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NONAUTONOMOUS ILL-POSED EVOLUTION PROBLEMS
WITH STRONGLY ELLIPTIC DIFFERENTIAL OPERATORS

MATTHEW A. FURY

Abstract. In this article, we consider the nonautonomous evolution problem

du/dt = a(t)Au(t), 0 ≤ s ≤ t < T with initial condition u(s) = χ where −A
generates a holomorphic semigroup of angle θ ∈ (0, π/2] on a Banach space X

and a ∈ C([0, T ] : R+). The problem is generally ill-posed under such condi-

tions, and so we employ methods to approximate known solutions of the prob-
lem. In particular, we prove the existence of a family of regularizing operators

for the problem which stems from the solution of an approximate well-posed

problem. In fact, depending on whether θ ∈ (0, π/4] or θ ∈ (π/4, π/2], we
provide two separate approximations each yielding a regularizing family. The

theory has applications to ill-posed partial differential equations in Lp(Ω),
1 < p <∞ where A is a strongly elliptic differential operator and Ω is a fixed

domain in Rn.

1. Introduction

Due to the unstable nature of a given ill-posed problem, whose solutions (if they
exist) may not depend continuously on initial data, many approximation techniques
have been applied to study known solutions of the problem. Consider the abstract
Cauchy problem

du

dt
= Au(t) 0 ≤ t < T

u(0) = χ
(1.1)

in a Banach space X, which under many different circumstances, depending on the
operator A, may be ill-posed. For instance, letting A = −∆, (1.1) becomes the
prototypical ill-posed problem, the backwards heat equation. More generally, (1.1)
is ill-posed in the parabolic case when −A generates a holomorphic semigroup on
X. In this case, one approach recently applied by Mel’nikova [11] and Huang and
Zheng [7, 8] is to regularize the ill-posed problem; that is, to approximate a known
solution of (1.1) by the solution of an approximate well-posed problem (see also
[2, 12, 23, 24]).
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In this paper, we extend these ideas to the study of the nonautonomous parabolic
evolution problem

du

dt
= a(t)Au(t) 0 ≤ s ≤ t < T

u(s) = χ
(1.2)

in a Banach space X where −A generates a holomorphic semigroup of angle θ ∈
(0, π/2] on X and a ∈ C([0, T ] : R+), so that the governing operators a(t)A, 0 ≤
t ≤ T of the problem are nonconstant. We prove the existence of a family of
regularizing operators for the problem (so that the problem is “regularized”) which
refers specifically to the following.

Definition 1.1 ([8, Definition 3.1]). A family {Rβ(t) : β > 0, t ∈ [s, T ]} of
bounded linear operators on X is called a family of regularizing operators for the
problem (1.2) if for each solution u(t) of (1.2) with initial data χ ∈ X, and for any
δ > 0, there exists β(δ) > 0 such that

(i) β(δ)→ 0 as δ → 0,
(ii) ‖u(t)−Rβ(δ)(t)χδ‖ → 0 as δ → 0 for s ≤ t ≤ T whenever ‖χ− χδ‖ ≤ δ.

As in the case of regularization for the autonomous problem (1.1), we will show
that a family of regularizing operators for (1.2) stems from the solution of an
approximate well-posed problem

dv

dt
= fβ(t, A)v(t) 0 ≤ s ≤ t < T

v(s) = χ
(1.3)

where, for β > 0, the operators fβ(t, A), 0 ≤ t ≤ T are defined by two different
approximations of the operators a(t)A depending on where θ lies in the interval
(0, π/2]:

fβ(t, A) =

{
a(t)A− βAσ if θ ∈ (0, π/4]
a(t)A(I + βA)−1 if θ ∈ (π/4, π/2]

(1.4)

where σ > 1 when θ ∈ (0, π/4].
Each approximation in (1.4) yields a well-posed problem (1.3), and also contin-

uous dependence on modeling for the ill-posed problem (1.2) in the sense that as
β → 0, the operators fβ(t, A) approach the operators a(t)A, and given solutions
u(t) and vβ(t) of (1.2) and (1.3) respectively, we have

‖u(t)− vβ(t)‖ → 0 as β → 0 (1.5)

for each t ∈ [s, T ]. We use (1.5) to establish the main result of the paper, that
the family {Vβ(t, s) : β > 0, t ∈ [s, T ]} is a family of regularizing operators for
the ill-posed problem (1.2) where Vβ(t, s), 0 ≤ s ≤ t ≤ T is an evolution system
associated with the well-posed problem (1.3) satisfying Vβ(t, s)χ = vβ(t). In other
words, given a small change in the initial data ‖χ − χδ‖ ≤ δ (which, since (1.2)
is ill-posed, could yield a very large difference in solutions), there exists β > 0 so
that β → 0 as δ → 0, and ‖u(t)− Vβ(t, s)χδ‖ → 0 as δ → 0 for s ≤ t ≤ T . Hence,
although u(t) may not be “close” to the solution of (1.2) with initial data χδ, we can
still approximate u(t) by utilizing the well-posed problem (1.3) with regularization
parameter β > 0.
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The use of the two approximations in (1.4) extends results from previous works
in which the approximations A − βAσ and A(I + βA)−1 are used to obtain reg-
ularization for the autonomous problem (1.1) where −A generates a holomorphic
semigroup of angle θ on X (cf. [2, 7, 8, 11, 12]). For instance, in [7], Huang and
Zheng obtain regularization for (1.1) using the quasi-reversibility method, first in-
troduced by Lattes and Lions [10], which involves the approximation A − βAσ of
the operator A. Here, the requirements that σ > 1 and σ(π/2−θ) < π/2 are crucial
in order for A− βAσ to generate a semigroup (so as to yield an approximate well-
posed problem). Hence, if θ ∈ (0, π/4], these requirements force 1 < σ < 2 whence
the use of the fractional power Aσ is in order. In light of definition (1.4), we will
adopt the same requirements in the current paper for the extension a(t)A − βAσ.
The second approximation A(I + βA)−1, introduced by Showalter [20], is applied
by Ames and Hughes [2] and Huang and Zheng [8] but only in the case where
θ ∈ (π/4, π/2] because the perturbation methods used to establish regularization
in these papers (and in the current paper) are not applicable when θ ∈ (0, π/4] (cf.
[8, pp. 3011–3012]).

Note, if θ ∈ (π/2, π/4], the approximation a(t)A − βAσ may still be used, but
it is standard and easier in this case to let σ = 2 (cf. [2, 4, 10, 11, 12, 13, 15, 16]).
In this regard, the current paper also furthers results from [4] where the author
uses the approximation

∑k
j=1 aj(t)A

j − βAk+1 to obtain regularization for the
nonautonomous problem

du

dt
=

k∑
j=1

aj(t)Aju(t) 0 ≤ s ≤ t < T

u(s) = χ,

but only in the case that θ ∈ (π/4, π/2].
This article is organized as follows. In Section 2, we adapt methods of Huang

and Zheng [7, 8] to show that problem (1.3) is well-posed under definition (1.4) with
the existence of an evolution system Vβ(t, s), 0 ≤ s ≤ t ≤ T generating solutions
of (1.3). The calculations here are quite similar to those in [7], but we provide the
details to demonstrate the differences in treating nonautonomous equations. After
introducing several lemmas in Section 3, we prove in Section 4, a Hölder-continuous
dependence on modeling inequality which provides an estimate for the difference
between the solutions u(t) and vβ(t) yielding (1.5). In Section 5, we use results
from Section 4 to prove the existence of a family of regularizing operators for the
ill-posed problem (1.2) and finally in Section 6, we apply the theory to partial
differential equations in the Banach space Lp(Ω), 1 < p <∞ where A is a strongly
elliptic differential operator and Ω is a fixed domain in Rn.

Below, B(X) will denote the space of bounded linear operators on X. For a
linear operator A in X, ρ(A) will denote the resolvent set of A consisting of all
w ∈ C such that (w − A)−1 ∈ B(X). Also, we will be concerned with classical
solutions of (1.2) which are functions u : [s, T ] → X such that u(t) ∈ Dom(A) for
all t ∈ (s, T ), u ∈ C[s, T ]∩C1(s, T ), and u satisfies (1.2) in X (cf. [17, Chapter 5.1,
p. 126]).
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2. Two approximate well-posed problems

In this section, we show that the approximate problem (1.3), where the operators
fβ(t, A), 0 ≤ t ≤ T are defined by (1.4), is well-posed, meaning that a unique
solution exists for each χ in a dense subset of X and solutions depend continuously
on the initial data (cf. [6, Chapter 2.13, p. 140]). Much of the content here will
rely on the assumption that −A generates a holomorphic semigroup and so we first
gather relevant properties.

