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NONAUTONOMOUS ILL-POSED EVOLUTION PROBLEMS
WITH STRONGLY ELLIPTIC DIFFERENTIAL OPERATORS

MATTHEW A. FURY

ABSTRACT. In this article, we consider the nonautonomous evolution problem
du/dt = a(t)Au(t),0 < s <t < T with initial condition u(s) = x where —A
generates a holomorphic semigroup of angle 6 € (0,7/2] on a Banach space X
and a € C([0,T] : RT). The problem is generally ill-posed under such condi-
tions, and so we employ methods to approximate known solutions of the prob-
lem. In particular, we prove the existence of a family of regularizing operators
for the problem which stems from the solution of an approximate well-posed
problem. In fact, depending on whether 6 € (0,7/4] or § € (w/4,7/2], we
provide two separate approximations each yielding a regularizing family. The
theory has applications to ill-posed partial differential equations in LP((2),
1 < p < co where A is a strongly elliptic differential operator and €2 is a fixed
domain in R”.

1. INTRODUCTION

Due to the unstable nature of a given ill-posed problem, whose solutions (if they
exist) may not depend continuously on initial data, many approximation techniques
have been applied to study known solutions of the problem. Consider the abstract
Cauchy problem

d—u:Au(t) 0<t<T

dt
u(0) = x

in a Banach space X, which under many different circumstances, depending on the
operator A, may be ill-posed. For instance, letting A = —A, becomes the
prototypical ill-posed problem, the backwards heat equation. More generally, (1.1
is ill-posed in the parabolic case when —A generates a holomorphic semigroup on
X. In this case, one approach recently applied by Mel’nikova [I1] and Huang and
Zheng [7, [8] is to regularize the ill-posed problem; that is, to approximate a known
solution of (1.1) by the solution of an approximate well-posed problem (see also
[2, 12 23, 24]).

(1.1)
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In this paper, we extend these ideas to the study of the nonautonomous parabolic
evolution problem
du

a:a(t)Au(t) 0<s<t<T

(1.2)
u(s) = x

in a Banach space X where —A generates a holomorphic semigroup of angle 6 €

(0,7/2] on X and a € C([0,T] : RT), so that the governing operators a(t)A,0 <

t < T of the problem are nonconstant. We prove the existence of a family of

regularizing operators for the problem (so that the problem is “regularized”) which

refers specifically to the following.

Definition 1.1 ([8, Definition 3.1]). A family {Rg(¢t) : 8 > 0, t € [s,T]} of
bounded linear operators on X is called a family of regularizing operators for the
problem (|1.2)) if for each solution wu(t) of with initial data x € X, and for any
0 > 0, there exists 3(4) > 0 such that

(i) B(d) - 0asd — 0,
(ii) |lu(t) — Rasy(t)xsll — 0 as 6 — 0 for s <t < T whenever |[x — xs|| < 0.

As in the case of regularization for the autonomous problem (|1.1)), we will show
that a family of regularizing operators for (1.2)) stems from the solution of an
approximate well-posed problem

dv

= fat, A(t) 0<s<t<T

dt (1.3)

v(s) = x

)
,A),0 < t < T are defined by two different

where, for 8 > 0, the operators fs(t
t)A depending on where 6 lies in the interval

approximations of the operators af(
(0,7/2]:
a(t)A — BA° if 0 € (0, 7/4]
a()A(I + BA)~Y if 0 € (n/4,7/2]
where o > 1 when 6 € (0,7/4].

Each approximation in (1.4)) yields a well-posed problem (|1.3)), and also contin-

uous dependence on modeling for the ill-posed problem (|1.2]) in the sense that as
8 — 0, the operators fs(t, A) approach the operators a(t)A, and given solutions

u(t) and vg(t) of (1.2]) and (L.3) respectively, we have
[u(t) = vp(®)| = 0 as 3 —0 (1.5)

fa(t, A) = { (1.4)

for each ¢ € [s,T]. We use to establish the main result of the paper, that
the family {V(¢,s) : 8 > 0, t € [s,T]} is a family of regularizing operators for
the ill-posed problem where Vj(t,s),0 < s <t < T is an evolution system
associated with the well-posed problem satisfying V(t, s)x = vg(t). In other
words, given a small change in the initial data ||x — xs|| < 0 (which, since (1.2))
is ill-posed, could yield a very large difference in solutions), there exists 8 > 0 so
that 8 — 0 as  — 0, and |Ju(t) — Va(t, s)xs|| — 0 as § — 0 for s <t < T. Hence,
although u(t) may not be “close” to the solution of with initial data x5, we can
still approximate u(t) by utilizing the well-posed problem with regularization
parameter 3 > 0.
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The use of the two approximations in extends results from previous works
in which the approximations A — 34% and A(I + BA)~! are used to obtain reg-
ularization for the autonomous problem where —A generates a holomorphic
semigroup of angle § on X (cf. [2} [7, 8, [T} 12]). For instance, in [7], Huang and
Zheng obtain regularization for using the quasi-reversibility method, first in-
troduced by Lattes and Lions [I0], which involves the approximation A — A7 of
the operator A. Here, the requirements that ¢ > 1 and o(n/2—0) < 7/2 are crucial
in order for A — BA? to generate a semigroup (so as to yield an approximate well-
posed problem). Hence, if 6 € (0,7/4], these requirements force 1 < o < 2 whence
the use of the fractional power A? is in order. In light of definition , we will
adopt the same requirements in the current paper for the extension a(t)A — GA°.
The second approximation A(I + 3A4)~!, introduced by Showalter [20], is applied
by Ames and Hughes [2] and Huang and Zheng [8] but only in the case where
0 € (w/4,7/2] because the perturbation methods used to establish regularization
in these papers (and in the current paper) are not applicable when 6 € (0, 7/4] (cf.
[8, pp. 3011-3012]).

Note, if 0 € (7/2,7/4], the approximation a(t)A — BA? may still be used, but
it is standard and easier in this case to let o = 2 (cf. [2] 4 [T0] 111 12} 13} 15, [16]).
In this regard, the current paper also furthers results from [4] where the author

uses the approximation Z§:1 aj(t)A7 — BA**L to obtain regularization for the
nonautonomous problem

but only in the case that 6 € (w/4,7/2].

This article is organized as follows. In Section [2 we adapt methods of Huang
and Zheng [7,,[8] to show that problem is well-posed under definition with
the existence of an evolution system Vjz(¢,s),0 < s <t < T generating solutions
of . The calculations here are quite similar to those in [7], but we provide the
details to demonstrate the differences in treating nonautonomous equations. After
introducing several lemmas in Section 3} we prove in Section [} a Holder-continuous
dependence on modeling inequality which provides an estimate for the difference
between the solutions u(t) and vg(t) yielding (1.5). In Section [5] we use results
from Section [ to prove the existence of a family of regularizing operators for the
ill-posed problem and finally in Section @ we apply the theory to partial
differential equations in the Banach space LP({2), 1 < p < oo where A is a strongly
elliptic differential operator and €2 is a fixed domain in R™.

