and thus W ′ = R. Then we can have K1 = R+ ⊂ W
and K2 = R− ⊂ W and thus their dual cones become K ′1 = R+ ⊂ W ′ and
K ′2 = R− ⊂ W ′. Thus it is easy to see that the two dual cones K ′1 and K ′2 satisfy
the strong pointedness.

When we show the compactness of solutions, the Hölder space Cθ(0, T ;V ) with
the norm is needed:

‖u‖Cθ(0,T ;V ) = ‖u‖C(0,T ;V ) + sup
s6=t

‖u(t)− u(s)‖V
|t− s|θ

for 0 ≤ s < t ≤ T,

where the exponent θ is 0 < θ ≤ 1.
Finally, to show the existence results for this one dimensional example, we list

the following assumptions:
• Two obstacles ϕT , ϕB ∈W and u0, v0 ∈ V and f ∈ L2(0, T ;H).
• There is a suitable coefficient of viscosity α > 0.
• The linear operator A : V → V ′ is self adjoint.
• The space of solutions over the spacial domain is based on Gelfand triples;
V ⊂ H = H ′ ⊂ V ′.
• There exists a linear operator βB , βT : V → W such that its adjoint op-

erator is β∗B , β
∗
T : W ′ → V ′ and βB , βT are subjective and β−1

T , β−1
B are

bounded right inverse, i.e., β−1
T βT = β−1

B βB = IW .
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• The convex cones K1,K2 ⊂W are closed and its dual cones K ′1,K
′
2 satisfy

the strong pointedness.
Here is an important remark; for the convergence of numerical trajectories, two
CCs (3.8) and (3.9) have to be understood in the sense of measures; i.e.,∫

B

〈NB(t), βBu(t)− ϕB〉W ′×W =
∫
B

〈NT (t), βTu(t)− ϕT 〉W ′×W = 0,

where any Borel set B ⊆ [0, T ]. Under those assumptions, we can arrive at the
following main result.

Theorem 3.3. There are solutions (u, v) with u ∈ C(0, T ;C[0, l]) ∩ C1/2(0, T ;V )
and v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) satisfy the equations (3.7)–(3.10).

The proof of this theorem will be shown through several steps in the following
Subsection 3.2.

3.2. Numerical formulations with time discretization and its convergence.
Time discretization is carried out by partitioning the time interval with a small time
step size ht > 0;

t0 = 0 < t1 < t2 < · · · < tk−1 < tk < tk+1 < · · · < tm−1 < tm = T,

where the uniform spacing is used; i.e., ht = tk+1 − tk for integers k ≥ 0. The
main numerical scheme over the time interval is to use the implicit Euler method.
The displacement u is approximated by the linear interpolant, denoted by uht such
that uht(tk+1, ·) = uk+1 and uht(tk, ·) = uk. The velocity v is approximated by the
constant interpolant vht(t, ·) = vk+1 for t ∈ (tk, tk+1]. The approximations of the
contact forces (NB)ht and Nht = (NT )htare also defined by

(NB)ht(t, x) = ht

m−1∑
k=0

Nk
Bδ(t− (k + 1)ht)δ(x) and (3.11)

(NT )ht(t, x) = ht

m−1∑
k=0

Nk
T δ(t− (k + 1)ht)δ(x− l). (3.12)

The energy function Ek at t = tk in the semi-discrete case is defined to be

Ek =: E(tk) = E[uk, vk] =
1
2

(‖vk‖2H + c〈Auk, uk〉V ′×V ).

Based on the implicit Euler method with time discretization, we are led to the
following numerical formulations in the distributional senses:

vk+1 − vk

ht
= cAu+ αAv + β∗T (NT )− β∗B(NB) + f in (0, l), (3.13)

vk+1 =
uk+1 − uk

ht
in [0, l], (3.14)

W ′ ⊃ K ′1 3 Nk
B ⊥ βB(uk+1)− ϕB ∈ K1 ⊂W, (3.15)

W ′ ⊃ K ′2 3 Nk
T ⊥ βT (uk+1) + l − ϕT ∈ K2 ⊂W. (3.16)

The numerical schemes suggested above enable us to obtain uniform bounded so-
lutions over some Banach spaces, which will be proved in the following Lemma 3.4.

