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GLOBAL DYNAMICS FOR A DELAYED HEPATITIS C VIRUS
INFECTION MODEL

YINGYING ZHAO, ZHITING XU

Abstract. In this paper, we present a delay Hepatitis C virus infection model
with Beddington-DeAngelis functional response. We first introduce five repro-

duction numbers, and then show that the system has five possible equilibria

depended on the reproductive numbers. By constructing suitable Lyapunov
functionals, the global dynamics for the five equilibria of the model is com-

pletely determined by the five reproductive numbers.

1. Introduction

To develop a better understanding of a virus dynamics in vivo, mathematical
models have played a significant role. A basic viral infection model proposed by
Perelson et al [14, 15] has been widely used for studying the dynamics of infections
agents such as hepatitis B virus (HBV), hepatitis C virus (HCV) and HIV, which
has the following standard form:

dT (t)
dt

= λ− dT (t)− kT (t)V (t),

dT ∗(t)
dt

= kT (t)V (t)− δT ∗(t),

dV (t)
dt

= NδT ∗(t)− cV (t),

(1.1)

where T , T ∗, V denote the concentration of uninfected cells, infected cells and free
virus particles. The uninfected cells are produced at a constant rate λ and die at
a per capita rate d. They become infected at a rate proportional kV to the free
virus concentration. Infected cells are produced at a rate kTV , and its natural
death rate is δT ∗. Free viruses are produced by infected cells, which is described
by NδT ∗ and die at a per capita rate c.

Note that the immune response after viral infection is universal and necessary to
eliminate or control the disease. In most virus infections, cytotoxic T lymphocytes
(CTLs) play a critical role in antiviral defense by attacking infected cells. Let Y (t)
be the CTL responses, Nowak and Bangham [13] formulated the following virus
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dynamics model:

dT (t)
dt

= λ− dT (t)− kT (t)V (t),

dT ∗(t)
dt

= kT (t)V (t)− δT ∗(t)− pY (t)T ∗(t),

dV (t)
dt

= NδT ∗(t)− cV (t),

dY (t)
dt

= βT ∗(t)Y (t)− γY (t),

(1.2)

where infected cells are also killed via mass action kinetics by the CTL immune
response, which is described by pY T ∗, CTLs are produced at a rate proportional
βT ∗Y to the abundances of CTLs and infected cells, and die at a per capita rate
γ.

In addition, antibody responses, which are implemented by the functioning of
immunocompetent B lymphocytes, also play a critical role in preventing and mod-
ulating infections. To investigate the highly complex and non-linear interaction
between replicating viruses, uninfected cells, infected cells, and different types of
immune responses (CTL and antibody), Wodarz [19] developed the following HCV
infection model:

dT (t)
dt

= λ− dT (t)− kT (t)V (t),

dT ∗(t)
dt

= kT (t)V (t)− δT ∗(t)− pY (t)T ∗(t),

dV (t)
dt

= NδT ∗(t)− cV (t)− qA(t)V (t),

dY (t)
dt

= βT ∗(t)Y (t)− γY (t),

dA(t)
dt

= gA(t)V (t)− bA(t).

(1.3)

Here A denotes the concentration of antibody responses, free virus are also neu-
tralized via mass action kinetics by antibodies, which is described by qAV . The
antibody responses are activated at a rate proportional gAV to the abundances
of antibodies and free viruses, and die at a per capita rate b. All parameters are
positive constants.

Note that model (1.3) ignores the intracellular delay and assumes that cells be-
come productive instantaneously once a virus contacts a cell to infection. However,
the intracellular delay may impact infection dynamics significantly. In view of this



EJDE-2014/132 A DELAYED HEPATITIS C VIRUS INFECTION MODEL 3

observation, Yan and Wang [21] proposed the following model with delay:

dT (t)
dt

= λ− dT (t)− kT (t)V (t),

dT ∗(t)
dt

= kT (t− τ)V (t− τ)e−sτ − δT ∗(t)− pY (t)T ∗(t),

dV (t)
dt

= NδT ∗(t)− cV (t)− qA(t)V (t),

dY (t)
dt

= βT ∗(t)Y (t)− γY (t),

dA(t)
dt

= gA(t)V (t)− bA(t).

(1.4)

Here, the production of new virus at time t depends on the population of virus and
infected cells at a previous time t− τ , and only a fraction of e−sτ can survive after
the interval τ , where 1/s is the average lifetime of infected without reproduction.
Yan and Wang [21] have studied the global dynamics of system (1.4).