Below, B(X) will denote the space of bounded linear operators on X. For a
linear operator A in X, p(A) will denote the resolvent set of A consisting of all
w € C such that (w — A)~! € B(X). Also, we will be concerned with classical
solutions of which are functions u : [s,T] — X such that u(¢) € Dom(A) for
allt € (s,T),u € Cls, T)NC(s,T), and u satisfies in X (cf. [I7, Chapter 5.1,
p. 126]).
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2. TWO APPROXIMATE WELL-POSED PROBLEMS

In this section, we show that the approximate problem , where the operators
fa(t,A),0 < ¢t < T are defined by , is well-posed, meaning that a unique
solution exists for each y in a dense subset of X and solutions depend continuously
on the initial data (cf. [6l Chapter 2.13, p. 140]). Much of the content here will
rely on the assumption that —A generates a holomorphic semigroup and so we first
gather relevant properties.

Definition 2.1 ([18, Section X.8, p. 248, 252]). Let # € (0,7/2]. A strongly
continuous bounded semigroup T'(t),t > 0 on a Banach space X is called a bounded
holomorphic semigroup of angle 6 if the following conditions are satisfied:

(i) T(¢) is the restriction to the positive real axis of an analytic family of
operators T(z) in the open sector Sy = {re?® :r >0, |#'| < 0} satisfying
T(z+w) =T(2)T(w) for all z,w € Sy.

(ii) For each 01 < 0, T'(z)xr — x as z — 0 in Sp, for all x € X.

(iii) For each 6y < 6, T'(z) is uniformly bounded in the sector Sp, .
More generally, a strongly continuous semigroup 7'(¢) on X is called a holomorphic
semigroup of angle 0 if T(t) satisfies all the properties of a bounded holomorphic
semigroup of angle 6 with the exception of (iii).

Theorem 2.2 ([I8, Theorem X.52]). Let A be a closed operator on a Banach space
X. Then —A is the infinitesimal generator of a bounded holomorphic semigroup of
angle 0 if and only if for each 01 < 0 there exists a constant My > 0 such that if
w & 5}/2,9“ then w € p(A) and

M,

S |t
I =4 < dist(w, Sr/2-6,)

(2.1)

For this paper, we first assume that —A generates a bounded holomorphic semi-
group of angle 0. In fact, for most of the paper, we will make this assumption for
convenience, but then generalize our results at the end for holomorphic semigroups
for which only conditions (i) and (ii) of Definition hold.

Since —A generates a bounded holomorphic semigroup of angle 6, by Theo-
rem it follows that the spectrum o(A) of A is contained in Sy /5y = {ret?
r >0, |§| < x/2—0}. Further, for t > 0, T(t) is given by the Cauchy integral
formula

1
= —/ e " (w— A)"tdw (2.2)
21 Ty
where 7/2 > ¢ > w/2 — 0 and 'y, is a curve in p(A) consisting of three pieces:
= {rei®:r>1}, To={e? : ¢ <0 <21 — ¢}, and T35 = {re " :r > 1}; Ty is
oriented so that it runs from coe’® to coe™* (see Figure . Similarly, for z € Sy,

T(z) = 1 /F¢, e (w — A) " dw.

T(t)

T o

We will first prove that the approximate problem is well-posed in the case
that 0 € (0,7/4] and f3(t, A),0 < t < T is defined by fz(t,A) = a(t)A — BA°
(Proposition below). The idea in this case is to construct an evolution system
Vj(t, s) which will be defined similarly as in (2.2)). For this, we will need to choose
an appropriate value for ¢ in a contour similar to I'y. In particular, we will require
that o > 1 and o(7/2 — 0) < 7/2 in order to allow 7/20 > ¢ > m/2 — 0. As noted
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in the introduction, since 6 € (0, 7/4], these requirements force 1 < o < 2 and so
we will need to make sense of the operator A? which is defined by the fractional
power. To this end, we will require the assumption that 0 € p(A) (see Definition [2.3]
below).

Definition 2.3 ([7, Definition 2.4]). Let —A be the infinitesimal generator of a
bounded holomorphic semigroup of angle 6, and let 0 € p(A). For ¢ > 0, the
fractional power of A is defined as follows:

1
A= — [ w7 (w—A)"'d 2.3
w7 w0 = 4w, (23)
where w ™ is defined by the principal branch, and I is a path running from ocoe*?
to coe™ ' with 7 > ¢ > 7/2— 6 while avoiding the negative real axis and the origin.

Define A% = (A77)~! (see Lemma (i) below) and A% = I.

Note, in Definition the definition of A7 relies on the fact that the operator
in (2.3)) is invertible which follows from the following properties of the fractional
power.

Lemma 2.4 ([7, Lemma 2.5], [I7, Lemma 2.6.6, Theorem 2.6.8]). Let —A be the
infinitesimal generator of a bounded holomorphic semigroup of angle 0, and let
0 € p(A). Then

(1) A™7 is a bounded, injective operator for o > 0.
(ii) A7 is a closed operator, and Dom(A?) C Dom(A?") for o > o’ > 0.
(iii) Dom(A?) is dense in X for every o > 0.
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(iv) A9r1to2y = A91 A%y for every o1, oo € R and v € Dom(A%) where o =
max{o1,09,01 + 09}.

Proposition 2.5. Let —A be the infinitesimal generator of a bounded holomorphic
semigroup of angle 0 € (0,7/4], and let 0 € p(A). Let 0 < 8 < 1 and assume o
satisfies 0 > 1 and o(w/2 — 0) < w/2. Define the family of operators fg(t, A),0 <
t<T by

fa(t,A) = a(t)A — pA°.
Then (L.3) is well-posed with unique classical solution vg(t) = Vs(t,s)x for each
x € X where
L fl“¢ els fﬁ(””)””(w —A)ldw 0<s<t<T

Vg(ﬂs) = {;'n’z

t =s,

and T'y is a contour lying in p(A) that is similar to that in Figure |l with w/20 >
¢ > /2 — 0 but avoids the negative real axis and the origin.

Proof. Notice our choice for ¢ is valid by the assumption o(7/2 — ) < 7/2. We
first show that V3(¢, s) is uniformly bounded for 0 < s < ¢ < T'. Following [7, Proof
of Theorem 3.1], we will show this in two cases. Let 0 < s < ¢ <T. Since 0 € p(A)
and the resolvent set is an open set in the complex plane, there exists a closed disk
of radius d € (0,1) centered at the origin that is fully contained in p(A). In the
first case, if (¢ —s)~'/? < d, using Cauchy’s Theorem, we may shift T';, within p(A)
to the contour (see Figure [2)) consisting of the three pieces

= {re!® :r > (t—s)" Y/},
T2 ={(t—s)""7e"" : ~6 <0’ < 9},
D3 ={re ®:.r>(t—s)"1}.
First consider w € T*UT3. Fix 6; < 6 so that ¢ > 7/2—6; > 7/2 — 6. We have
dist(w, Sx/2—g,) = |w|sin(¢p— (7/2—61)) (cf. [, Figure 2]) so that by Theorem
My
|w] sin(¢ — (7/2 = 61))
Set M{ = M1 /sin(¢ — (7/2 — 01)) and B = max;cjo,7] |a(t)|. Then

1w —A)~" <

(2.4)