Definition 2.1 ([18, Section X.8, p. 248, 252]). Let θ ∈ (0, π/2]. A strongly
continuous bounded semigroup T (t), t > 0 on a Banach space X is called a bounded
holomorphic semigroup of angle θ if the following conditions are satisfied:

(i) T (t) is the restriction to the positive real axis of an analytic family of
operators T (z) in the open sector Sθ = {reiθ′ : r > 0, |θ′| < θ} satisfying
T (z + w) = T (z)T (w) for all z, w ∈ Sθ.

(ii) For each θ1 < θ, T (z)x→ x as z → 0 in Sθ1 for all x ∈ X.
(iii) For each θ1 < θ, T (z) is uniformly bounded in the sector Sθ1 .

More generally, a strongly continuous semigroup T (t) on X is called a holomorphic
semigroup of angle θ if T (t) satisfies all the properties of a bounded holomorphic
semigroup of angle θ with the exception of (iii).

Theorem 2.2 ([18, Theorem X.52]). Let A be a closed operator on a Banach space
X. Then −A is the infinitesimal generator of a bounded holomorphic semigroup of
angle θ if and only if for each θ1 < θ there exists a constant M1 > 0 such that if
w 6∈ S̄π/2−θ1 , then w ∈ ρ(A) and

‖(w −A)−1‖ ≤ M1

dist(w, S̄π/2−θ1)
. (2.1)

For this paper, we first assume that −A generates a bounded holomorphic semi-
group of angle θ. In fact, for most of the paper, we will make this assumption for
convenience, but then generalize our results at the end for holomorphic semigroups
for which only conditions (i) and (ii) of Definition 2.1 hold.

Since −A generates a bounded holomorphic semigroup of angle θ, by Theo-
rem 2.2, it follows that the spectrum σ(A) of A is contained in S̄π/2−θ = {reiθ′ :
r ≥ 0, |θ′| ≤ π/2 − θ}. Further, for t > 0, T (t) is given by the Cauchy integral
formula

T (t) =
1

2πi

∫
Γφ

e−tw(w −A)−1dw (2.2)

where π/2 > φ > π/2 − θ and Γφ is a curve in ρ(A) consisting of three pieces:
Γ1 = {reiφ : r ≥ 1}, Γ2 = {eiθ′ : φ ≤ θ′ ≤ 2π − φ}, and Γ3 = {re−iφ : r ≥ 1}; Γφ is
oriented so that it runs from ∞eiφ to ∞e−iφ (see Figure 1). Similarly, for z ∈ Sθ,

T (z) =
1

2πi

∫
Γφ

e−zw(w −A)−1dw.

We will first prove that the approximate problem (1.3) is well-posed in the case
that θ ∈ (0, π/4] and fβ(t, A), 0 ≤ t ≤ T is defined by fβ(t, A) = a(t)A − βAσ

(Proposition 2.5 below). The idea in this case is to construct an evolution system
Vβ(t, s) which will be defined similarly as in (2.2). For this, we will need to choose
an appropriate value for φ in a contour similar to Γφ. In particular, we will require
that σ > 1 and σ(π/2− θ) < π/2 in order to allow π/2σ > φ > π/2− θ. As noted
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π/2− θ

Γ1

Γ2

Γ3

θ

1

φ

Figure 1. Γφ

in the introduction, since θ ∈ (0, π/4], these requirements force 1 < σ < 2 and so
we will need to make sense of the operator Aσ which is defined by the fractional
power. To this end, we will require the assumption that 0 ∈ ρ(A) (see Definition 2.3
below).

Definition 2.3 ([7, Definition 2.4]). Let −A be the infinitesimal generator of a
bounded holomorphic semigroup of angle θ, and let 0 ∈ ρ(A). For σ > 0, the
fractional power of A is defined as follows:

A−σ =
1

2πi

∫
Γ

w−σ(w −A)−1dw, (2.3)

where w−σ is defined by the principal branch, and Γ is a path running from ∞eiφ
to∞e−iφ with π > φ > π/2−θ while avoiding the negative real axis and the origin.
Define Aσ = (A−σ)−1 (see Lemma 2.4 (i) below) and A0 = I.

Note, in Definition 2.3, the definition of Aσ relies on the fact that the operator
in (2.3) is invertible which follows from the following properties of the fractional
power.

Lemma 2.4 ([7, Lemma 2.5], [17, Lemma 2.6.6, Theorem 2.6.8]). Let −A be the
infinitesimal generator of a bounded holomorphic semigroup of angle θ, and let
0 ∈ ρ(A). Then

(i) A−σ is a bounded, injective operator for σ > 0.
(ii) Aσ is a closed operator, and Dom(Aσ) ⊆ Dom(Aσ

′
) for σ > σ′ > 0.

(iii) Dom(Aσ) is dense in X for every σ ≥ 0.
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(iv) Aσ1+σ2x = Aσ1Aσ2x for every σ1, σ2 ∈ R and x ∈ Dom(Aσ) where σ =
max{σ1, σ2, σ1 + σ2}.

Proposition 2.5. Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ ∈ (0, π/4], and let 0 ∈ ρ(A). Let 0 < β < 1 and assume σ
satisfies σ > 1 and σ(π/2 − θ) < π/2. Define the family of operators fβ(t, A), 0 ≤
t ≤ T by

fβ(t, A) = a(t)A− βAσ.
Then (1.3) is well-posed with unique classical solution vβ(t) = Vβ(t, s)χ for each
χ ∈ X where

Vβ(t, s) =

{
1

2πi

∫
Γφ
e

R t
s
fβ(τ,w)dτ (w −A)−1 dw 0 ≤ s < t ≤ T

I t = s,

and Γφ is a contour lying in ρ(A) that is similar to that in Figure 1, with π/2σ >
φ > π/2− θ but avoids the negative real axis and the origin.

Proof. Notice our choice for φ is valid by the assumption σ(π/2 − θ) < π/2. We
first show that Vβ(t, s) is uniformly bounded for 0 ≤ s ≤ t ≤ T . Following [7, Proof
of Theorem 3.1], we will show this in two cases. Let 0 ≤ s < t ≤ T . Since 0 ∈ ρ(A)
and the resolvent set is an open set in the complex plane, there exists a closed disk
of radius d ∈ (0, 1) centered at the origin that is fully contained in ρ(A). In the
first case, if (t− s)−1/σ ≤ d, using Cauchy’s Theorem, we may shift Γφ within ρ(A)
to the contour (see Figure 2) consisting of the three pieces

Γ1 = {reiφ : r ≥ (t− s)−1/σ},

Γ2 = {(t− s)−1/σe−iθ
′

: −φ ≤ θ′ ≤ φ},

Γ3 = {re−iφ : r ≥ (t− s)−1/σ}.

First consider w ∈ Γ1 ∪Γ3. Fix θ1 < θ so that φ > π/2− θ1 > π/2− θ. We have
dist(w, S̄π/2−θ1) = |w| sin(φ−(π/2−θ1)) (cf. [4, Figure 2]) so that by Theorem 2.2,

‖(w −A)−1‖ ≤ M1

|w| sin(φ− (π/2− θ1))
. (2.4)

Set M ′1 = M1/ sin(φ− (π/2− θ1)) and B = maxt∈[0,T ] |a(t)|. Then∥∥ ∫
Γ1∪Γ3

∥∥ ≤M ′1 ∫
Γ1∪Γ3

∣∣eR t
s

(a(τ)w−βwσ) dτ
∣∣ |w|−1|dw|

= 2M ′1

∫ ∞
(t−s)−1/σ

e
R t
s

(a(τ)r cosφ−βrσ cosσφ) dτr−1dr

≤ 2M ′1

∫ ∞
(t−s)−1/σ

eB(t−s)r cosφ−β(t−s)rσ cosσφr−1dr

= 2M ′1

∫ ∞
1

eB(t−s)1−1/σx cosφ−βxσ cosσφx−1dx

≤ 2M ′1

∫ ∞
1

eBT
1−1/σx cosφ−βxσ cosσφdx ≤ K

where K is a constant independent of t and s since σ > 1 and since π/2σ > φ >
π/2− θ implies 0 < φ < σφ < π/2 so that cosφ > 0 and cos(σφ) > 0.
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Γ1

Γ2

Γ3

t′
d

φ

Figure 2. t′ := (t− s)−1/σ ≤ d

Also, for w ∈ Γ2, we have∥∥∫
Γ2

∥∥ ≤Md

∫
Γ2

∣∣eR t
s

(a(τ)w−βwσ)dτ
∣∣|dw|

= Md

∫ φ

−φ
e

R t
s

(a(τ)(t−s)−1/σ cos θ′−β(t−s)−1 cosσθ′)dτ (t− s)−1/σdθ′

≤ dMd

∫ φ

−φ
eB(t−s)1−1/σ cos θ′−β cosσθ′dθ′

≤ dMd

∫ φ

−φ
eBT

1−1/σ cos θ′dθ′

≤ dMd e
BT 1−1/σ

2φ

where we have set Md = max|w|≤d ‖(w−A)−1‖ since w → (w−A)−1 is continuous
on the interior of ρ(A). Hence, Vβ(t, s) is bounded uniformly for 0 ≤ s ≤ t ≤ T in
the first case.