From system (1.4), we can see that the rate of infection of those viral dynamics
models is assumed to bilinear in the virus V and susceptible cells T . However, the
actual incidence rate is probably not linear over the entire range of V and T . So it
is reasonable to assume that the infection rate of viral infection model is given by
saturated infection rate, kTV

1+k2V
, where k2 is positive constant. In addition, because

there exists an intracellular phase of a cell and production of new virus particles.
In view of the above observation, Wang and Liu [18] considered the viral infection
model with saturation infection rate and delay as follows:

dT (t)
dt

= λ− dT (t)− kT (t)V (t)
1 + k2V (t)

,

dT ∗(t)
dt

= e−sτ
kT (t− τ)V (t− τ)

1 + k2V (t− τ)
− δT ∗(t)− pY (t)T ∗(t),

dV (t)
dt

= NδT ∗(t)− cV (t)− qA(t)V (t),

dY (t)
dt

= βT ∗(t)Y (t)− γY (t),

dA(t)
dt

= gA(t)V (t)− bA(t).

(1.5)

By constructing Lyapunov functionals, Wang and Liu [18] have studied the global
stability of system (1.5).

In this paper, following the line of [18, 21], we assume that the infection rate
of the virus dynamics models is given by the Beddington-DeAngelis functional
response, kTV

1+k1T+k2V
, where k1, k2 ≥ 0 are constants. Then, we obtain the following

viral infection system with a latent period τ and Beddington-DeAngelis functional



4 Y. ZHAO, Z. XU EJDE-2014/132

response:
dT (t)

dt
= λ− dT (t)− f(T (t), V (t)),

dT ∗(t)
dt

= e−sτf(T (t− τ), V (t− τ))− δT ∗(t)− pY (t)T ∗(t),

dV (t)
dt

= NδT ∗(t)− cV (t)− qA(t)V (t),

dY (t)
dt

= βT ∗(t)Y (t)− γY (t),

dA(t)
dt

= gA(t)V (t)− bA(t),

(1.6)

with
f(T, V ) =

kTV

1 + k1T + k2V
, k1 ≥ 0, k2 ≥ 0, (T, V ) ∈ R2. (1.7)

The functional response kTV
1+k1T+k2V

was introduced by Beddington [1] and DeAnge-
lis et al.[2]. Obviously, (1.3)-(1.5) can be seen as special cases of (1.6)-(1.7). Other
related works contributed to dynamics of the mathematical model with Beddington
and DeAngelis functional response; see, for example, [3, 5, 6, 8, 10, 12, 17, 18, 20, 22].

In this paper, we investigate the global dynamics of (1.6)-(1.7) by employing the
method using Lyapunov functionals motivated by Huang [5], Korobeinikov [7], Li
and Shu [9], Nakata [12], McCluskey [11], Wang and Liu[18], Yan and Wang [21],
et al. This paper is organized as follows. In Section 2, we show the positivity and
ultimately boundedness of the solutions for (1.6)-(1.7) under suitable initial condi-
tions. In Section 3, we introduce the basic reproduction number for viral infection
R0 and for response reproduction numbers R1, R2, R3, R4 and derive the existence
of the five equilibrium for (1.6)-(1.7). The global stabilities of all equilibrium are
given in Section 4. A brief discuss section completes this paper.

2. Basic properties

To study the stability of equilibria and investigate the dynamic of system (1.6)-
(1.7), we need to consider a suitable phase space and a bounded feasible region.
For τ > 0, we define a Banach space by C = C([−τ, 0]; R), the space of continues
functions mapping the interval [−τ, 0] into R with norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|
for ϕ ∈ C. The nonnegative cone of C is defined as C+ = C([−τ, 0],R+), where
R+ = [0,∞). The initial conditions for system (1.6)-(1.7) are chosen at t = 0 as
ϕ ∈ C+ × R+ × C+ × R+ × R+ and ϕ(0) > 0. The following lemma establishes the
feasible region of the system and shows that the system is well-posed.