Y T B e e T
piors g

_ QM{ / ef;(a('r)rcos ¢—PBr7 cos o) d‘rrfld,r
(t—s)—1/e

< 2M{ /oo eB(t—s)r cos p—B(t—s)r? cos o¢r—1dr
(t—s)—1/e

_ QM{ /OO eB(tfs)l_l/”xcoqufﬁz” COSU¢LE71d$
1

< QM{ /OO eBTlfl/“zcosq&fﬁzU cosaqbdx <K
1

where K is a constant independent of ¢ and s since o > 1 and since 7/20 > ¢ >
m/2 — 6 implies 0 < ¢ < 0¢ < 7/2 so that cos ¢ > 0 and cos(o¢g) > 0.
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FIGURE 2. t/:=(t—s)"1/7 <d

Also, for w € I'?, we have

I [0 b [ ebteomserrorau

¢ —1/c o' -1 0"Vd 1
— Md/ €f5 (a(T)(t—s) cos @' —B(t—s) " cos o) T(t_ 8)_ /”dG’
—¢

¢ B(t—s)'"Y7 cos 6’ =B cos a6’ 3
< de/ e (t—s) cos cosad’ 19
—¢

? BT sl
S de/ e cos de
—¢

< dMy BT 7724

where we have set My = max|,|<q ||(w — A) | since w — (w — A)~" is continuous
on the interior of p(A). Hence, Vj3(t, s) is bounded uniformly for 0 < s <t < T in
the first case.
For the second case, if (¢t — s)~!/7 > d, then we shift 'y to the contour (see
Figure [3)) consisting of the seven pieces:
Ty={re:r>(t—s)"Y7), Ty={(t—s)""7":¢<0 <n},
Ty={re™:d<r<(t—s)"Y) Ty={de ™ : -7 <0 <},

[s={re ™ :d<r<(t—s) Y7} Tg={(t—- 3)—1/0619' L <0 < —¢},
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Dy ={re ®:r>(t—s)"1}.

I'y

Iy

A

~--e--
v

I's

I's

I,

FIGURE 3. t' := (t —s)" /7 > d

First, since Ty = T'' and I'y = T®, we have || [p 1 || = || Jrigps || < K as

before. Next, note that (2.4) holds for w € I'y since these w satisfy the inequality
dist(w, Sr/2—g,) > dist((t — s)~oeit, Sr/2—6,). Then

||/ I SM{/ e e Io—BuT 4] =1 | gy
T Ty
— M /Tr (@) (t=5) " cos 0~ Bt —s) " cos o8 )dr g
[
< M{ /7r eBTlfl/“ cos p—fFcos 0’ p/
[

< M / BT st g
¢

_ M{el-&-BTl*l/“ COS¢(7T _ (Z))

since 0 < 3 < 1. The same estimate holds for || [, .

Next, using (2.4)),

I+ /0
I's T's
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(t—s)~ 17 . ;
_ H / (efst(fa(fr)rfﬁr”e_””)df o ef:(fa(‘r)rfﬁr”e”m)d‘r) (77, . A)ildTH
d
(t—s)~1/° . . ;
< M{/ ‘6—(fs' a(T)dr)r (e—ﬂ(t—s)T0571”U _ e—ﬁ(t—s)r”e””) ’r_ldr
d

(t—s)fl/“ .
:M{/ e—(fs’a(r)dr)r
d

e Plt=sIr7cosomoisin(B(t — s)r7 sin 0’7‘(‘)‘ r~tdr
(t—s)~ /7 .
< M / e B(t—s)r? cos ™2l sin(B(t — s)r? sinon)|r dr
d

1
= Mj / e~ P27 cosomY | sin(Bx” sin o) |z dx
(t—s)t/od

1
= Mj / g~ V/2e= P27 cosom {4x_1 sin?(Bz° sin Uw)}l/Q dx
(t—s)1/od
1
= Mj / g1 /2= P cosom {2271(1 — cos(2B27 sin mr))}l/2 dx.
(t—s)t/7d

It is easily shown by L’Hospital’s Rule that
2271 (1 — cos(2B2 sinom)) — 0 as x — 0.
Hence, we have for a possibly different constant M/ independent of 3,

1 1
||/ +/ I< M{/ g7 1/2em " cosom gy < M{e/ V2 dx = M| 2e
I's I's 0 0

since 0 < # < 1. Finally,

||/ I SMd/ el =B | g
Iy Iy

= dM, /ﬂ- efst(a('r)dcosﬁlfﬂd" cosaO’)drdal

—T

< de /ﬂ- eBTde*B(t*S)dg cos 09'd9/
-7

< dM P41 + T 2n

where My = max|,|<q||(w — A)~!|| as before. Thus we have shown that in both
cases, each term may be bounded independently of ¢ and s, and so Vp(t,s) is
uniformly bounded on 0 < s <t < T.

Next, we show that (¢,s) — Vj3(t,s) is strongly continuous for 0 < s < ¢ < T.
It follows from and by a standard argument using Cauchy’s Integral Formula

that

1 ‘
Vﬁ(t,S)AiU = — w*tfefs fﬁ(r,w)d'r(w - A)ild’w
2mi Jr,

(cf. [7, p. 46]). Then since ¢ — fg(t,w) is continuous, using the above calculations
for ||Va(¢, s)]|, it follows by a dominated convergence argument that ||Vs (¢, s)A~7 —
Via(to, s0)A 7| — 0 as (t,s) — (to,S0). Then, for z € Dom(A”), we have

IV (t, s)x = Vs (to, so)l| < [[Va(t, s)A™7 = Vs (to, s0) A7 ||| A%2|

— 0 as (t,s) — (to,S0)-
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Strong continuity of Vj(t, s) then follows since Dom(A?) is dense in X (Lemma [2.4]
(iii)) and Vj3(t, s) is uniformly bounded.

Now, we show that the mapping [s,T] — X given by ¢ — Vj(t, s)x is a classical
solution of for x € X. We have already established that ¢t — Va(t,s)x
is continuous on [s,T]. Next, we show that %Vg(t,s)x = fa(t,A)V;s(t,s)x for

€ (s,T). We have

0 1 0 rt
J— t —_— _ fS f/f(‘l’,w)d‘r _ A -1 d 2
g o= 5 - (ate )(w )" xdw (2.5)
1 t
=— els Fo(rw)dr fo(t w)(w — A) "ty dw (2.6)
271—2 F¢
= i ef.: fB(T:w)dTa(t)w(w _ A)_lxdw (27)
2mi Jr,
1 ¢
4+ — efs fﬁ("’»w)dT(_ﬁwo)(w o A)71X dw. (2.8)
2777/ Fd)

Now,

Expression (2.7) = a(t)%/ N fﬁ(r,w)dr((w —A) + A)(w— A)flxdw
Ly

= (a(t)i /m eJt f@(ﬂw)dfdw)x

211

1 ¢
+a(t)=— / els Folmw)dr gy — A) "y duw
T

211
= a(t)AV3a(t, s)x

. t
where we have used Cauchy’s Theorem since w +— els fo(mw)dr

the fact that A is a closed operator.