For the second case, if (t − s)−1/σ > d, then we shift Γφ to the contour (see
Figure 3) consisting of the seven pieces:

Γ1 = {reiφ : r ≥ (t− s)−1/σ}, Γ2 = {(t− s)−1/σeiθ
′

: φ ≤ θ′ ≤ π},

Γ3 = {reiπ : d ≤ r ≤ (t− s)−1/σ} Γ4 = {de−iθ
′

: −π ≤ θ′ ≤ π},

Γ5 = {re−iπ : d ≤ r ≤ (t− s)−1/σ} Γ6 = {(t− s)−1/σeiθ
′

: −π ≤ θ′ ≤ −φ},
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Γ7 = {re−iφ : r ≥ (t− s)−1/σ}.
!

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

φ

t′

d

Figure 3. t′ := (t− s)−1/σ > d

First, since Γ1 = Γ1 and Γ7 = Γ3, we have ‖
∫

Γ1∪Γ7
‖ = ‖

∫
Γ1∪Γ3 ‖ ≤ K as

before. Next, note that (2.4) holds for w ∈ Γ2 since these w satisfy the inequality
dist(w, S̄π/2−θ1) ≥ dist((t− s)−1/σeiφ, S̄π/2−θ1). Then∥∥∫

Γ2

∥∥ ≤M ′1 ∫
Γ2

∣∣eR t
s

(a(τ)w−βwσ)dτ
∣∣|w|−1|dw|

= M ′1

∫ π

φ

e
R t
s

(a(τ)(t−s)−1/σ cos θ′−β(t−s)−1 cosσθ′)dτdθ′

≤M ′1
∫ π

φ

eBT
1−1/σ cosφ−β cosσθ′dθ′

≤M ′1
∫ π

φ

e1+BT 1−1/σ cosφdθ′

= M ′1e
1+BT 1−1/σ cosφ(π − φ)

since 0 < β < 1. The same estimate holds for ‖
∫

Γ6
‖.

Next, using (2.4),∥∥∫
Γ3

+
∫

Γ5

∥∥
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=
∥∥ ∫ (t−s)−1/σ

d

(
e

R t
s

(−a(τ)r−βrσe−iπσ)dτ − e
R t
s

(−a(τ)r−βrσeiπσ)dτ
)

(−r −A)−1dr
∥∥

≤M ′1
∫ (t−s)−1/σ

d

∣∣∣e−(
R t
s
a(τ)dτ)r

(
e−β(t−s)rσe−iπσ − e−β(t−s)rσeiπσ

)∣∣∣r−1dr

= M ′1

∫ (t−s)−1/σ

d

e−(
R t
s
a(τ)dτ)r

∣∣∣e−β(t−s)rσ cosσπ2i sin(β(t− s)rσ sinσπ)
∣∣∣ r−1dr

≤M ′1
∫ (t−s)−1/σ

d

e−β(t−s)rσ cosσπ2| sin(β(t− s)rσ sinσπ)|r−1dr

= M ′1

∫ 1

(t−s)1/σd
e−βx

σ cosσπ2| sin(βxσ sinσπ)|x−1dx

= M ′1

∫ 1

(t−s)1/σd
x−1/2e−βx

σ cosσπ
{

4x−1 sin2(βxσ sinσπ)
}1/2

dx

= M ′1

∫ 1

(t−s)1/σd
x−1/2e−βx

σ cosσπ
{

2x−1(1− cos(2βxσ sinσπ))
}1/2

dx.

It is easily shown by L’Hospital’s Rule that

2x−1(1− cos(2βxσ sinσπ))→ 0 as x→ 0.

Hence, we have for a possibly different constant M ′1 independent of β,

‖
∫

Γ3

+
∫

Γ5

‖ ≤M ′1
∫ 1

0

x−1/2e−βx
σ cosσπdx ≤M ′1e

∫ 1

0

x−1/2dx = M ′12e

since 0 < β < 1. Finally,

‖
∫

Γ4

‖ ≤Md

∫
Γ4

∣∣eR t
s

(a(τ)w−βwσ)dτ
∣∣|dw|

= dMd

∫ π

−π
e

R t
s

(a(τ)d cos θ′−βdσ cosσθ′)dτdθ′

≤ dMd

∫ π

−π
eBTde−β(t−s)dσ cosσθ′dθ′

≤ dMde
BTd(1 + eTd

σ

)2π

where Md = max|w|≤d ‖(w − A)−1‖ as before. Thus we have shown that in both
cases, each term may be bounded independently of t and s, and so Vβ(t, s) is
uniformly bounded on 0 ≤ s ≤ t ≤ T .

Next, we show that (t, s) 7→ Vβ(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .
It follows from (2.3) and by a standard argument using Cauchy’s Integral Formula
that

Vβ(t, s)A−σ =
1

2πi

∫
Γφ

w−σe
R t
s
fβ(τ,w)dτ (w −A)−1dw

(cf. [7, p. 46]). Then since t 7→ fβ(t, w) is continuous, using the above calculations
for ‖Vβ(t, s)‖, it follows by a dominated convergence argument that ‖Vβ(t, s)A−σ−
Vβ(t0, s0)A−σ‖ → 0 as (t, s)→ (t0, s0). Then, for x ∈ Dom(Aσ), we have

‖Vβ(t, s)x− Vβ(t0, s0)x‖ ≤ ‖Vβ(t, s)A−σ − Vβ(t0, s0)A−σ‖‖Aσx‖
→ 0 as (t, s)→ (t0, s0).
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Strong continuity of Vβ(t, s) then follows since Dom(Aσ) is dense in X (Lemma 2.4
(iii)) and Vβ(t, s) is uniformly bounded.

Now, we show that the mapping [s, T ]→ X given by t 7→ Vβ(t, s)χ is a classical
solution of (1.3) for χ ∈ X. We have already established that t 7→ Vβ(t, s)χ
is continuous on [s, T ]. Next, we show that ∂

∂tVβ(t, s)χ = fβ(t, A)Vβ(t, s)χ for
t ∈ (s, T ). We have

∂

∂t
Vβ(t, s)χ =

1
2πi

∫
Γφ

( ∂
∂t
e

R t
s
fβ(τ,w)dτ

)
(w −A)−1χdw (2.5)

=
1

2πi

∫
Γφ

e
R t
s
fβ(τ,w)dτfβ(t, w)(w −A)−1χdw (2.6)

=
1

2πi

∫
Γφ

e
R t
s
fβ(τ,w)dτa(t)w(w −A)−1χdw (2.7)

+
1

2πi

∫
Γφ

e
R t
s
fβ(τ,w)dτ (−βwσ)(w −A)−1χ dw. (2.8)

Now,

Expression (2.7) = a(t)
1

2πi

∫
Γφ

e
R t
s
fβ(τ,w)dτ ((w −A) +A)(w −A)−1χdw

=
(
a(t)

1
2πi

∫
Γφ

e
R t
s
fβ(τ,w)dτdw

)
χ

+ a(t)
1

2πi

∫
Γφ

e
R t
s
fβ(τ,w)dτA(w −A)−1χdw

= a(t)AVβ(t, s)χ

where we have used Cauchy’s Theorem since w 7→ e
R t
s
fβ(τ,w)dτ is analytic, and also

the fact that A is a closed operator.
Next, fix t ∈ (s, T ) and set G = 1

2πi

∫
Γφ
wσe

R t
s
fβ(τ,w)dτ (w − A)−1dw. It is

clear that G is a bounded operator on X by calculations similarly used to calculate
‖Vβ(t, s)‖. Also, by (2.3) and a standard argument using Cauchy’s Integral Formula
(cf. [9, Equation IX.1.52]), it follows that A−σG = Vβ(t, s). Hence, by the fact
that Aσ = (A−σ)−1, we have Ran(Vβ(t, s)) ⊆ Ran(A−σ) = Dom(Aσ) and G =
AσVβ(t, s). Hence (2.8) = −βGχ = −βAσVβ(t, s)χ, and altogether we have shown
∂
∂tVβ(t, s) = a(t)AVβ(t, s)χ − βAσVβ(t, s)χ = fβ(t, A)Vβ(t, s)χ for t ∈ (s, T ). Also
by definition, Vβ(s, s)χ = χ. Thus, t 7→ Vβ(t, s)χ satisfies (1.3).

Finally, calculation (2.5)–(2.8) shows that t 7→ fβ(t, A)Vβ(t, s)χ is continuous on
(s, T ) since t 7→ e

R t
s
fβ(τ,w)dτfβ(t, w) is continuous. Therefore, we have that t 7→

Vβ(t, s)χ is continuously differentiable on (s, T ), and so we have shown altogether
that t 7→ Vβ(t, s)χ is a classical solution of (1.3).