For the static and quasistatic frictionless contact problems, the self adjoint op-
erator A needs to be elliptic to show the existence of solutions. However, it is not
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necessary in the dynamic case. The next step solution (uk+1, vk+1) satisfying our
time discrete formulations (3.13)–(3.14) is unique at each time step t = tk. This
can be seen by applying the Lax-Milgram Lemma [7, Subsection 6.2.1] after we
derive the bilinear form. Define the following bilinear form on V ; for u,w ∈ V with
any ht > 0

a(u,w) = 〈(I + ht(c ht + α)A)u,w〉,

where I is the identity operator. Then it is easy to check that the linear operator
I+h(ch+α)A with any ht > 0 is bounded and elliptic on the space V . Substituting
(3.14) in the left side of the equation (3.13), we can easily obtain

a(uk+1, w) = 〈Φk, w〉 for all w ∈ V, (3.17)

where Φk = uk + h2
t v
k + αhtAuk + h2

t (N
k
T − Nk

B + f) ∈ V ′ can be found at the
previous step. Therefore, by the Lax Milgram Lemma we can conclude that there
is a unique next time stepping solution uk+1 ∈ V .

Unlike the general dimensional problems, we have to impose an additional condi-
tion in order to prove boundedness of numerical trajectories in appropriate spaces.
The condition (3.18) in Lemma 3.4 is required only for numerical trajectories. The
reason can be justified from the CCs (3.4). If NB = 0, then NBv(t, 0) = 0, but
if NB > 0, then u(t, 0) = ϕB and thus NBv(t, 0) = 0. From the numerical point
of view, we can guess that the left side will be very close to zero, which implies
that we can choose any suitable viscosity quantity α > 0. This argument will be
support by numerical results in Subsection 3.4.

For the rest of this article, a quantity C > 0 does not depend on any parameters
but it may be different in each occurrence.

Lemma 3.4. Suppose that the numerical solutions (uk−1, vk−1, Nk−1
T , Nk−1

B ) sat-
isfy the discrete formulations (3.13)–(3.16). If there exists an α > 0 such that

−
∫ tk

0

〈(NB)ht(τ + ht), βB(vht(τ))〉dτ ≤ α
∫ tk

0

〈Avht(τ), vht(τ)〉dτ, (3.18)

then each time step solutions uk and vk with k ≥ 1 are uniformly bounded, inde-
pendent of ht > 0. Furthermore, we can obtain the following estimates;

max
k≥1
‖vk‖H ≤

√
E0(1 + CTeT ) <∞ and

max
k≥1
‖uk‖V ≤

√
(T E0(2T + C)(1 + CTeT ) + ‖u0‖2H) <∞.

(3.19)

Proof. Multiplying the left side of (3.13) by the left of (3.14) we have

1
ht

(vk+1 − vk, vk+1) =
1

2ht
(vk+1 − vk, vk+1 + vk+1 + vk − vk)H

=
1

2ht
(‖vk+1‖2H − ‖vk‖2H + (vk+1 − vk, vk+1 − vk)H).

(3.20)
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Similarly, we use (3.14) to modify the right side of (3.13);

− 1
ht
〈Auk+1, uk+1 − uk〉 − α〈Avk+1, vk+1〉+

1
ht
〈Nk

T , βT (uk+1 − uk)〉

− 1
ht
〈Nk

B , βB(uk+1 − uk)〉 − (f, vk+1)

= − 1
2ht
〈Auk+1, uk+1〉+

1
2ht
〈Auk, uk〉 − 1

2ht
〈A(uk+1 − uk), uk+1 − uk〉

− α〈Avk+1, vk+1〉+
1
ht
〈Nk

T , βT (uk+1) + l − l − βT (uk) + ϕT − ϕT 〉

− 1
ht
〈Nk

B , βB(uk+1)− βB(uk) + ϕB − ϕB〉 − (f, vk+1).

(3.21)

From (3.20)–(3.21), it follows that

Ek+1 ≤ Ek − αht〈Avk+1, vk+1〉+ 〈Nk
T , βT (uk+1) + l − ϕT 〉

− 〈Nk
T , βT (uk) + l − ϕT 〉 − 〈Nk

B , βB(uk+1)− ϕB〉

+ 〈Nk
B , βB(uk)− ϕB〉+ ht(f, vk+1).

It follows from the two numerical CCs (3.15)–(3.16) that

Ek+1 ≤ Ek − αht〈Avk+1, vk+1〉+ 〈Nk
B , βB(uk)− ϕB〉+ ht(f, vk+1). (3.22)

By using the CCs (3.16) and the extra equation (3.14), the second term on the
right side of (3.22) becomes

〈Nk
B , βB(uk)− ϕB〉 = 〈Nk

B , βB(uk+1)− htβB(vk+1)− ϕB〉 = −ht〈Nk
B , βB(vk+1)〉.