Next, fix t € (s,7) and set G = ﬁfu woels Forw)dT (4 — A)ldw. Tt is
clear that G is a bounded operator on X by calculations similarly used to calculate
IVa(t, s)||. Also, by and a standard argument using Cauchy’s Integral Formula
(cf. [9, Equation IX.1.52]), it follows that A~7G = Vjp(t,s). Hence, by the fact
that A% = (A77)7!, we have Ran(Vj(t,s)) € Ran(A=%) = Dom(A%) and G =
A%Vp(t, s). Hence = —f[Gx = —BAVj3(t, s)x, and altogether we have shown
%Vg(t, s) = a(t)AVa(t, s)x — BATVa(t, s)x = fa(t,A)Va(t,s)x for t € (s,T). Also
by definition, Va(s, s)x = x. Thus, t — Vj(t, s)x satisfies .

Finally, calculation (2.5)—(2.8) shows that ¢ — fa(t, A)Vj(t, s)x is continuous on
(s,T) since t — el: Fo(rw)dr ¢ (¢ w) is continuous. Therefore, we have that ¢ —
Vs(t, s)x is continuously differentiable on (s,T), and so we have shown altogether
that t — Va(t, s)x is a classical solution of (L.3).

It follows that problem is well-posed due to uniqueness of the solution
t — V3(t, s)x and continuous dependence of solutions on initial data, both of which
are proved by standard arguments (see e.g. [4, Proof of Proposition 2.3]). O

is analytic, and also

Corollary 2.6. Let 0 < § < 1 and let the operators fz(t,A),0 < t < T and
Va(t,s),0 < s <t <T be defined under the hypotheses of Proposition . Then

for small 3,

Vs(t, s)|| < K'eKB87 7Y
B\, >~
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for all0 < s <t <T where K and K' are constants independent of 3, t, and s.

Proof. Let 0 < s <t <T. From our calculations for ||Vz(t, s)|| in Proposition
all terms are bounded independently of  except || [r s | = || fF1UF7 I, and so we
have

M{ > BT~ g cos ¢— Bz cos o
||V5(t,8)|| §K1+7 € dx
1

where K7 is a constant independent of 3. It is a standard calculation to show that
for small 3, the function q(z) = 2BT*~'/?2 cos ¢ — fz7 cos(o¢) has a maximum

value on [1,00) at zg = (%)1/(‘7—1). Then on [1,00),

2BT' Y73 cos ¢ — Bz cos(op) < g(z0)
(2BT'Y/ cos ¢)7/ (oY

— g—1/(e-1) _
A 07/@=D) cost/ =D (54) (o —1)
= KQﬂ_l/(g_l);
and so
/ eBTlfl/"mcombfﬁx“ coscni)dx < ngﬁfl/(Ufl)/ efBTlfl/chosgﬁdx
1 1

6K25—1/<o—1)

BT1-1/0 cos ¢ eBT1*1/°r cos¢

1/(o—1

Altogether we have ||[Vs(t,s)| < Ki + Kzef2#~ " for 0 < s <t < T where
K1, K5, and K3 are positive constants each independent of 3, ¢, and s. It follows
that for small 3, |[Vs(t, s)|| < K528 for all 0 < s < ¢ < T for a suitable
constant K} larger than Kj. O

We now turn to the second approximate problem (1.3)) motivated by the work of
Showalter [20] where 6 € (w/4,7/2] and fz(t, A) = a(t)A(I + BA)~ for 0 < ¢ < T.

Proposition 2.7. Let —A be the infinitesimal generator of a bounded holomorphic
semigroup of angle 6 € (w/4,7/2], and let 0 € p(A). Let 0 < B8 < 1 and define the
family of operators fz(t,A),0 <t <T by

fa(t, A) = a(t)A(I + BA)~ .

Then (L.3) is well-posed with unique classical solution vg(t) = Va(t,s)x for each
X € X, where V3(t,5),0 < s <t <T is an evolution system satisfying

WValt,s)| < eCT/% for 0<s<t<T
and C is a constant independent of 3, t, and s.

Proof. Note by the Hille-Yosida Theorem, since — A generates a bounded holomor-
phic semigroup, it follows that 1/3 € p(—A) and ||(I + BA)~ Y| = (1/8)I((1/B)] —
(—A) 7Y < (1/B) x CB = C for some constant C independent of 3 (cf. [17, The-
orem 1.5.3]). Now, fs(t, A) is a bounded operator on X for each ¢ € [0,T] by the
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following calculation:
1£5(t, Al = la() AU + A7

- Ha(t%(b (I + 64|

B (2.9)

< (I + 1T+ 84~

(1+0)
&

where we have set B = max;co,7|a(t)]. Also, t — fs(t, A) is continuous in the
uniform operator topology since A(I + 3A)~! is a bounded operator and a(t) is
a continuous function. By [I7, Theorem 5.1.1], the evolution problem is
well-posed with a unique classical solution vg(t) for every x € X. The solution
vg(t) is generated by the solution operator Vj3(t,s) associated with the problem;
that is vg(t) = Vj3(¢,s)x. Furthermore, Vj(t, s) is an evolution system satisfying
IVa(t, s)| < el s AldT (of [17] Theorem 5.1.2]). This together with calculation
(2.9) establishes the desired result for a possibly different constant C' independent
of 8, t, and s. (Il

IA
% =

To summarize the results of Proposition [2.5] and Proposition we provide the
following.

Corollary 2.8. Let —A be the infinitesimal generator of a bounded holomorphic
semigroup of angle 0, and let 0 € p(A). Let 0 < 8 < 1 and let the operators
fa(t,A),0 <t < T be defined by . Then is well-posed and there exists
an evolution system Va(t,s),0 < s <t < T associated with the family fa(t, A),0 <
t < T such that for each x € X, vg(t) = V3(t,s)x is a unique classical solution of

3.

3. PRELIMINARY LEMMAS

So far, we have shown that (1.3 is well-posed under the definition (L.4). In
this case, as seen in Corollary there is an evolution system Vj(t,s) which
generates solutions of . Since (|1.2)) is generally ill-posed, we may not construct
an evolution system for the problem in the same way. However, we will make use of
the assumption that —A generates a bounded holomorphic semigroup in order to
construct C-regularized evolution systems (cf. [21] 22], [5, Definition 2]) associated

with problem (1.2).

Fix € > 0 and let o > 1 satisfy a(r/2 — 6) < 7/2. Then e~“4" ¢ > 0 defined by

e A = L e " (w— A) " tdw (3.1)
27t Jp,
is a strongly continuous holomorphic semigroup generated by the fractional power
—A® where I'y is similar to the contour described in Proposition but with
/20 > ¢ > m/2 — 0 (cf. [3, Definition 3.4]). For € > 0, set C. = e~ 4", Tt follows
that C. is injective for € > 0 (cf. [3, Lemma 3.1]). We construct C.-regularized
evolution systems as follows.
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Proposition 3.1. Let € > 0 and let o > 1 satisfy a(n/2 — 0) < w/2. For every
x € X, the evolution problem

U A 0<s<t<T

dt (3.2)
u(s) = Cex

has a unique classical solution u(t) = U(t, s)x where

™

Ud(t,s) = L/F e (S amdr)w (g, A1y
o4

forall0 < s <t < T and 'y is similar to the contour described in Proposition
with /2 > ¢ > w/2 — 0.

Proof. The proof is similar to that of Proposition In particular, U(t,s) is
a uniformly bounded operator on X for 0 < s < t < T by the assumptions on
a. Also, the function t — U.(¢,s)x is a unique classical solution of since
%Ue(t, s)x = a(t)AU(t, s)x for t € (s,T), and by equation (3.1,

1

U6(875)X = % g e—eu)a(w —A)_lxdw — e—eAUX _ CGX
¢

Lemma 3.2. Let x € X. If u(t) is a classical solution of problem (1.2)), then
Ceu(t) = Uc(t,s)x forallt e [s,T).