It follows that problem (1.3) is well-posed due to uniqueness of the solution
t 7→ Vβ(t, s)χ and continuous dependence of solutions on initial data, both of which
are proved by standard arguments (see e.g. [4, Proof of Proposition 2.3]). �

Corollary 2.6. Let 0 < β < 1 and let the operators fβ(t, A), 0 ≤ t ≤ T and
Vβ(t, s), 0 ≤ s ≤ t ≤ T be defined under the hypotheses of Proposition 2.5. Then
for small β,

‖Vβ(t, s)‖ ≤ K ′eKβ
−1/(σ−1)
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for all 0 ≤ s ≤ t ≤ T where K and K ′ are constants independent of β, t, and s.

Proof. Let 0 ≤ s < t ≤ T . From our calculations for ‖Vβ(t, s)‖ in Proposition 2.5,
all terms are bounded independently of β except ‖

∫
Γ1∪Γ3 ‖ = ‖

∫
Γ1∪Γ7

‖, and so we
have

‖Vβ(t, s)‖ ≤ K1 +
M ′1
π

∫ ∞
1

eBT
1−1/σx cosφ−βxσ cosσφdx

where K1 is a constant independent of β. It is a standard calculation to show that
for small β, the function q(x) = 2BT 1−1/σx cosφ − βxσ cos(σφ) has a maximum
value on [1,∞) at x0 =

(
2BT 1−1/σ cosφ
βσ cos(σφ)

)1/(σ−1). Then on [1,∞),

2BT 1−1/σx cosφ− βxσ cos(σφ) ≤ q(x0)

= β−1/(σ−1) (2BT 1−1/σ cosφ)σ/(σ−1)

σσ/(σ−1) cos1/(σ−1)(σφ)
(σ − 1)

:= K2β
−1/(σ−1),

and so∫ ∞
1

eBT
1−1/σx cosφ−βxσ cosσφdx ≤ eK2β

−1/(σ−1)
∫ ∞

1

e−BT
1−1/σx cosφdx

=
eK2β

−1/(σ−1)

BT 1−1/σ cosφ eBT 1−1/σ cosφ
.

Altogether we have ‖Vβ(t, s)‖ ≤ K1 + K3e
K2β

−1/(σ−1)
for 0 ≤ s ≤ t ≤ T where

K1, K2, and K3 are positive constants each independent of β, t, and s. It follows
that for small β, ‖Vβ(t, s)‖ ≤ K ′3e

K2β
−1/(σ−1)

for all 0 ≤ s ≤ t ≤ T for a suitable
constant K ′3 larger than K3. �

We now turn to the second approximate problem (1.3) motivated by the work of
Showalter [20] where θ ∈ (π/4, π/2] and fβ(t, A) = a(t)A(I + βA)−1 for 0 ≤ t ≤ T .

Proposition 2.7. Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ ∈ (π/4, π/2], and let 0 ∈ ρ(A). Let 0 < β < 1 and define the
family of operators fβ(t, A), 0 ≤ t ≤ T by

fβ(t, A) = a(t)A(I + βA)−1.

Then (1.3) is well-posed with unique classical solution vβ(t) = Vβ(t, s)χ for each
χ ∈ X, where Vβ(t, s), 0 ≤ s ≤ t ≤ T is an evolution system satisfying

‖Vβ(t, s)‖ ≤ eCT/β for 0 ≤ s ≤ t ≤ T

and C is a constant independent of β, t, and s.

Proof. Note by the Hille-Yosida Theorem, since −A generates a bounded holomor-
phic semigroup, it follows that 1/β ∈ ρ(−A) and ‖(I + βA)−1‖ = (1/β)‖((1/β)I −
(−A))−1‖ ≤ (1/β)× Cβ = C for some constant C independent of β (cf. [17, The-
orem 1.5.3]). Now, fβ(t, A) is a bounded operator on X for each t ∈ [0, T ] by the
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following calculation:

‖fβ(t, A)‖ = ‖a(t)A(I + βA)−1‖

= ‖a(t)
1
β

(I − (I + βA)−1)‖

≤ B

β
(‖I‖+ ‖(I + βA)−1‖)

≤ B(1 + C)
β

(2.9)

where we have set B = maxt∈[0,T ] |a(t)|. Also, t → fβ(t, A) is continuous in the
uniform operator topology since A(I + βA)−1 is a bounded operator and a(t) is
a continuous function. By [17, Theorem 5.1.1], the evolution problem (1.3) is
well-posed with a unique classical solution vβ(t) for every χ ∈ X. The solution
vβ(t) is generated by the solution operator Vβ(t, s) associated with the problem;
that is vβ(t) = Vβ(t, s)χ. Furthermore, Vβ(t, s) is an evolution system satisfying
‖Vβ(t, s)‖ ≤ e

R t
s
‖fβ(τ,A)‖dτ (cf. [17, Theorem 5.1.2]). This together with calculation

(2.9) establishes the desired result for a possibly different constant C independent
of β, t, and s. �

To summarize the results of Proposition 2.5 and Proposition 2.7, we provide the
following.

Corollary 2.8. Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ, and let 0 ∈ ρ(A). Let 0 < β < 1 and let the operators
fβ(t, A), 0 ≤ t ≤ T be defined by (1.4). Then (1.3) is well-posed and there exists
an evolution system Vβ(t, s), 0 ≤ s ≤ t ≤ T associated with the family fβ(t, A), 0 ≤
t ≤ T such that for each χ ∈ X, vβ(t) = Vβ(t, s)χ is a unique classical solution of
(1.3).

3. Preliminary lemmas

So far, we have shown that (1.3) is well-posed under the definition (1.4). In
this case, as seen in Corollary 2.8, there is an evolution system Vβ(t, s) which
generates solutions of (1.3). Since (1.2) is generally ill-posed, we may not construct
an evolution system for the problem in the same way. However, we will make use of
the assumption that −A generates a bounded holomorphic semigroup in order to
construct C-regularized evolution systems (cf. [21, 22], [5, Definition 2]) associated
with problem (1.2).

Fix ε > 0 and let α > 1 satisfy α(π/2− θ) < π/2. Then e−εA
α

, ε > 0 defined by

e−εA
α

=
1

2πi

∫
Γφ

e−εw
α

(w −A)−1dw (3.1)

is a strongly continuous holomorphic semigroup generated by the fractional power
−Aα where Γφ is similar to the contour described in Proposition 2.5 but with
π/2α > φ > π/2− θ (cf. [3, Definition 3.4]). For ε > 0, set Cε = e−εA

α

. It follows
that Cε is injective for ε > 0 (cf. [3, Lemma 3.1]). We construct Cε-regularized
evolution systems as follows.
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Proposition 3.1. Let ε > 0 and let α > 1 satisfy α(π/2 − θ) < π/2. For every
χ ∈ X, the evolution problem

du

dt
= a(t)Au(t) 0 ≤ s ≤ t < T

u(s) = Cεχ
(3.2)

has a unique classical solution u(t) = Uε(t, s)χ where

Uε(t, s) =
1

2πi

∫
Γφ

e−εw
α

e(
R t
s
a(τ)dτ)w(w −A)−1dw

for all 0 ≤ s ≤ t ≤ T and Γφ is similar to the contour described in Proposition 2.5
with π/2α > φ > π/2− θ.

Proof. The proof is similar to that of Proposition 2.5. In particular, Uε(t, s) is
a uniformly bounded operator on X for 0 ≤ s ≤ t ≤ T by the assumptions on
α. Also, the function t 7→ Uε(t, s)χ is a unique classical solution of (3.2) since
∂
∂tUε(t, s)χ = a(t)AUε(t, s)χ for t ∈ (s, T ), and by equation (3.1),

Uε(s, s)χ =
1

2πi

∫
Γφ

e−εw
σ

(w −A)−1χdw = e−εA
σ

χ = Cεχ.

�

Lemma 3.2. Let χ ∈ X. If u(t) is a classical solution of problem (1.2), then

Cεu(t) = Uε(t, s)χ for all t ∈ [s, T ].

Proof. Since Cε ∈ B(X) and Cε commutes with A, it is easily shown that Cεu(t) is
a classical solution of (3.2). The uniqueness of solutions from Proposition 3.1 then
yields the desired result. �

To establish regularization, we will make use of the nature in which the oper-
ators fβ(t, A) approximate the operators a(t)A. Motivated by the approximation
condition, Condition A of Ames and Hughes (cf. [2, Definition 1]), we demonstrate
the following property.

Lemma 3.3. Let −A be the infinitesimal generator of a bounded holomorphic semi-
group of angle θ, and let 0 ∈ ρ(A). Let 0 < β < 1 and let the family of operators
fβ(t, A), 0 ≤ t ≤ T be defined by (1.4). Then there exist positive constants R and κ
each independent of β and t such that Dom(A1+κ) ⊆ Dom(fβ(t, A)) and

‖(−a(t)A+ fβ(t, A))ψ‖ ≤ Rβ‖A1+κψ‖ (3.3)

for all t ∈ [0, T ] and for all ψ ∈ Dom(A1+κ).