Let Nht(t) = 0 for all t ∈ [−ht, 0]. The telescoping series and the assumption enable
us to get to the following; for any integers k ≥ 1

Ek ≤ E0 −
∫ tk

0

〈(NB)ht(t+ ht), βB(vht(t))〉dt+
∫ tk

0

(f(t), vht(t))dt

− α
∫ tk

0

〈Avht(t), vht(t)〉dt ≤ E0 +
∫ tk

0

‖f(t)‖H‖vht(t)‖Hdt.
(3.23)

Now, we can use Hölder’s inequality to see that

‖vk‖2H ≤ E0 + C

∫ tk

0

‖vht(t)‖2Hdt.

It follows from Grownall’s inequality that

‖vk‖2H ≤ E0(1 + C T eT ) for any k ≥ 1.

Since 〈A(·), ·〉 is not equivalent to the V norm ‖ · ‖V , we claim that ‖uk‖H is
uniformly bounded for any k ≥ 0. Since uk(·) =

∫ tk
0
vht(t, ·) dt + u0(·), we can see

that for any k ≥ 1

‖uk‖2H ≤ 2(T
∫ tk

0

‖vht‖2Hdt+ ‖u0‖2H) ≤ 2(T 2E0(1 + C T eT ) + ‖u0‖2H).

Therefore, we can obtain the two estimates (3.19). �

As we observe Lemma 3.4, the interpolants uht is uniformly bounded in C(0, T ;V )
and vht is uniformly bounded in L∞(0, T ;H).
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Lemma 3.5. Under the same assumption of Lemma 3.4, we have the following
estimate, independent of ht > 0:∫ T

0

‖vht‖2V dt ≤M <∞.

Proof. It follows from the two estimates (3.21) and (3.23) that for any ht > 0,

∞ > E0(1 + C T (1 + C T eT ))

≥ αht
m−1∑
k=0

〈Avk+1, vk+1〉 = α

∫ T

0

‖vht‖2V dt,

as required. �

Using energy boundedness and Lemma 3.5, it is easy to prove that uht is uni-
formly bounded in the Hölder space C1/2(0, T ;V ). Thus, we can apply the Arzela-
Ascoli Theorem [16, pp.114] and Sobolev imbedding Theorem [16, pp.215] to show
that there is a subsequence, denoted by uht such that uht → u in C[0, T ]× C[0, l],
as ht ↓ 0.

Next, we want to show that (NB)ht , (NT )ht are bounded in the measure senses.
It follows from (3.11)–(3.12) that∫ T

0

‖(NB)ht‖W ′dt = ht

m−1∑
k=0

‖Nk
B‖W ′ ,

∫ T

0

‖(NT )ht‖W ′dt = ht

m−1∑
k=0

‖Nk
T ‖W ′ .

Since our one dimensional problem satisfies strong pointedness, there are η1, η2 > 0
and κ1 ∈ K1, κ2 ∈ K2 such that∫ T

0

‖(NB)ht‖W ′dt+
∫ T

0

‖(NT )ht‖W ′dt

≤ η1 ht

m−1∑
k=0

〈Nk
B , κ1〉+ η2 ht

m−1∑
k=0

〈Nk
T , κ2〉.

We can choose w as w(x) := −x+ l/2 and thus κ1 = l/2 ∈ K1 and κ2 = −l/2 ∈ K2.
Then by using the discrete equations (3.13)–(3.14), we can show easily that two
contact forces are bounded as W ′-measures, independent of ht > 0. Therefore,
there are subsequences, denoted by (NB)ht and (NT )ht such that (NB)ht ⇀

∗ NB
and (NT )ht ⇀

∗ NT as ht ↓ 0 in the sense of measures. Finally, we need to prove
that the solutions which are convergent by the subsequences satisfy the CCs (3.4)
and (3.5). Since (NT )ht ≤ 0 and (NB)ht ≥ 0, it turns out that NT ≤ 0 and NB ≥ 0.
Similarly, since uht −ϕB ≥ 0 and uht + l−ϕT ≤ 0, u−ϕB ≥ 0 and u+ l−ϕT ≤ 0.
We also need to show that the limits of subsequences satisfy the CCs in a measure
sense. It is easy to see from (3.11)–(3.12) that∫ T

0

∫ l

0

((NB)ht , (NT )ht)
T · (uht(t, x)− ϕB , uht(t, x) + l − ϕT )dx dt = 0.