Proof. Since C, € B(X) and C, commutes with A, it is easily shown that Ceu(t) is
a classical solution of (3.2). The uniqueness of solutions from Proposition then
yields the desired result. U

To establish regularization, we will make use of the nature in which the oper-
ators fs(t, A) approximate the operators a(t)A. Motivated by the approximation
condition, Condition A of Ames and Hughes (cf. [2] Definition 1]), we demonstrate
the following property.

Lemma 3.3. Let —A be the infinitesimal generator of a bounded holomorphic semi-
group of angle 0, and let 0 € p(A). Let 0 < 8 < 1 and let the family of operators
fa(t,A),0 <t <T be defined by (L.4). Then there exist positive constants R and
each independent of 3 and t such that Dom(A'*) C Dom(fs(t, A)) and

[(—a(t)A+ fs(t, A)v| < RE|IA™ =y (3.3)
for all t € [0,T) and for all yp € Dom(A**).

Note that in the statement of the lemma we use implicitly that Dom(A'**) C
Dom(A) which follows from Lemma (ii).

Proof. First, assume 6 € (0,7/4] so that fz(¢, A) is defined as in Proposition
where o satisfies 0 > 1 and o(7/2—0) < w/2. Then for ¢ € Dom(A?) and ¢ € [0, T,
we have ¢ € Dom(fg(t, A)) and

[(=a(t)A + fa(t, Al = [(—a(t) A+ (a(t)A — BAT)) | = B A7¢].
Hence, is satisfied with R=1and k =0 — 1.
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Next, we assume that 6 € (7/4,7/2] in which case fz(t, A) is defined as in
Proposition Then fa(t, A) is a bounded, everywhere defined operator and so
Dom(f5(t, A)) = X for each t € [0,T]. Further, for ¢ € Dom(A?),

I(=a(®)A+ fo(t, D))l = [(—a(t)A + a(t) AT+ BA) )|
=l = a()AU — (I + Ay
= || = a()ABAI + BA) )y
= | = a(t)B(I + BA) " A%||
< BE|I(I + BA)~H[[[| A% ]
< BCp| A%,

where B = maxy¢[o,7) |a(t)| and C is as in the proof of Proposition Hence,
(3.3) is satisfied with R = BC and k = 1.

In light of Lemma for each ¢ € [0,T], we define the operator gg(¢,A) in X
by
g5(t, A)z = —a(t) Az + fa(t, A)a (3.4

for © € Dom(A) N Dom(fz(t, A)). Properties of the operators gg(t,A4),0 <t < T
and associated evolutions systems will be used heavily in proving Holder-continuous
dependence on modeling, those of which we provide now in the following proposi-
tion.

Proposition 3.4. Let —A be the infinitesimal generator of a bounded holomor-
phic semigroup of angle 0, and let 0 € p(A). For 0 < 8 < 1, let the operators
fa(t,A),0 <t <T and gg(t,A), 0 <t < T be defined by and respec-
tively. Then there exists an evolution system Wps(t,s),0 < s <t < T associated
with the family gs(t, A),0 <t < T satisfying the following properties:

(1) [[Wa(t,s)|| <L for all0 <s <t <T where L is a constant independent of

t, s, and 3.
(ii) %Wg(t, s)x = gp(t, A)Wa(t,s)x for 0 < s <t < T for every x € X.
(iii) %Wg(t,s)x = —Wps(t,s)gs(s, A)x for 0 < s <t < T for every x € X.

Proof. First, if 6 € (0,7/4], then gg(t,A) = —FA” by equation (3.4), and as in
Proposition we may define the two-parameter family of bounded operators
Ws(t,s),0<s<t<TonX by Ws(t,s) =1 when t = s and

1 ¢ -
Wy(ts) = 5 — : el (8w () — A)~T duw
o4

= QL/ e A= (4 — A)~! dw

mi Jr,
when t # s. It follows as in arguments in the proof of Proposition that Ws(t, s)
is uniformly bounded for 0 < s <t < T, say ||[W3(t,s)|| < L, and for every x € X,
Wps(t, s)x satisfies (ii) and (iii).

In fact, it may be shown that ||W3(¢, s)|| < L where L is independent of 5 in the
following way. Similar to the proof of Proposition the bound for ||Wg(t, s)| is
calculated in two cases, the first when 5~/ 7(t — s)_l/ 7 < d and the second when
Bt — s)717 > d where d is the radius of the disk contained in p(A) as in
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Figure [2] and Figure [3] For the pieces
MY =T = {re'®:r > 7Yt —s)"1/Y,
B =T;={re®:r> ﬂfl/"(t — s)*l/"},

we have the calculation

|| || = ||/ || < M{/ ‘e—ﬁ(t—s)wo‘ ‘w|_1|dw|
T urlr; riurs Triurs

S
_ QM{ / efﬂ(tfs)r” cos U¢7’71d7"
ﬂ_l/”(tfs)_l/”

oo

:2M{/ e~ sy
1
o0 o

< 2M; / e " sy < K
1

where K is a constant independent of ¢, s, and 3 since o > 1 and 0 < ¢ < 7/2
because /20 > ¢ > w/2 — 6. Also, as in the proof of Proposition in either of
the two cases, the remaining pieces of the contour may be bounded independently
of t, s, and 8. Hence (i)—(iii) are satisfied and the proposition is proved when
0 € (0,m/4].

If, on the other hand, 6 € (n/4,7/2] as in Proposition then gg(t, A) =
—a(t)A+a(t)A(I+BA)~! and in this case, we use perturbation theory to construct
an evolution system Wp(t,s),0 < s < ¢t < T satisfying (i)—(iii). We’ve seen so
far that A(I + BA)~! is a bounded operator on X. Then since —A generates a
bounded holomorphic semigroup of angle 6, it follows that —(A — A(I + BA)™!)
is also the infinitesimal generator of a holomorphic semigroup of the same angle
(cf. [I7, Corollary 3.2.2]). Set Gg = A — A(I + BA)~1. Tt is shown in [§] that
C\Sr—20 C p(Gg) where Sy_99 = {rew/ :r >0, 0] <7 — 260}, and

M
[(w—Gg)~|| < 0] for w € C\Sr_2¢
where M is a constant independent of 3 (cf. [8 Theorem 2.1]). Hence for 0 < s <
t <T, the operator Wg(t, s) defined by

emUiamdnwiy — Gg)~tdw 0<s<t<T

t=s,

1
W(t,s) = { o Je.

where T'y is as in Figure [1| with 7/2 > ¢ > 7 — 20, is a well-defined uniformly
bounded operator satisfying ||Wga(t, s)|| < L for 0 < s <t < T where L is a constant
independent of 5. Hence, (i) is satisfied. Also, similar to calculation 7,
it is standard to show that for every y € X, %Wg(t, s)x = —a(t)GgWps(t,s)x =
gp(t, A)YWs(t,s)x for 0 < s <t < T and %Wg(t,s)x = —Ws(t,s)(—a(s)Gp)x =
—Ws(t,s)gp(s, A)x for 0 < s < t < T. Therefore (ii) and (iii) are satisfied as
well. O

Corollary 3.5. Let € > 0. Then
Ue(t,s)Wg(t,s) = CVa(t,s) = Wa(t,s)Uc(t, s)
forall0<s<t<T.
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Proof. The result follows from uniqueness of solutions as each term applied to
X € X is a classical solution of the well-posed evolution problem (1.3)) with initial
data C¢x. (]

4. HOLDER-CONTINUOUS DEPENDENCE ON MODELING

We now use the results of Section [2[ and Section to prove Holder-continuous
dependence on modeling for the problems (|1.2)) and (1.3]), meaning a small change in
the models from (1.2)) to (1.3]) implies a srnall change in the corresponding solutions.
Again, as in Sectlon 2l and Section [3] we assume that —A generates a bounded
holomorphic semigroup T'(¢) of angle § on X and 0 € p(A4). For z € Sy, let us
denote T'(z) by T(z) = e~ *# and also define e=*# to be the identity operator when
z=0.