Note that in the statement of the lemma we use implicitly that Dom(A1+κ) ⊆
Dom(A) which follows from Lemma 2.4 (ii).

Proof. First, assume θ ∈ (0, π/4] so that fβ(t, A) is defined as in Proposition 2.5
where σ satisfies σ > 1 and σ(π/2−θ) < π/2. Then for ψ ∈ Dom(Aσ) and t ∈ [0, T ],
we have ψ ∈ Dom(fβ(t, A)) and

‖(−a(t)A+ fβ(t, A))ψ‖ = ‖(−a(t)A+ (a(t)A− βAσ))ψ‖ = β‖Aσψ‖.

Hence, (3.3) is satisfied with R = 1 and κ = σ − 1.
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Next, we assume that θ ∈ (π/4, π/2] in which case fβ(t, A) is defined as in
Proposition 2.7. Then fβ(t, A) is a bounded, everywhere defined operator and so
Dom(fβ(t, A)) = X for each t ∈ [0, T ]. Further, for ψ ∈ Dom(A2),

‖(−a(t)A+ fβ(t, A))ψ‖ = ‖(−a(t)A+ a(t)A(I + βA)−1)ψ‖
= ‖ − a(t)A(I − (I + βA)−1)ψ‖
= ‖ − a(t)A(βA(I + βA)−1)ψ‖
= ‖ − a(t)β(I + βA)−1A2ψ‖
≤ Bβ‖(I + βA)−1‖‖A2ψ‖
≤ BCβ‖A2ψ‖,

where B = maxt∈[0,T ] |a(t)| and C is as in the proof of Proposition 2.7. Hence,
(3.3) is satisfied with R = BC and κ = 1. �

In light of Lemma 3.3, for each t ∈ [0, T ], we define the operator gβ(t, A) in X
by

gβ(t, A)x = −a(t)Ax+ fβ(t, A)x (3.4)

for x ∈ Dom(A) ∩ Dom(fβ(t, A)). Properties of the operators gβ(t, A), 0 ≤ t ≤ T
and associated evolutions systems will be used heavily in proving Hölder-continuous
dependence on modeling, those of which we provide now in the following proposi-
tion.

Proposition 3.4. Let −A be the infinitesimal generator of a bounded holomor-
phic semigroup of angle θ, and let 0 ∈ ρ(A). For 0 < β < 1, let the operators
fβ(t, A), 0 ≤ t ≤ T and gβ(t, A), 0 ≤ t ≤ T be defined by (1.4) and (3.4) respec-
tively. Then there exists an evolution system Wβ(t, s), 0 ≤ s ≤ t ≤ T associated
with the family gβ(t, A), 0 ≤ t ≤ T satisfying the following properties:

(i) ‖Wβ(t, s)‖ ≤ L for all 0 ≤ s ≤ t ≤ T where L is a constant independent of
t, s, and β.

(ii) ∂
∂tWβ(t, s)χ = gβ(t, A)Wβ(t, s)χ for 0 ≤ s < t < T for every χ ∈ X.

(iii) ∂
∂sWβ(t, s)χ = −Wβ(t, s)gβ(s,A)χ for 0 < s < t ≤ T for every χ ∈ X.

Proof. First, if θ ∈ (0, π/4], then gβ(t, A) = −βAσ by equation (3.4), and as in
Proposition 2.5, we may define the two-parameter family of bounded operators
Wβ(t, s), 0 ≤ s ≤ t ≤ T on X by Wβ(t, s) = I when t = s and

Wβ(t, s) =
1

2πi

∫
Γφ

e
R t
s

(−βwσ)dτ (w −A)−1 dw

=
1

2πi

∫
Γφ

e−β(t−s)wσ (w −A)−1 dw

when t 6= s. It follows as in arguments in the proof of Proposition 2.5 that Wβ(t, s)
is uniformly bounded for 0 ≤ s ≤ t ≤ T , say ‖Wβ(t, s)‖ ≤ L, and for every χ ∈ X,
Wβ(t, s)χ satisfies (ii) and (iii).

In fact, it may be shown that ‖Wβ(t, s)‖ ≤ L where L is independent of β in the
following way. Similar to the proof of Proposition 2.5, the bound for ‖Wβ(t, s)‖ is
calculated in two cases, the first when β−1/σ(t − s)−1/σ ≤ d and the second when
β−1/σ(t − s)−1/σ > d where d is the radius of the disk contained in ρ(A) as in
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Figure 2 and Figure 3. For the pieces

Γ1 = Γ1 = {reiφ : r ≥ β−1/σ(t− s)−1/σ},

Γ3 = Γ7 = {re−iφ : r ≥ β−1/σ(t− s)−1/σ},

we have the calculation

‖
∫

Γ1∪Γ7

‖ = ‖
∫

Γ1∪Γ3
‖ ≤M ′1

∫
Γ1∪Γ3

∣∣e−β(t−s)wσ ∣∣ |w|−1|dw|

= 2M ′1

∫ ∞
β−1/σ(t−s)−1/σ

e−β(t−s)rσ cosσφr−1dr

= 2M ′1

∫ ∞
1

e−x
σ cosσφx−1dx

≤ 2M ′1

∫ ∞
1

e−x
σ cosσφdx ≤ K

where K is a constant independent of t, s, and β since σ > 1 and 0 < σφ < π/2
because π/2σ > φ > π/2− θ. Also, as in the proof of Proposition 2.5, in either of
the two cases, the remaining pieces of the contour may be bounded independently
of t, s, and β. Hence (i)–(iii) are satisfied and the proposition is proved when
θ ∈ (0, π/4].

If, on the other hand, θ ∈ (π/4, π/2] as in Proposition 2.7, then gβ(t, A) =
−a(t)A+a(t)A(I+βA)−1 and in this case, we use perturbation theory to construct
an evolution system Wβ(t, s), 0 ≤ s ≤ t ≤ T satisfying (i)–(iii). We’ve seen so
far that A(I + βA)−1 is a bounded operator on X. Then since −A generates a
bounded holomorphic semigroup of angle θ, it follows that −(A − A(I + βA)−1)
is also the infinitesimal generator of a holomorphic semigroup of the same angle
(cf. [17, Corollary 3.2.2]). Set Gβ = A − A(I + βA)−1. It is shown in [8] that
C\Sπ−2θ ⊆ ρ(Gβ) where Sπ−2θ = {reiθ′ : r > 0, |θ′| < π − 2θ}, and

‖(w −Gβ)−1‖ ≤ M

|w|
for w ∈ C\Sπ−2θ

where M is a constant independent of β (cf. [8, Theorem 2.1]). Hence for 0 ≤ s ≤
t ≤ T , the operator Wβ(t, s) defined by

Wβ(t, s) =

{
1

2πi

∫
Γφ
e−(

R t
s
a(τ)dτ)w(w −Gβ)−1 dw 0 ≤ s < t ≤ T

I t = s,

where Γφ is as in Figure 1 with π/2 > φ > π − 2θ, is a well-defined uniformly
bounded operator satisfying ‖Wβ(t, s)‖ ≤ L for 0 ≤ s ≤ t ≤ T where L is a constant
independent of β. Hence, (i) is satisfied. Also, similar to calculation (2.5)–(2.8),
it is standard to show that for every χ ∈ X, ∂

∂tWβ(t, s)χ = −a(t)GβWβ(t, s)χ =
gβ(t, A)Wβ(t, s)χ for 0 ≤ s < t < T and ∂

∂sWβ(t, s)χ = −Wβ(t, s)(−a(s)Gβ)χ =
−Wβ(t, s)gβ(s,A)χ for 0 < s < t ≤ T . Therefore (ii) and (iii) are satisfied as
well. �

Corollary 3.5. Let ε > 0. Then

Uε(t, s)Wβ(t, s) = CεVβ(t, s) = Wβ(t, s)Uε(t, s)

for all 0 ≤ s ≤ t ≤ T .
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Proof. The result follows from uniqueness of solutions as each term applied to
χ ∈ X is a classical solution of the well-posed evolution problem (1.3) with initial
data Cεχ. �

4. Hölder-continuous dependence on modeling

We now use the results of Section 2 and Section 3 to prove Hölder-continuous
dependence on modeling for the problems (1.2) and (1.3), meaning a small change in
the models from (1.2) to (1.3) implies a small change in the corresponding solutions.
Again, as in Section 2 and Section 3, we assume that −A generates a bounded
holomorphic semigroup T (t) of angle θ on X and 0 ∈ ρ(A). For z ∈ Sθ, let us
denote T (z) by T (z) = e−zA and also define e−zA to be the identity operator when
z = 0.