By the convergence of subsequences (NT )ht , (NB)ht and uht as ht ↓ 0, we can obtain

0 =
∫ T

0

∫ l

0

(NB)ht(uht − ϕB) dx dt+
∫ T

0

∫ l

0

(NT )ht(uht + l − ϕT ) dx dt

→
∫ T

0

∫ l

0

NB(u− ϕB) dx dt+
∫ T

0

∫ l

0

NT (u− ϕT ) dx dt.
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From Lemmas 3.4 and 3.5, vht is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ). There-
fore, by applying the Alaoglu’s theorem, we can say that there exists a subsequence,
denoted by vht such that vht ⇀

∗ v in L∞(0, T ;H) ∩ L2(0, T ;V ) as ht ↓ 0, since
L∞(0, T ;H) ' L1(0, T ;H)′ and L2(0, T ;V ) ' L2(0, T ;V )′.

3.3. Fully discrete numerical schemes. Finite Element Methods (FEMs) are
popular numerical schemes which are used to find approximations of solutions for
elliptic PDEs. Our FEM is accomplished by the uniform partitioning:

x0 = 0 < x1 < x2 < · · · < xj−1 < xj < xj+1 < · · · < xn−1 < xn = l.

Each partition of the spacial domain is of size hx = xj+1 − xj > 0 for non-negative
integers j ≥ 0. Then, the finite dimensional space is chosen by

Vhx = {whx ∈ H1(0, l) | whx ∈ L([xj , xj+1]), 0 ≤ j ≤ n− 1},

where L is a family of piecewise linear functions. Thus, the basis functions, associ-
ated with the each node xj with 1 ≤ j ≤ n− 1 are set up as follows;

Ψj(x) =


(x− xj−1)/hx on [xj−1, xj ],
(xj+1 − x)/hx on [xj , xj+1],
0 on [0, l]\[xj−1, xj+1],

and the first and last basis functions are

Ψ0(x) =

{
(x1 − x)/hx on [0, hx],
0 on [0, l]\[0, hx],

Ψn(x) =

{
(x− xn−1)/hx on [l − hx, l],
0 on [0, l]\[l − hx, l].

Having applied time discretization into the time interval [0, T ] and partitioned the
spacial domain [0, l] into small sub-intervals, we now assume that all full approxi-
mations of deformation and velocity, denoted respectively by ukht,hx and vkht,hx are
written at each time step tk as follows;

ukht,hx(tk, x) := ukhx(x) =
n∑
j=0

ukjΨj(x), vkht,hx(tk, x) := vkhx(x) =
n∑
j=0

vkjΨj(x).

Recalling the semi-discrete formulations (3.13)–(3.16), we establish fully discrete
formulations with two natural boundary conditions (3.2) and (3.3):

vk+1
hx
− vkhx
ht

= c(uk+1
hx

)′′ + α(vk+1
hx

)′′ + f, (3.24)

uk+1
hx
− ukhx
ht

= vk+1
hx

, (3.25)

0 ≤ Nk
B ⊥ uk+1

hx
(0)− ϕB ≥ 0, (3.26)

0 ≥ Nk
T ⊥ uk+1

hx
(l) + l − ϕT ≤ 0, (3.27)

where (′′) is the second derivative with respect to x ∈ (0, l). We notice that the
contact forces Nk

B , N
k
T are approximated only over the time space [0, T ], since those
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are computed only at two end points x = 0, l. Using the extra equation (3.25) we
can set up the following recursive formula;

1
h2
t

uk+1
hx
− α

ht
uk+1
hx
− c(uk+1

hx
)′′ =

1
h2
t

ukhx −
α

ht
(ukhx)′′ +

1
ht
vkhx + f. (3.28)

For our actual simulations, we shall assume that the body force f is expressed by
f =

∑n
j=0 gj Ψj(x). Multiplying both sides in (3.28) by the basis function Ψi(x)

with 0 ≤ i ≤ n and then using integration by parts with the boundary conditions,
we obtain

1
h2
t

( n∑
j=0

uk+1
j

∫ l

0

Ψj(x)Ψi(x) dx−
n∑
j=0

ukj

∫ l

0

Ψj(x)Ψi(x) dx
)

− 1
ht

n∑
j=0

vkj

∫ l

0

Ψj(x)Ψi(x) dx

= c

n∑
j=0

uk+1
j

∫ l

0

Ψ′j(x)Ψ′i(x) dx+
α

ht

n∑
j=0

uk+1
j

∫ l

0

Ψ′j(x)Ψ′i(x) dx+Nk
TΨi(1)

− α

ht

n∑
j=0

ukj

∫ l

0

Ψ′j(x)Ψ′i(x) dx+
n∑
j=0

g

∫ l

0

Ψj(x)Ψi(x) dx−Nk
BΨi(0).