Assume u(t) and vg(t) are classical solutions of and respectively where
X € X and let € > 0 be arbitrary. Then since C, is bounded and since e™*4 is
uniformly bounded in each sector Sy,, 61 < 6 (Definition (iii)), we may define
for 01 € (0,0) and for ¢ = t + e in the bent strip S = {¢ =t +re® : s <t <
T, r > 0},

6c(¢) = e~ TIAC (ult) — vs(1)):
Ultimately, we will apply Carleman’s Inequality (cf. [14]) to a function related to
¢c(¢) on the bent strip S. Our methods are motivated by Agmon and Nirenberg

(.
Lemma 4.1. Let € > 0. Then
6c(Q) = e AUt 5)x — CV5(t9)X)
forall( =t+ret? ¢ S,
The above lemma follows immediately from Lemma [3.2] and Corollary 2:8

Lemma 4.2 ([1l p. 148]). Let ¢(z) be a continuous and bounded complex function
on the bent strip S = {z =z +net® s <2 <T, n>0}. For(=t+ret? e,

define
1
:_,//Qg P, +Z+1+C)dxdn.

Then ®(C) is absolutely convergent, 0®(() = ¢(¢) where O denotes the Cauchy-

Riemann operator, and there exists a constant K such that

> 1 1 ~ 1
. d <K<1+lo )
[m|Z—C z+1+C|n_ g"|90—t|

if v #t.

We prove now the following theorem establishing Hoélder-continuous dependence
on modeling for problems ((1.2)) and (1.3). We will use the results of this theorem
to aid us in proving regularization in Section

Theorem 4.3. Let —A be the infinitesimal generator of a bounded holomorphic
semigroup of angle 8 on a Banach space X and let 0 € p(A). For 0 < 8 < 1, let
the family of operators fz(t, A),0 <t < T be defined by (L.4). Let u(t) and vg(t)
be classical solutions of and respectively with x € X, and assume that
there exists a constant M' > 0 such that ||A?TFu(t)|| < M’ for all t € [s,T] where
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K 1s defined by Lemma . Then there exist constants C and M independent of /3
such that for 0 < s <t <T,

lu(t) —vs(t)]| < Ca* O MM

where h(¢) is a harmonic function which is bounded and continuous on the bent
strip S = {( =t +ret® . s <t <T, r >0}, 0, €(0,0), and assumes the values 0
and 1 respectively on the left and right hand boundary curves of S.

Proof. Let € > 0, x € X, and define
6c(¢) = e~ IAC (u(t) — vg(#))

for ¢ = t+ret™t € S as in the discussion preceding Lemma Intending to apply
Lemma we determine d¢.(¢). Since e=(re*"")A s hounded for every r > 0 and
since C. commutes with A, we have by Lemma [£.1]

o O (potin
570:(0) = 5, UL s)x — CV(ts)x)

_ —(reiwl)A 9 _ g
e gl a)x — e Vot 5)X)
= eI () AUt 5)x — fa(t, A)CVs(t, $)x)-

Also, since —A generates e *4 and since both U.(t,s)x and C.Vj(t,s) are in
Dom(A), we have

8 gei(reiiel)A(Ue(t’ S)X — CEV,@(t, S)X)
— e CFIDAENA) (U (¢, 5)x — CV(E ).

Therefore, by definition of the Cauchy-Riemann operator 0,

5 _ 1 +io, O 0
09:(¢) = m(e 8t¢€(<) ar¢e(C))
it

= 5 sm(E0) {ef(reiiel)A(a(t)AUe(t,s)x — fs(t, ACVs(t,s)x) &1

+ e TIIAAUL (1, 5)x — ACV(t, S)X)} :

Following [I], define

00 =~ [ [ d0.0) (2 + sy dean

where z =z + net and ¢ =t +ret¥ are in S. In order to apply Lemma we
show that 0¢.(z) is continuous and bounded on S. We first show that it is bounded
on S. Let z = 2 + net?t € S be arbitrary. We have from (4.1)),

= 1
<

+ |AU(z, s)x — AC:V3(z, S)XH)

_(petif1
e~ 4| (Jla(w) AU, 5)x = folw, AYCVi(a, )]

o
< - _
< Srsnd (la(@)AU. (@, 5)x — a(@)AC V(. 5)x]

+ |la(z)ACV5(z, s)x — fa(z, A)CVa(x, s)x||



18 M. A. FURY EJDE-2013/92
+ AU (2, 5)x — ACVj(z, 5)x]l)

S)
<——((B+1)|4 —A
< Srsingy] (B + DIAULz, $)x = ACVs (e, 9)x]

+ |Ja(z)AC Vs (z, s)x — f,@(x,A)CeVg(x,s)XH)
where we have set © = max,>¢ He_("eiiel)AH and B = maxco,r) |a(t)]. Since
Uc(z,8)x € Cc(X) C Dom(A7) for every j € N (cf. [3, Proposition 2.10]), it follows

that AU.(z,s)x € Dom(A7) for every j as well. Therefore, we have AU (z,s)x €
Dom(A'**) by Lemma (ii). Hence, by Corollary Proposition and
Lemma [3.3]
[AU(2, 8)x — ACVs(x, 8)x|| = [| AU (2, 5)x — AW (2, s)Ue(2, 5)x||
= [I(I = Ws(,5)) AUz, s)x||

_ H/”” %(Wﬁ(x,r)AUe(x,s)X)dTH
- ||/x —Ws(x,7)gp(r, A) AU (z, s)xdr || (4.2)

< / Lllgs(r, A AU, (z, s)x1dr
< TLRB|| A" AU (z, 5)x|-
Also, by Lemma [3.3
|a(z)ACVa(w, s)x — fp(z, A)CVa(w, s)x| = [(—a(z)A + fa(x, A)CeVa(w, s)x/|

< RB|I A CVs(, 5)x||
= Rﬁ||A1+HWﬁ('T7 S)Ue(ma S)XH
= RB||Ws(x, s) A" Ue(z, s)x|
< LRB| A" Uc(z, 5)x]-

Thus we have shown that

_ O(T + 1)LRB
0¢e(2)]| < T o[sin6y]

Now, by the assumption that || A2 *u(t)|| < M’ for all t € [s,T] and by Lemma
(iv), we have ||[AY*u(t)]] = ||[A~1AZRu(t)|] < M” for all t € [s,T] for some
constant M” > 0, where we have used the fact that 0 € p(A). By the fact that
C. = e=4" ¢ > 0 is a holomorphic semigroup, set J = supy.. ||Ce||. Then for
small € > 0, since C. commutes with A, we have from Lemma [3.2

AT Ue (@, s)x]| = AT Ceu(@)|| = [|CeA™  u(z)|| < TM” (4.3)

and similarly ||AYFAU, (2, s)x|| = ||A?T*U(x,8)x|| < JM'. Therefore, we have
shown that

((B+ DA =AU (2, s)xl| + | AU, 5)x1]).