Assume u(t) and vβ(t) are classical solutions of (1.2) and (1.3) respectively where
χ ∈ X and let ε > 0 be arbitrary. Then since Cε is bounded and since e−zA is
uniformly bounded in each sector Sθ1 , θ1 < θ (Definition 2.1 (iii)), we may define
for θ1 ∈ (0, θ) and for ζ = t+ re±iθ1 in the bent strip S = {ζ = t+ re±iθ1 : s ≤ t ≤
T, r ≥ 0},

φε(ζ) = e−(re±iθ1 )ACε(u(t)− vβ(t)).
Ultimately, we will apply Carleman’s Inequality (cf. [14]) to a function related to
φε(ζ) on the bent strip S. Our methods are motivated by Agmon and Nirenberg
[1].

Lemma 4.1. Let ε > 0. Then

φε(ζ) = e−(re±iθ1 )A(Uε(t, s)χ− CεVβ(t, s)χ)

for all ζ = t+ re±iθ ∈ S.

The above lemma follows immediately from Lemma 3.2 and Corollary 2.8.

Lemma 4.2 ([1, p. 148]). Let φ(z) be a continuous and bounded complex function
on the bent strip S = {z = x + ηe±iθ : s ≤ x ≤ T, η ≥ 0}. For ζ = t + re±iθ ∈ S,
define

Φ(ζ) = − 1
π

∫ ∫
S

φ(z)
( 1
z − ζ

+
1

z̄ + 1 + ζ

)
dxdη.

Then Φ(ζ) is absolutely convergent, ∂̄Φ(ζ) = φ(ζ) where ∂̄ denotes the Cauchy-
Riemann operator, and there exists a constant K̃ such that∫ ∞

−∞

∣∣ 1
z − ζ

+
1

z̄ + 1 + ζ

∣∣dη ≤ K̃(1 + log
1

|x− t|

)
if x 6= t.

We prove now the following theorem establishing Hölder-continuous dependence
on modeling for problems (1.2) and (1.3). We will use the results of this theorem
to aid us in proving regularization in Section 5.

Theorem 4.3. Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ on a Banach space X and let 0 ∈ ρ(A). For 0 < β < 1, let
the family of operators fβ(t, A), 0 ≤ t ≤ T be defined by (1.4). Let u(t) and vβ(t)
be classical solutions of (1.2) and (1.3) respectively with χ ∈ X, and assume that
there exists a constant M ′ ≥ 0 such that ‖A2+κu(t)‖ ≤ M ′ for all t ∈ [s, T ] where
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κ is defined by Lemma 3.3. Then there exist constants C̃ and M independent of β
such that for 0 ≤ s ≤ t < T ,

‖u(t)− vβ(t)‖ ≤ C̃β1−h(t)Mh(t)

where h(ζ) is a harmonic function which is bounded and continuous on the bent
strip S = {ζ = t+ re±iθ1 : s ≤ t ≤ T, r ≥ 0}, θ1 ∈ (0, θ), and assumes the values 0
and 1 respectively on the left and right hand boundary curves of S.

Proof. Let ε > 0, χ ∈ X, and define

φε(ζ) = e−(re±iθ1 )ACε(u(t)− vβ(t))

for ζ = t+re±iθ1 ∈ S as in the discussion preceding Lemma 4.1. Intending to apply
Lemma 4.2, we determine ∂̄φε(ζ). Since e−(re±iθ1 )A is bounded for every r ≥ 0 and
since Cε commutes with A, we have by Lemma 4.1,

∂

∂t
φε(ζ) =

∂

∂t
e−(re±iθ1 )A(Uε(t, s)χ− CεVβ(t, s)χ)

= e−(re±iθ1 )A(
∂

∂t
Uε(t, s)χ− Cε

∂

∂t
Vβ(t, s)χ)

= e−(re±iθ1 )A(a(t)AUε(t, s)χ− fβ(t, A)CεVβ(t, s)χ).

Also, since −A generates e−zA and since both Uε(t, s)χ and CεVβ(t, s) are in
Dom(A), we have

∂

∂r
φε(ζ) =

∂

∂r
e−(re±iθ1 )A(Uε(t, s)χ− CεVβ(t, s)χ)

= e−(re±iθ1 )A(−e±iθ1A)(Uε(t, s)χ− CεVβ(t, s)χ).

Therefore, by definition of the Cauchy-Riemann operator ∂̄,

∂̄φε(ζ) =
1

2i sin(±θ1)

(
e±iθ1

∂

∂t
φε(ζ)− ∂

∂r
φε(ζ)

)
=

e±iθ1

2i sin(±θ1)

[
e−(re±iθ1 )A(a(t)AUε(t, s)χ− fβ(t, A)CεVβ(t, s)χ)

+ e−(re±iθ1 )A(AUε(t, s)χ−ACεVβ(t, s)χ)
]
.

(4.1)

Following [1], define

Φε(ζ) = − 1
π

∫∫
S

∂̄φε(z)
( 1
z − ζ

+
1

z̄ + 1 + ζ

)
dxdη,

where z = x+ ηe±iθ1 and ζ = t+ re±iθ1 are in S. In order to apply Lemma 4.2, we
show that ∂̄φε(z) is continuous and bounded on S. We first show that it is bounded
on S. Let z = x+ ηe±iθ1 ∈ S be arbitrary. We have from (4.1),

‖∂̄φε(z)‖ ≤
1

2| sin θ1|
‖e−(ηe±iθ1 )A‖

(
‖a(x)AUε(x, s)χ− fβ(x,A)CεVβ(x, s)χ‖

+ ‖AUε(x, s)χ−ACεVβ(x, s)χ‖
)

≤ Θ
2| sin θ1|

(
‖a(x)AUε(x, s)χ− a(x)ACεVβ(x, s)χ‖

+ ‖a(x)ACεVβ(x, s)χ− fβ(x,A)CεVβ(x, s)χ‖
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+ ‖AUε(x, s)χ−ACεVβ(x, s)χ‖
)

≤ Θ
2| sin θ1|

(
(B + 1)‖AUε(x, s)χ−ACεVβ(x, s)χ‖

+ ‖a(x)ACεVβ(x, s)χ− fβ(x,A)CεVβ(x, s)χ‖
)

where we have set Θ = maxr≥0 ‖e−(re±iθ1 )A‖ and B = maxt∈[0,T ] |a(t)|. Since
Uε(x, s)χ ∈ Cε(X) ⊆ Dom(Aj) for every j ∈ N (cf. [3, Proposition 2.10]), it follows
that AUε(x, s)χ ∈ Dom(Aj) for every j as well. Therefore, we have AUε(x, s)χ ∈
Dom(A1+κ) by Lemma 2.4 (ii). Hence, by Corollary 3.5, Proposition 3.4, and
Lemma 3.3,

‖AUε(x, s)χ−ACεVβ(x, s)χ‖ = ‖AUε(x, s)χ−AWβ(x, s)Uε(x, s)χ‖
= ‖(I −Wβ(x, s))AUε(x, s)χ‖

=
∥∥ ∫ x

s

∂

∂τ
(Wβ(x, τ)AUε(x, s)χ)dτ

∥∥
=
∥∥∫ x

s

−Wβ(x, τ)gβ(τ,A)AUε(x, s)χdτ
∥∥

≤
∫ x

s

L‖gβ(τ,A)AUε(x, s)χ‖dτ

≤ TLRβ‖A1+κAUε(x, s)χ‖.

(4.2)

Also, by Lemma 3.3,

‖a(x)ACεVβ(x, s)χ− fβ(x,A)CεVβ(x, s)χ‖ = ‖(−a(x)A+ fβ(x,A))CεVβ(x, s)χ‖
≤ Rβ‖A1+κCεVβ(x, s)χ‖
= Rβ‖A1+κWβ(x, s)Uε(x, s)χ‖
= Rβ‖Wβ(x, s)A1+κUε(x, s)χ‖
≤ LRβ‖A1+κUε(x, s)χ‖.

Thus we have shown that

‖∂̄φε(z)‖ ≤
Θ(T + 1)LRβ

2| sin θ1|

(
(B + 1)‖A1+κAUε(x, s)χ‖+ ‖A1+κUε(x, s)χ‖

)
.

Now, by the assumption that ‖A2+κu(t)‖ ≤M ′ for all t ∈ [s, T ] and by Lemma 2.4
(iv), we have ‖A1+κu(t)‖ = ‖A−1A2+κu(t)‖ ≤ M ′′ for all t ∈ [s, T ] for some
constant M ′′ ≥ 0, where we have used the fact that 0 ∈ ρ(A). By the fact that
Cε = e−εA

α

, ε > 0 is a holomorphic semigroup, set J = sup0<ε<1 ‖Cε‖. Then for
small ε > 0, since Cε commutes with A, we have from Lemma 3.2,

‖A1+κUε(x, s)χ‖ = ‖A1+κCεu(x)‖ = ‖CεA1+κu(x)‖ ≤ JM ′′ (4.3)

and similarly ‖A1+κAUε(x, s)χ‖ = ‖A2+κUε(x, s)χ‖ ≤ JM ′. Therefore, we have
shown that

‖∂̄φε(z)‖ ≤ βC ′, (4.4)
where C ′ is a constant independent of ε and also of β since L is independent of β
(Proposition 3.4 (i)).