(3.29)
Before switching the integrations in (3.29) into a linear system, we introduce two
matrices, mass M and stiffness K, which are defined in (3.30), respectively;

M = Mij =
∫ l

0

Ψi(x)Ψj(x) dx, K = Kij =
∫ l

0

Ψ′i(x)Ψ′j(x) dx. (3.30)

The next step deformation vector ũk+1 ∈ Rn+1 can be computed by the following
linear system at each time step;( 1

h2
t

M + (c+
α

ht
)K
)
ũk+1 =

[( 1
h2
t

M +
α

ht
K
)
ũk +

1
ht

Mṽk + Ñk + Mf̃
]
, (3.31)

where the previous fully discrete approximations are given by the following vector
forms;

ũk = (uk0 , u
k
1 , . . . , u

k
n)T , ṽk = (vk0 , v

k
1 , . . . , v

k
n)T ,

Ñk = (Nk
B , 0, . . . , 0,−Nk

T )T , f̃ = (g0, g2, . . . , gn)T .

Here each component gi will be taken to be gi = −9.81 for all 0 ≤ i ≤ n in our
actual simulations. The linear system (3.31) is incomplete, because the next step
solution ũk+1 needs to satisfy the two numerical CCs (3.26) and (3.27). Now, we
consider the linear system (3.31) as the simplified form A ũk+1 = b̃k with

A = (
1
h2
t

M + (c+
α

ht
)K) ∈ R(n+1)×(n+1) and

b̃k = (
1
h2
t

M +
α

ht
K)ũk +

1
ht

Mṽk + Ñk + Mf̃ ∈ R(n+1).

Next, we break apart the matrix A into the submatrices A1,A4 ∈ Rn×n, column
vectors ã2 = an−1ne2, ã5 = a21e5, row vectors ã3 = ann−1e3, ã6 = a12e6, and
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entries ann, a00 as shown below;

A =


|

A1 | ã2

|
− − − | −

ã3 | ann

] or A =


a00 | ã6

− | − − −
|

ã5 | A4

|

 ,
where e2 = (0, . . . , 0, 1)T ∈ Rn, e5 = (1, . . . , 0, 0)T ∈ Rn, e3 = eT2 , and e5 =
eT6 . From those submatirces we split the linear system A ũk+1 = b̃k into a vector
equation (3.32) and a scalar equation (3.33);

A1x̃
k+1 + uk+1

n ã2 = ỹk, (3.32)

ã3x̃
k+1 + annu

k+1
n = bkn, (3.33)

0 ≥ q uk+1
n + zk ⊥ uk+1

n + l − ϕT ≤ 0, (3.34)

where x̃k+1 = (uk0 , u
k
1 , . . . , u

k
n−1)T ∈ Rn, ỹk = (bk0 , b

k
1 , . . . , b

k
n−1)T ∈ Rn, q =

(−ã3A−1
1 ã2 + ann), and zk contains the quantities coming from the previous data.

One can notice that Nk
T is replaced by q uk+1

n + zk in the CCs (3.34). Thus we can
compute uk+1

n from the CCs (3.34) and use the vector equation (3.32) to compute
the rest of components in the next step solution ũk+1 by finding x̃k+1. Similarly,
using the submatrices A4, we can arrive at the following equations:

A4r̃
k+1 + uk+1

0 ã5 = s̃k, (3.35)

ã6r̃
k+1 + a00u

k+1
0 = bk0 , (3.36)

0 ≤ p uk+1
0 + dk ⊥ uk+1

0 − ϕB ≥ 0, (3.37)

where r̃k+1 = (uk1 , u
k
2 , . . . , u

k
n)T ∈ Rn, s̃k = (bk1 , b

k
2 , . . . , b

k
n)T ∈ Rn, and p =

(−ã6A−1
4 ã5 + a00). Therefore, ũk+1 can be computed through (3.35)–(3.37).

Finally, we present the numerical algorithm which summarizes our numerical
schemes proposed above. Additionally, the initial contact forces are assumed to be
zero, since the rod moves down initially without any contact.