10¢(2)]| < BC", (4.4)

where C’ is a constant independent of € and also of 3 since L is independent of 3
(Proposition (1)).

We have shown that d¢.(z) is bounded on S. Tt follows easily that d¢.(z) is

also continuous on S. Having satisfied the hypotheses of Lemma [4.2] it follows that
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®.(¢) is absolutely convergent, ®.(¢) = d¢pc(¢), and there exists a constant K
such that, for x # t,

o0 1 1 . 1
4o d <K(1+1o 7)
/oo|z—C z+1+<|”— 81z —1]

We now construct a candidate to satisfy Carleman’s Inequality. Define ¥, : S —
C by
Ve(Q) = 27(0e(C) — c(€))

where x* € X*, the dual space of X, is arbitrary. For ¢ in the interior of S, using
the results from Lemma

9T(¢) = 2"(99e(¢) — 0D(C)) = 2™(0) = 0.

Therefore, ¥, is analytic on the interior of S (cf. [19, Theorem 11.2]).
Next, we show that W, is bounded on S. Similar to the calculation in (4.2)), and

using (4.3)), we have
_ Te:(:ie
19(Q)l = lle™ " A (Ue(t, 5)x — CeVia(t )X
< OfUc(t, s)x — CeVp(t, s)x|l (4.5)
< OTLRB|| A U.(t,s)x| < BK’
where K’ is a constant independent of 3, €, and ¢. Next, from (4.4) and Lemma

1 = 1 1
vl = || =5 ] 20 (= + g o]
201 = | = = [ [ B0 + ) e
1 o=, 1 1
o4 / ( / dn)d .
ﬂﬁ : _Oofz_<+2+1+<’77 x (4.6)
K _, (T 1
< 5*0'/ (1 + log
T R |z — ¢t
for a possibly different constant C’ independent of 3, ¢, and . Then from (|4.5))
and (4.6, we have for ¢ =t +reti? ¢ S,
[ (Q)] = |27 (¢e(C) — Pe(C))]
< 2" (@O + 121 (4.7)
< BM|jz"|
where M is a constant independent of (3, €, and (.

We have shown that ¥, is bounded on S. It is easy to show that W, is also
continuous on S, and we have already seen that W, is analytic on the interior of S.
By Carleman’s Inequality (cf. [I4]), we then obtain

We(t)] < Mc(s)' =" M(T)"O, (4.8)

for s <t < T, where M.(t) = sup,>¢ |Vc(t + re*)| and h is a harmonic function
which is bounded and continuous on S and assumes the values 0 and 1 respectively
on the left and right hand boundary curves of S. Note that

) (o Eib
19e(s +re™ )| = [le” AU (s, 5)x — CeVia(s, )X
_ re:tqze
= [le” A (Cex — Cex)l| = 0.

IA

)dac < pC’

Then from (4.6]), we have
(We(s +re™ ™) < Jl2*[| (|9e(s + re™ )| + [|@c(s +re™ ™)) < [l2*]8C,
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and so
M_(s) = sup | ¥ (s 4 re*)| < gC7||2*||. (4.9)
r>0
Also, from (4.7)) and the fact that 0 < 8 < 1, we have
M (T) = m>a())<|\Il€(T+T6ii01)| < M|z (4.10)

From (4.8)), (4.9), and (4.10), it follows that for s <t < T,
[W(t)] < (BC) MO MO x|,
Taking the supremum over z* € X* with [|z*]| < 1, we have [[¢c(t) — @c(t)]| <
CR MM for s <t < T where C and M are constants each independent of
and e. Then by (4.6, for s <t < T,
[Ce(u(t) —va()ll = lloc (D)

= [[(¢e(t) = e(t)) + e (t)]]

S Cfﬂl*h(t)Mh(t) + ﬂc/

— (C + MO MO ) gLR® A0

< GB—h(®) prh(t)
for a possibly different constant C' independent of 8 and e. Finally, since C, — I
as € — 0 in the strong operator topology, and since all constants on the right are

independent of ¢, we may let € — 0 to obtain |[u(t) — vs(t)|| < CB* O MM for
0<s<t<T as desired. O

5. REGULARIZATION FOR PROBLEM ([1.2))

We use the inequality of Theorem to prove the main result of the paper, that
is the existence of a family of regularizing operators for the ill-posed problem
where —A generates a holomorphic semigroup (not necessarily bounded) of angle
# on X. Following Definition [1.1} we have the following result.

Theorem 5.1. Let —A be the infinitesimal generator of a holomorphic semigroup
of angle 0 € (0,7/2] on a Banach space X. Then there exists A € R such that

{eU2 e @It 5) 0 3>0, t € [s,T]}

is a family of regularizing operators for the problem where f/g(t, 5),0<s<t<
T is the evolution system of Corollary corresponding to the operators fsz(t, A —
A),0 <t <T defined by

a(t) (A=) —B(A—=)N)° if 0 € (0,7/4]

a®)(A=XNT +B(A=X)"t ifbe(r/4,7m/2] (5:1)

fﬂ(taA_)‘) = {

where o > 1 when 0 € (0,7/4]. The regularization parameter (3 is chosen as follows:
for a given perturbed initial data xs where ||x — xsl| < 0,

= (—2K/In6)7~'  if 0 € (0,7/4]
| -2CT/Iné if 0 € (1/4,7/2]

where K and C are constants independent of §.
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Proof. First, in accordance with Theorem [£.3] assume that — A generates a bounded
holomorphic semigroup and that 0 € p(A). Let u(t) be a classical solution of (|1.2)
with initial data x and assume u(t) satisfies the stabilizing condition of Theorem 4.3}
that is || A2 u(t)|] < M’ for all ¢ € [s,T]. Also, let ||x — xs|| < 6.

Let vg(t) be a solution of (1.3) and let V(t,s),0 < s <t < T be the evolution
system given in Corollary Then for 0 < s <t < T, we have vg(t) = V3(t,s)x
and

lu(t) = Vi(t, s)xsll < llult) = va (Bl + V(2. $)x — Vilt, $)xl
< lu(t) = vp@® + 6[[Vs (2, s)|I-
First consider 0 < s <t < T. If 6 € (0,7/4] so that fz(t, A) is defined as f5(t, A) =
a(t)A— BA?, then from Corollary we have ||[Vs(t, s)|| < K'eX8™"" ™" for small
3 where K and K’ are constants independent of 3. Choose 3 = (—2K/In §)° 1.
Then 8 — 0 as 6 — 0, and by (5.2)) and Theorem we have

(5.2)

u(t) — Vi(t, s)xs|| < CBMOMMD 4 5K K870

= OO prh®) 4 /SR (5.3)

—0 as 6 — 0.