We have shown that ∂̄φε(z) is bounded on S. It follows easily that ∂̄φε(z) is
also continuous on S. Having satisfied the hypotheses of Lemma 4.2, it follows that
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Φε(ζ) is absolutely convergent, ∂̄Φε(ζ) = ∂̄φε(ζ), and there exists a constant K̃
such that, for x 6= t,∫ ∞

−∞

∣∣ 1
z − ζ

+
1

z̄ + 1 + ζ

∣∣dη ≤ K̃(1 + log
1

|x− t|

)
.

We now construct a candidate to satisfy Carleman’s Inequality. Define Ψε : S →
C by

Ψε(ζ) = x∗(φε(ζ)− Φε(ζ))
where x∗ ∈ X∗, the dual space of X, is arbitrary. For ζ in the interior of S, using
the results from Lemma 4.2,

∂̄Ψε(ζ) = x∗(∂̄φε(ζ)− ∂̄Φε(ζ)) = x∗(0) = 0.

Therefore, Ψε is analytic on the interior of S (cf. [19, Theorem 11.2]).
Next, we show that Ψε is bounded on S. Similar to the calculation in (4.2), and

using (4.3), we have

‖φε(ζ)‖ = ‖e−(re±iθ1 )A(Uε(t, s)χ− CεVβ(t, s)χ)‖
≤ Θ‖Uε(t, s)χ− CεVβ(t, s)χ‖
≤ ΘTLRβ‖A1+κUε(t, s)χ‖ ≤ βK ′

(4.5)

where K ′ is a constant independent of β, ε, and ζ. Next, from (4.4) and Lemma 4.2,

‖Φε(ζ)‖ =
∥∥∥− 1

π

∫ ∫
S

∂̄φε(z)
( 1
z − ζ

+
1

z̄ + 1 + ζ

)
dxdη

∥∥∥
≤ 1
π
βC ′

∫ T

s

(∫ ∞
−∞

∣∣ 1
z − ζ

+
1

z̄ + 1 + ζ

∣∣dη)dx
≤ β K̃

π
C ′
∫ T

s

(
1 + log

1
|x− t|

)
dx ≤ βC ′

(4.6)

for a possibly different constant C ′ independent of β, ε, and ζ. Then from (4.5)
and (4.6), we have for ζ = t+ re±iθ1 ∈ S,

|Ψε(ζ)| = |x∗(φε(ζ)− Φε(ζ))|
≤ ‖x∗‖

(
‖φε(ζ)‖+ ‖Φε(ζ)‖

)
≤ βM‖x∗‖

(4.7)

where M is a constant independent of β, ε, and ζ.
We have shown that Ψε is bounded on S. It is easy to show that Ψε is also

continuous on S, and we have already seen that Ψε is analytic on the interior of S.
By Carleman’s Inequality (cf. [14]), we then obtain

|Ψε(t)| ≤Mε(s)1−h(t)Mε(T )h(t), (4.8)

for s ≤ t ≤ T , where Mε(t) = supr≥0 |Ψε(t+ re±iθ1)| and h is a harmonic function
which is bounded and continuous on S and assumes the values 0 and 1 respectively
on the left and right hand boundary curves of S. Note that

‖φε(s+ re±iθ1)‖ = ‖e−(re±iθ1 )A(Uε(s, s)χ− CεVβ(s, s)χ)‖

= ‖e−(re±iθ1 )A(Cεχ− Cεχ)‖ = 0.

Then from (4.6), we have

|Ψε(s+ re±iθ1)| ≤ ‖x∗‖
(
‖φε(s+ re±iθ1)‖+ ‖Φε(s+ re±iθ1)‖

)
≤ ‖x∗‖βC ′,



20 M. A. FURY EJDE-2013/92

and so
Mε(s) = sup

r≥0
|Ψε(s+ re±iθ1)| ≤ βC ′‖x∗‖. (4.9)

Also, from (4.7) and the fact that 0 < β < 1, we have

Mε(T ) = max
r≥0
|Ψε(T + re±iθ1)| ≤M‖x∗‖. (4.10)

From (4.8), (4.9), and (4.10), it follows that for s ≤ t < T ,

|Ψε(t)| ≤ (βC ′)1−h(t)Mh(t)‖x∗‖.

Taking the supremum over x∗ ∈ X∗ with ‖x∗‖ ≤ 1, we have ‖φε(t) − Φε(t)‖ ≤
C̃β1−h(t)Mh(t) for s ≤ t < T where C̃ and M are constants each independent of β
and ε. Then by (4.6), for s ≤ t < T ,

‖Cε(u(t)− vβ(t))‖ = ‖φε(t)‖
= ‖(φε(t)− Φε(t)) + Φε(t)‖

≤ C̃β1−h(t)Mh(t) + βC ′

= (C̃ + βh(t)M−h(t)C ′)β1−h(t)Mh(t)

≤ C̃β1−h(t)Mh(t)

for a possibly different constant C̃ independent of β and ε. Finally, since Cε → I
as ε → 0 in the strong operator topology, and since all constants on the right are
independent of ε, we may let ε → 0 to obtain ‖u(t) − vβ(t)‖ ≤ C̃β1−h(t)Mh(t) for
0 ≤ s ≤ t < T as desired. �

5. Regularization for problem (1.2)

We use the inequality of Theorem 4.3 to prove the main result of the paper, that
is the existence of a family of regularizing operators for the ill-posed problem (1.2)
where −A generates a holomorphic semigroup (not necessarily bounded) of angle
θ on X. Following Definition 1.1, we have the following result.

Theorem 5.1. Let −A be the infinitesimal generator of a holomorphic semigroup
of angle θ ∈ (0, π/2] on a Banach space X. Then there exists λ ∈ R such that{

e(
R t
s
a(τ)dτ)λṼβ(t, s) : β > 0, t ∈ [s, T ]}

is a family of regularizing operators for the problem (1.2) where Ṽβ(t, s), 0 ≤ s ≤ t ≤
T is the evolution system of Corollary 2.8 corresponding to the operators fβ(t, A−
λ), 0 ≤ t ≤ T defined by

fβ(t, A− λ) =

{
a(t)(A− λ)− β(A− λ)σ if θ ∈ (0, π/4]
a(t)(A− λ)(I + β(A− λ))−1 if θ ∈ (π/4, π/2]

(5.1)

where σ > 1 when θ ∈ (0, π/4]. The regularization parameter β is chosen as follows:
for a given perturbed initial data χδ where ‖χ− χδ‖ ≤ δ,

β =

{
(−2K/ ln δ)σ−1 if θ ∈ (0, π/4]
−2CT/ ln δ if θ ∈ (π/4, π/2]

where K and C are constants independent of δ.
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Proof. First, in accordance with Theorem 4.3, assume that −A generates a bounded
holomorphic semigroup and that 0 ∈ ρ(A). Let u(t) be a classical solution of (1.2)
with initial data χ and assume u(t) satisfies the stabilizing condition of Theorem 4.3,
that is ‖A2+κu(t)‖ ≤M ′ for all t ∈ [s, T ]. Also, let ‖χ− χδ‖ ≤ δ.

Let vβ(t) be a solution of (1.3) and let Vβ(t, s), 0 ≤ s ≤ t ≤ T be the evolution
system given in Corollary 2.8. Then for 0 ≤ s ≤ t ≤ T , we have vβ(t) = Vβ(t, s)χ
and

‖u(t)− Vβ(t, s)χδ‖ ≤ ‖u(t)− vβ(t)‖+ ‖Vβ(t, s)χ− Vβ(t, s)χδ‖
≤ ‖u(t)− vβ(t)‖+ δ‖Vβ(t, s)‖.

(5.2)

First consider 0 ≤ s ≤ t < T . If θ ∈ (0, π/4] so that fβ(t, A) is defined as fβ(t, A) =
a(t)A−βAσ, then from Corollary 2.6, we have ‖Vβ(t, s)‖ ≤ K ′eKβ−1/(σ−1)

for small
β where K and K ′ are constants independent of β. Choose β = (−2K/ln δ)σ−1.
Then β → 0 as δ → 0, and by (5.2) and Theorem 4.3, we have

‖u(t)− Vβ(t, s)χδ‖ ≤ C̃β1−h(t)Mh(t) + δK ′eKβ
−1/(σ−1)

= C̃β1−h(t)Mh(t) +
√
δK ′

→ 0 as δ → 0.