Algorithm. Suppose that the initial data ũ0, ṽ0, and Ñ0 = 0 are given.
fork = 1 : T/ht

if Nk−1
T = 0 % Assume that a rod drops down

if uk0 = ϕB
Nk−1
B ← ϕB p+ dk % use (3.37)

elseif uk0 > ϕB
Nk−1
B ← 0

uk0 ← −dk/p % use (3.35)–(3.36)
endif
Compute r̃k and then obtain ũk from (3.35)

endif

if Nk−1
T < 0

if ukn = ϕT − l
Nk−1
T ← (ukn − l) q + zk % use (3.34)

elseif ukn < ϕT − l
Nk−1
T ← 0

ukn ← −zk/q + l % use (3.32)–(3.33)
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endif
Compute x̃k and then obtain ũk from (3.32)

endif

Compute ṽk from (3.25)
Compute the actual displacement using the change of a variable

endfor

In the fully discrete case the energy function at each time step t = tk can be
defined as

Ek := E(tk) =
1
2

[(ṽk)TMṽk + c (ũk)TKũk]− (f̃)TMũk. (3.38)

The energy function will be evaluated at each time step tk. We monitor the energy
throughout the simulation because our numerical scheme does not permit the energy
to be unbounded. The numerical evidence of bounded energy function is supported
in Lemma 3.6.

Lemma 3.6. Suppose that numerical solutions satisfy the fully discrete formulation
(3.24)–(3.27). If there is an α > 0 such that

α

k∑
ι=1

ṽιKṽι +
k∑
ι=1

N ι−1
B vι0 ≥ 0 (3.39)

for any integer k ≥ 1. Then Ek ≤ E0.

Proof. The next solutions are decomposed as follows; the displacement can be
(uk+1
hx

)′′ = 1
2 [((uk+1

hx
)′′ − (ukhx)′′) + ((uk+1

hx
)′′ + (ukhx)′′)] and the velocity can be

vk+1
hx

= 1
2 [((vk+1

hx
)− (vkhx)) + ((vk+1

hx
) + (vkhx))]. We integrate over the length of the

original rod, and by recalling the extra equation (3.25), the CCs (3.26)–(3.27) and
the boundary conditions (3.2)–(3.3) allow us to cancel some terms;

1
2ht

n∑
i,j=0

(vk+1
j − vkj )

∫ l

0

Ψj(x)Ψi(x)dx (vk+1
i − vki )

+
n∑

i,j=0

vk+1
j

∫ l

0

Ψj(x)Ψi(x)dx vk+1
i −

n∑
i,j=0

vkj

∫ l

0

Ψj(x)Ψi(x)dx vki

= − c

2ht

n∑
i,j=0

(uk+1
j − ukj )

∫ l

0

Ψ′j(x)Ψ′i(x)dx (uk+1
i − uki )

− c

2ht

n∑
i,j=0

uk+1
j

∫ l

0

Ψ′j(x)Ψ′i(x)dxuk+1
i +

c

2ht

n∑
i,j=0

ukj

∫ l

0

Ψ′j(x)Ψ′i(x)dxuki

+
1
ht

n∑
i,j=0

gj

∫ l

0

Ψj(x)Ψi(x)dx(uk+1
i − uki )− α

n∑
i,j=0

vk+1
j

∫ l

0

Ψ′j(x)Ψ′i(x)dx vk+1
i

+
1
ht

[Nk
T (uk+1

n − ukn)−Nk
B(uk+1

0 − uk0)].

Thus, we can obtain the following equations in terms of matrices and vectors;

1
2ht

[(ṽk+1 − ṽk)TM(ṽk+1 − ṽk) + (ṽk+1)TMṽk+1 − (ṽk)TMṽk]
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Table 1. Data with α = 0.0001 and α = 0.01

l u0 u0
t T ϕT ϕB hx ht c g

1 [0, 1] −20 1.0 3 0 0.0002 10−5 or 10−6 100 −9.81

= − c

2ht
[(ũk+1 − ũk)TK(ũk+1 − ũk) + (ũk+1)TKũk+1 − (ũk)TKũk]

+
1
ht

[(f̃)TMũk+1 − (f̃)TMũk]− α(ṽk+1)TKṽk+1

+
Nk
T

ht
[(uk+1

n + l − ϕT )− (ukn + l − ϕT )]− Nk
B

ht
[(uk+1

0 − ϕB)− (uk0 − ϕB)]

= − c

2ht
[(ũk+1 − ũk)TK(ũk+1 − ũk) + (ũk+1)TKũk+1 − (ũk)TKũk]

+
1
ht

[(f̃)TMũk+1 − (f̃)TMũk]− α(ṽk+1)TKṽk+1

− 1
ht

[Nk
T (ukn + l − ϕT )−Nk

B(uk0 − ϕB)].