If on the other hand 6 € (7/4,7/2], in which case fg(t, A) is defined as f3(t, A) =
a(t)A(I + BA)~1, then from Propositionwe have |[Vs(t, s)|| < e“T/P where C is
a constant independent of 3. In this case, choose f = —2CT/Ind. Then similarly
8 —0asd— 0, and

[u(t) — Va(t, s)xs|| < OO MM 4 5eCT/5
= CpPOMO /5 (5.4)

—0 as 6—0.

Finally, for the case that ¢ = T, from inequalities and , it is easily
shown (following the remainder of the proof of Theorem with ¢ = T) that
|u(T) — vg(T)|| < BN for some constant N independent of 3. Then by (5.2), in
the case of either approximation, we have that 3 — 0 as § — 0 and

[u(T) = V(T s)xsll < [w(T) = vs(T)[| + [ V(T, s)
< BN + V(K +1) (5.5)
—0 as §—0.

Combining , , and proves that {Va(t,s) : 8 > 0, ¢t € [s,T]} is a
family of regularizing operators for problem .

Now, for the general case, assume that —A generates a holomorphic semigroup
of angle # on X. Tt is known that for 6’ € (0,0), then there exists A € R such
that —A + A is the infinitesimal generator of a bounded holomorphic semigroup
of angle ¢ on X and 0 € p(A — \) (cf. [I8 Section X.8, p. 253]). Let u(t)
be a classical solution of with initial data y € X. It is easily shown that

w(t) = e~ aMaN (1) is then a classical solution of the evolution problem

dw

%:a(t)(A—/\)w(t) 0<s<t<T

(5.6)
w(s) = x.
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Then since —(A — \) generates a bounded holomorphic semigroup of angle ¢’ and
0 € p(A — )), we have by the bounded case argument above that {Vjs(t,s) : § >
0, t € [s,T)} is a family of regularizing operators for the problem where
Vg(t, $),0 < s <t < T is the evolution system of Corollary corresponding to
the family of operators fz(t, A—A),0 < ¢ < T defined by (5.1). Hence, given 6 > 0
and ||x — xs|| <9, there exists 6 > 0, such that 8 — 0 as 6 — 0 and

t

lu(t) — el s DINTy (¢, 5) x5 = Vs AN () — Vs (¢, ) xs])

—0 asd—0

for 0 < s <t < T, proving that {e(/: @M\ (¢ s): 8> 0, t € [5,T]} is a family
of regularizing operators for the problem (|1.2). (|

6. EXAMPLES IN LP SPACES

In this final section, we apply the theory of regularization in Section 5] to ill-posed
partial differential equations in LP spaces where A is a strongly elliptic differential
operator. We will use the following notation (cf. [I7, Chapter 7.1]). For an n-

tuple of nonnegative integers o = (a1, g, . . ., ) (called a multi-index), we define
la| =30 a; and 2% = 21 25?  xln for & = (z1,2,...,2,) € R™. Also, denote

Dy = 9/0xy and D = (D1, Do, ..., D,). Then D¢ is defined by
ot 02 o%n
D® =D DS ... Do = .
L2 " Oz dxd? T dxpn
Finally, for a fixed domain © in R™, W™P() will denote the Sobolev space con-
sisting of functions u € LP(€)) whose derivatives D®u, in the sense of distributions,
of order k < m are in LP(2). Also, W () denotes the subspace of functions in
WP (Q) with compact support in Q.
Let ©Q be a bounded domain in R™ with smooth boundary 0€2. Consider the
differential operator of order 2m,

P(z,D)= Y ha(z)D" (6.1)

jal<2m

where the coefficients h,(z) are sufficiently smooth complex-valued functions of x
in ©Q, the closure of .

Definition 6.1 ([I7, Definition 7.2.1]). The operator P(xz, D) is called strongly
elliptic if there exists a constant ¢ > 0 such that

Re{(—=1)" Pam(w,€)} = cl€™
for all z € Q and ¢ € R", where P, (7,&) = 2 laj=2m ha(@)E

Example 6.2. Following [7, Example 5.2], consider the nonautonomous problem

0

au(t,x) =a(t)P(D)u(t,z), (t,z)€[s,T)xR"
u(s,z) =¢(z), zeR"

where a € C([0,7] : RT) and P : R™ — C is a polynomial of order 2m such that
A = P(D) is strongly elliptic with domain W?2™P?(R") . Set

(6.2)

p1 = sup [RePay,(§)],  p2 = sup [ImPo,(§)].
le|=1 le|=1
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Then, as seen in [25], —A = —P(D) is the generator of a holomorphic semigroup
of angle # on the Banach space X = LP(R"), 1 < p < co where

0— arctan(uy /pg) if pg #0
/2 if 15 = 0.

If py < po so that 6 € (0,7/4], then by Theorem and (5.1)), for some A € R, the
approximate well-posed problem (1.3 becomes

%U(f, z) = a(t)(P(D) — Mv(t,x) — B(P(D) — A)7v(t, z)
for (t,z) € [s,T) x R", (6.3)
v(s,z) =¢(x) for z e R,
and {e(/ (ML (t,5) : B> 0, t € [s,T]} is a family of regularizing operators for

the ill-posed problem (6.2) where V3(t,s),0 < s <t < T is the evolution system of
Corollary corresponding to the operators

fo(t, P(D) = A) = a(t)(P(D) = A) = B(P(D) = A)".

On the other hand, if g1 > pg or if us = 0 so that 6 € (7/4,7/2], then for some
A € R, (1.3) becomes
0

(1= BA+BP(D))z vt @) = a()(P(D) = A)v(t, 2)
for (t,x) € [s,T) x R™,
v(s,x) =¢(z) forx e R™

Again, by Theorem {el): (MDA (t,s) = B> 0, t € [5,T]} is a family of
regularizing operators for the ill-posed problem where ffg(u 5),0<s<t<T
is the evolution system of Corollary in this case corresponding to the operators
Js(t, P(D) — \) = a(t)(P(D) — \)(I + B(P(D) — X))~!. Note, as mentioned in the
introduction, the model may still be used with o =2 if 6 > 7 /4.

Example 6.3. Following [17, Chapter 7.6], consider the nonautonomous problem
%u(t,x) = a(t)P(z, D)u(t,xz) for (t,z) € [s,T) X Q
D%u(t,z) =0, Jaj<m for (t,z) € [s,T) x (6.4)
u(s,z) =(x) for x € Q,
where a € C([0,T] : RT) and P(z,D) as defined in is strongly elliptic. For
1 < p < oo, define the operator A, by Dom(4,) = W*™P(Q) N W;"(Q) and
Apu = P(z,D)u for wu € Dom(4,).

Then by [I7, Theorem 7.3.5], —A, is the infinitesimal generator of a holomorphic
semigroup of angle 6 on the Banach space X = LP(Q) for some 6 € (0,7/2). As

discussed in [7, Example 5.3], the exact value of ¢ is difficult to determine in this
situation. However, as in the methods from Example whether 6 € (0,7/4] or
0 e (r/4,m/2), Theoremyields that {e(/: ANV (L, 5) 1 3> 0, t € [5,T]} is
a family of regularizing operators for the ill-posed problem .
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