(5.3)

If on the other hand θ ∈ (π/4, π/2], in which case fβ(t, A) is defined as fβ(t, A) =
a(t)A(I+βA)−1, then from Proposition 2.7 we have ‖Vβ(t, s)‖ ≤ eCT/β where C is
a constant independent of β. In this case, choose β = −2CT/ ln δ. Then similarly
β → 0 as δ → 0, and

‖u(t)− Vβ(t, s)χδ‖ ≤ C̃β1−h(t)Mh(t) + δeCT/β

= C̃β1−h(t)Mh(t) +
√
δ

→ 0 as δ → 0.

(5.4)

Finally, for the case that t = T , from inequalities (4.7) and (4.8), it is easily
shown (following the remainder of the proof of Theorem 4.3 with t = T ) that
‖u(T ) − vβ(T )‖ ≤ βN for some constant N independent of β. Then by (5.2), in
the case of either approximation, we have that β → 0 as δ → 0 and

‖u(T )− Vβ(T, s)χδ‖ ≤ ‖u(T )− vβ(T )‖+ δ‖Vβ(T, s)‖

≤ βN +
√
δ(K ′ + 1)

→ 0 as δ → 0.

(5.5)

Combining (5.3), (5.4), and (5.5) proves that {Vβ(t, s) : β > 0, t ∈ [s, T ]} is a
family of regularizing operators for problem (1.2).

Now, for the general case, assume that −A generates a holomorphic semigroup
of angle θ on X. It is known that for θ′ ∈ (0, θ), then there exists λ ∈ R such
that −A + λ is the infinitesimal generator of a bounded holomorphic semigroup
of angle θ′ on X and 0 ∈ ρ(A − λ) (cf. [18, Section X.8, p. 253]). Let u(t)
be a classical solution of (1.2) with initial data χ ∈ X. It is easily shown that
w(t) = e−(

R t
s
a(τ)dτ)λu(t) is then a classical solution of the evolution problem

dw

dt
= a(t)(A− λ)w(t) 0 ≤ s ≤ t < T

w(s) = χ.
(5.6)
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Then since −(A− λ) generates a bounded holomorphic semigroup of angle θ′ and
0 ∈ ρ(A − λ), we have by the bounded case argument above that {Ṽβ(t, s) : β >
0, t ∈ [s, T ]} is a family of regularizing operators for the problem (5.6) where
Ṽβ(t, s), 0 ≤ s ≤ t ≤ T is the evolution system of Corollary 2.8 corresponding to
the family of operators fβ(t, A−λ), 0 ≤ t ≤ T defined by (5.1). Hence, given δ > 0
and ‖χ− χδ‖ ≤ δ, there exists β > 0, such that β → 0 as δ → 0 and

‖u(t)− e(
R t
s
a(τ)dτ)λṼβ(t, s)χδ‖ = e(

R t
s
a(τ)dτ)λ‖w(t)− Ṽβ(t, s)χδ‖

→ 0 as δ → 0

for 0 ≤ s ≤ t ≤ T , proving that {e(
R t
s
a(τ)dτ)λṼβ(t, s) : β > 0, t ∈ [s, T ]} is a family

of regularizing operators for the problem (1.2). �

6. Examples in Lp spaces

In this final section, we apply the theory of regularization in Section 5 to ill-posed
partial differential equations in Lp spaces where A is a strongly elliptic differential
operator. We will use the following notation (cf. [17, Chapter 7.1]). For an n-
tuple of nonnegative integers α = (α1, α2, . . . , αn) (called a multi-index), we define
|α| =

∑n
i=1 αi and xα = xα1

1 xα2
2 . . . xαnn for x = (x1, x2, . . . , xn) ∈ Rn. Also, denote

Dk = ∂/∂xk and D = (D1, D2, . . . , Dn). Then Dα is defined by

Dα = Dα1
1 Dα2

2 . . . Dαn
n =

∂α1

∂xα1
1

∂α2

∂xα2
2

. . .
∂αn

∂xαnn
.

Finally, for a fixed domain Ω in Rn, Wm,p(Ω) will denote the Sobolev space con-
sisting of functions u ∈ Lp(Ω) whose derivatives Dαu, in the sense of distributions,
of order k ≤ m are in Lp(Ω). Also, Wm,p

0 (Ω) denotes the subspace of functions in
Wm,p(Ω) with compact support in Ω.

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Consider the
differential operator of order 2m,

P (x,D) =
∑
|α|≤2m

hα(x)Dα (6.1)

where the coefficients hα(x) are sufficiently smooth complex-valued functions of x
in Ω, the closure of Ω.

Definition 6.1 ([17, Definition 7.2.1]). The operator P (x,D) is called strongly
elliptic if there exists a constant c > 0 such that

Re{(−1)mP2m(x, ξ)} ≥ c|ξ|2m

for all x ∈ Ω and ξ ∈ Rn, where P2m(x, ξ) =
∑
|α|=2m hα(x)ξα.

Example 6.2. Following [7, Example 5.2], consider the nonautonomous problem

∂

∂t
u(t, x) = a(t)P (D)u(t, x), (t, x) ∈ [s, T )× Rn

u(s, x) = ψ(x), x ∈ Rn
(6.2)

where a ∈ C([0, T ] : R+) and P : Rn → C is a polynomial of order 2m such that
A = P (D) is strongly elliptic with domain W 2m,p(Rn) . Set

µ1 = sup
|ξ|=1

|ReP2m(ξ)|, µ2 = sup
|ξ|=1

|ImP2m(ξ)|.
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Then, as seen in [25], −A = −P (D) is the generator of a holomorphic semigroup
of angle θ on the Banach space X = Lp(Rn), 1 < p <∞ where

θ =

{
arctan(µ1/µ2) if µ2 6= 0
π/2 if µ2 = 0.

If µ1 ≤ µ2 so that θ ∈ (0, π/4], then by Theorem 5.1 and (5.1), for some λ ∈ R, the
approximate well-posed problem (1.3) becomes

∂

∂t
v(t, x) = a(t)(P (D)− λ)v(t, x)− β(P (D)− λ)σv(t, x)

for (t, x) ∈ [s, T )× Rn,
v(s, x) = ψ(x) for x ∈ Rn,

(6.3)

and {e(
R t
s
a(τ)dτ)λṼβ(t, s) : β > 0, t ∈ [s, T ]} is a family of regularizing operators for

the ill-posed problem (6.2) where Ṽβ(t, s), 0 ≤ s ≤ t ≤ T is the evolution system of
Corollary 2.8 corresponding to the operators

fβ(t, P (D)− λ) = a(t)(P (D)− λ)− β(P (D)− λ)σ.

On the other hand, if µ1 > µ2 or if µ2 = 0 so that θ ∈ (π/4, π/2], then for some
λ ∈ R, (1.3) becomes

(1− βλ+ βP (D))
∂

∂t
v(t, x) = a(t)(P (D)− λ)v(t, x)

for (t, x) ∈ [s, T )× Rn,
v(s, x) = ψ(x) for x ∈ Rn.

Again, by Theorem 5.1, {e(
R t
s
a(τ)dτ)λṼβ(t, s) : β > 0, t ∈ [s, T ]} is a family of

regularizing operators for the ill-posed problem (6.2) where Ṽβ(t, s), 0 ≤ s ≤ t ≤ T
is the evolution system of Corollary 2.8, in this case corresponding to the operators
fβ(t, P (D)− λ) = a(t)(P (D)− λ)(I + β(P (D)− λ))−1. Note, as mentioned in the
introduction, the model (6.3) may still be used with σ = 2 if θ > π/4.

Example 6.3. Following [17, Chapter 7.6], consider the nonautonomous problem
∂

∂t
u(t, x) = a(t)P (x,D)u(t, x) for (t, x) ∈ [s, T )× Ω

Dαu(t, x) = 0, |α| < m for (t, x) ∈ [s, T )× ∂Ω

u(s, x) = ψ(x) for x ∈ Ω,

(6.4)

where a ∈ C([0, T ] : R+) and P (x,D) as defined in (6.1) is strongly elliptic. For
1 < p <∞, define the operator Ap by Dom(Ap) = W 2m,p(Ω) ∩Wm,p

0 (Ω) and

Apu = P (x,D)u for u ∈ Dom(Ap).

Then by [17, Theorem 7.3.5], −Ap is the infinitesimal generator of a holomorphic
semigroup of angle θ on the Banach space X = Lp(Ω) for some θ ∈ (0, π/2). As
discussed in [7, Example 5.3], the exact value of θ is difficult to determine in this
situation. However, as in the methods from Example 6.2, whether θ ∈ (0, π/4] or
θ ∈ (π/4, π/2), Theorem 5.1 yields that {e(

R t
s
a(τ)dτ)λṼβ(t, s) : β > 0, t ∈ [s, T ]} is

a family of regularizing operators for the ill-posed problem (6.4).
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