Since M is a positive definite matrix and K is a semipositive definite matrix, re-
calling the energy function in the fully discrete case, we can obtain the following
inequality;

Ek ≥ Ek+1 +
1
2

(ṽk+1 − ṽk)TM(ṽk+1 − ṽk) +
c

2
(ũk+1 − ũk)TK(ũk+1 − ũk)

+ [Nk
T (ukn + l − ϕT )−Nk

B(uk0 − ϕB)] + αht(ṽk+1)TKṽk+1

≥ Ek+1 −Nk
B(uk0 − ϕB) + αht(ṽk+1)TKṽk+1.

(3.40)
Now, we use the extra equation (3.25) to switch the second term in (3.40) into the
following; Nk

B(uk0 − ϕB) = Nk
B(uk+1

0 − ϕB − htvk+1
0 ) = −htNk

Bv
k+1
0 . By using the

telescoping sum from time t = t0 to t = tk, it follows from (3.39) that

E0 ≥ Ek + α

k∑
ι=1

(ṽι)TKṽι +
k∑
ι=1

N ι−1
B vι0 ≥ Ek,

as desired. �

3.4. Numerical results and discussion. In this Subsection, the numerical re-
sults (simulations) are presented and discussed. We simulate the almost elastic case
(α = 0.0001) and the viscoelastic case (α = 0.01). For both cases we use the data
displayed in Table 1. Note that g = gi with 0 ≤ i ≤ n and the unit of measure shall
not be considered in our simulations. We also provide numerical evidences for a
pure elastic case (α = 0) in support for the conclusions in the paper [18], although
the existence results for the purely elastic case are not mentioned in this paper.

Before we show any numerical results, we consider the Courant-Friedrichs-Lewy
(CFL) condition (

√
c ht)/hx ≤ 1. The CFL condition is necessary for the conver-

gence of a finite difference scheme for hyperbolic PDEs. Therefore our selection of
ht, hx for both simulations conform to the CFL condition and may be helpful to
obtain numerically stable results.

Numerical simulations were preformed using Matlab R2010b on a Windows 7
workstation computer with an Intel Core i5 650 processor running at 3.20 GHz.
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Since the construction of the mass and stiffness matrices have nonzero entries only
on the main, upper, and lower diagonals we chose to use the sparse matrices in order
to save system memory. From Table 1 we can see that each matrix in our linear
system is of size 5000 × 5000 and each vector is therefore of size 5000. The linear
system is solved by performing a direct method, Gaussian elimination. Thanks to
the use of a sparse matrix which greatly reduces computation time dealing with
matrix operations we are able to complete each time step in about 0.0085 seconds.
Over the time interval [0, T ], an adaptive method is used to maintain reasonable
computation time. When the rod is not in contact with either obstacle we take a
larger time step size, ht = 10−5, because it is more important to accurately show
what happens to the rod as it contacts the obstacles (the time step size ht = 10−6

used) than how it travels between them.
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Figure 3. Motion of two rods: α = 0.0001 (top) and α = 0.01 (bottom)

Shown in Figure 3 is the actual displacement, w for both cases over the whole
simulation. The almost elastic rod (α = 0.0001) falls as expected toward the bottom
obstacle, and when contact occurs, the rod starts to undergo deformation by being
compressed. As time passes we see the rod expand and lift off the bottom obstacle
and regain its original length. A similar effect can be seen during the contact on the
top obstacle and subsequent contacts on either obstacle. As we see the viscoelastic
case (α = 0.01), similarities to the almost elastic simulation can be drawn, but it is
of greater interest to investigate the changes in the model caused by moving from
an almost elastic to a viscoelastic rod. When the first contact occurs, we notice
that the degree of deformation is nowhere near that of the almost elastic case. Over
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the duration of the simulation we can see that the viscosity of the rod acts as a
damper that retards velocity causing it contact the obstacles less frequently than
in the almost elastic case. Each subsequent contact occurs later in the simulation
than its corresponding contact in the almost elastic simulation.
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(A) α = 0.0001 (B) α = 0.01

Figure 4. Energy function

Figure 4 displays a plot of the energy function (3.38) for the two simulations
which supports numerical stability. From the numerical observation, we would not
have to impose the condition (3.39), due to the fact that the contact forces and
the velocity are orthogonal. This has been already justified theoretically in Subsec-
tion 3.2. Lemma 3.6 provides validity to our simulation as evidence of its numerical
stability. While the rod is not in contact with either obstacle and regaining its
original length, we see the energy function decreasing less and less returning to a
more stable constant state. Comparing the two energy functions, the graph (A) is
more flat than (B), because of a bigger viscous quantity used in (B).
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Figure 5. Contact force for α = 0.0001

In Figure 5 (A) shows the graph of the contact force for the almost elastic case.
(B) is only a zoomed in version of (A). It is zoomed in to show the contact force
on the bottom obstacle in more detail.

In Figure 6 (A) and (B) show the graph of the contact force for the viscoelastic
case. As when using an almost elastic rod there is a non-zero contact force only
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when there is contact, and the magnitude of the contact force on the upper obstacle
is much higher than the contact force on the lower obstacle. This may happen due to
the fact that our physical configuration is not symmetric with respect to the origin.
In Figure 6 (B) shows in more detail the contact force on the lower obstacle. This
difference in magnitude is only magnified during the viscoelastic simulation with
the contact force’s magnitude for each obstacle being larger than the corresponding
magnitude from the almost elastic case. We observe that contact force on the lower
obstacle is not as uniform as it was in the almost elastic case.
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Figure 6. Contact force for α = 0.01

Longitudinal waves of an almost elastic rod is depicted in Figure 7. While the rod
is not in contact with a obstacle, in (B) and (D) of Figure 7, the waves are sampled
every 600 time steps, but because the duration of contact is short in comparison,
the waves in (A) and (C) of Figure 7 are sampled every 186 time steps. Note that
before the initial velocity is uniform across the rod and is not presented in a graph.
We see in (A) of Figure 7 over the local time interval [0.05, 0.05637), that as the rod
contacts the bottom obstacle waves propagate across the compressed rod with the
end that is in contact with the obstacle having a zero velocity. As velocity becomes
all positive we see (B) of Figure 7, the local time interval [0.05637, 0.1621), which
details the rod’s ascent to the top obstacle. When the rod contacts the upper
obstacle, in (C) of Figure 7 over the local time interval [0.1621, 0.1687], we can see
that velocity becomes zero near the top of the rod. In (D) of Figure 7 during the
local time period [0.1687, 0.277], the waves of velocity traverse the length of the rod
as it falls toward the bottom obstacle. As shown in (A) of Figure 3 there is more
than one contact on either obstacle, but since each subsequent contact is similar to
the corresponding previous contact, the graphs of wave propagation for the later
contacts are omitted.

(A)–(D) in Figure 8 contain velocity along the rod for the viscoelastic case. The
waves in (B) and (D) of Figure 8 are sampled every 625 time steps, and the waves
in (A) and (C) of Figure 8 are sampled every 200 time steps after a contact occurs.
In Figure 8 (A) over the time period [0.05, 0.05625], as the rod contacts the bottom
obstacle we see waves of velocity appear, but they are not as extreme in magnitude
as they were in (A) of Figure 7. We also can see that the wave itself is much
smoother as it propagates along the rod. This is evident in the near flat lines that
appear in (B) and (D) of Figure 8, over the two time intervals [0.05625, 0.1866)
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Figure 7. Longitudinal waves of the rod for α = 0.0001

and [0.1929, 0.3523] respectively, as the rod is not undergoing deformation when
traveling between the obstacles. We can see in (C) of Figure 8 over time interval
[0.1866, 0.1929) when contact occurs on the top obstacle the wave behaves similarly
to the previous contact on the bottom obstacle. Evidence shows that viscosity
acts as a damper by decreasing the magnitude of velocity dramatically after each
contact more so than in Figure 7.

Table 2. Numerical results for contact duration

c Expected contact duration Observed contact duration Rel. error
1 2 0.0633 0.96835

100 0.02 0.00234 0.883
200 0.01 0.00448 0.552
500 0.004 0.00285 0.2875
1000 0.002 0.00202 0.01

Another interesting numerical experiment is performed to support important
theoretical results in the paper [18]. The results for contact characteristics can be
summarized in the notation of our model with h being the distance from the bottom
of the rod to the lower obstacle: the first case states that if 2gl < c

√
v2

0 + 2gh,
then the duration of the impact is 2l/c, and the second case states that if 2gl ≥
c
√
v2

0 + 2gh, then the duration of the impact is longer than 2l/c. From the data
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Figure 8. Longitudinal waves of the rod for α = 0.01

presented in Table 2 we can see a general trend that as you increase c we achieve
a smaller error value. However, the numerical results for the second case are not
quite as clear as for the first case. The only thing that we can mention in the second
case is that as v0 approaches zero, we can get smaller errors.

Conclusion. This paper extends into dynamic contact models which have more
complicated physical configuration. Although considering multiple contact zones
with more general shaped rigid obstacles causes complexity in numerical compu-
tations, proving the existence of solutions seems to be relatively easier. Proposing
numerical schemes for higher dimensional problems that guarantee numerical stabil-
ity will be our possible future work. In order to do so, many variations of Newmark
schemes [14] will be investigated and developed.
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