Lemma 2.1. Under the above initial conditions, system (1.6)-(1.7) has a unique
nonnegative solution, and all solutions are ultimately bounded in C × R+ × C ×
R+ × R+. Furthermore, all solutions eventually enter and remain in the following
bounded and positively invariant region:

Γ =
{

(T, T ∗, V, Y,A) ∈ C+ × R+ × C+ × R+ × R+ : ‖T‖ ≤ λ

d
+ 1, ‖T ∗‖ ≤ λ

d1
+ 1,

‖V ‖ ≤ Nδλ

cd1
+ 1, ‖Y ‖ ≤ βNkδλ2

pcdd1d2
e−sτ + 1, ‖A‖ ≤ gNδλ

qd1d3
+ 1
}
,

where d1 = min{δ, d}, d2 = min{γ, δ}, d3 = min{c, b}.
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Proof. For all ϕ ∈ C+ × R+ × C+ × R+, define

F (ϕ) =


λ− dϕ1(0)− f(ϕ1(0), ϕ3(0))

e−sτf(ϕ1(−τ), ϕ3(−τ))− δϕ2(0)− pϕ2(0)ϕ4(0)
Nδϕ2(0)− cϕ3(0)− qϕ5(0)ϕ3(0)

βϕ2(0)ϕ4(0)− γϕ4(0)
gϕ5(0)ϕ3(0)− bϕ5(0)

 .

Thus, for all ϕ ∈ C+ × R+ × C+ × R+ × R+, F (ϕ) is continuous, and Lipschitzian
in ϕ in each compact set in C+ × R+ × C+ × R+ × R+. Hence, there is a unique
solution of system (1.6)-(1.7) through (0, ϕ) [4, Theoroms 2.2.1 and 2.2.3]. Note
that Fi(ϕ) ≥ 0 whenever ϕ ≥ 0 and ϕi(0) = 0. It then follows from [16, Throem
5.2.1 and Remark 5.2.1] that C+ × R+ × C+ × R+ × R+ is positive invariant.

Next we show that positive solutions of (1.6)-(1.7) are ultimately bounded for
t ≥ 0. From the first equation of (1.6), we obtain dT (t)

dt ≤ λ − dT (t), and thus,
lim supt→∞ T (t) ≤ λ

d . Adding the first two equations, we then get

d
dt

(T (t) + T ∗(t+ τ)) = λ− dT (t)− f(T (t), V (t))(1− e−sτ )

− δT ∗(t+ τ)− pT ∗(t+ τ)Y (t+ τ)

≤ λ− d1(T (t) + T ∗(t+ τ)).

Thus, lim supt→∞(T (t) + T ∗(t+ τ)) ≤ λ
d1

. This relation and the third equation of
(1.6) imply

d
dt
V (t) = NδT ∗(t)− cV (t)− qA(t)V (t) ≤ Nδ λ

d1
− cV (t),

which follows that lim supt→∞ V (t) ≤ Nδλ
cd1

. Also, adding the second and fourth
equations of (1.6), we obtain

d
dt

(T ∗(t) +
p

β
Y (t)) = e−sτf(T (t− τ), V (t− τ))− δT ∗(t)− p

β
γY (t)

≤ e−sτkT (t)V (t)− δT ∗(t)− p

β
γY (t)

≤ e−sτkλ
d

Nδλ

cd1
− d2

[
T ∗(t) +

p

β
Y (t)

]
.

Hence, lim supt→∞(T ∗(t) + p
βY (t)) ≤ Nkδλ2

cdd1d2
e−sτ .

Similar to the above, we also get

d
dt

(V (t) +
q

g
A(t)) = NδT ∗(t)− cV (t)− qb

g
A(t)

≤ NδT ∗(t)− d3(V (t) +
q

g
A(t))

≤ Nδ λ
d1
− d3(V (t) +

q

g
A(t)).

Then, lim supt→∞(V (t) + q
gA(t)) ≤ Nδλ

d1d3
. Hence, T (t), T ∗(t), V (t), Y (t) and A(t)

are ultimately bounded in the bounded feasible and positively invariant region
Γ. �
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3. Reproductive numbers and equilibria

First of all, we show that system (1.6)-(1.7) has five possible equilibria. For
this, we define five threshold parameters, which are also called the reproduction
numbers.

The basic reproduction number of system (1.6)-(1.7) is

R0 =
Nλke−sτ

c(d+ λk1)
.

The CTL immune reproduction number R1 for system (1.6)-(1.7) is

R1 =
Nλkβe−sτ

γδ(Nk +Ndk2 − k1cesτ )

(
1− 1

R0

)
.

The antibody immune reproduction number R2 for system (1.6)-(1.7) is

R2 =
N2λkge−sτ

bc(Nk +Ndk2 − k1cesτ )

(
1− 1

R0

)
.

The CTL immune competitive reproduction number R3 for system (1.6)-(1.7) is

R3 =
λβ2kbe−sτ + k1gδ

2γ2esτ

βγδ(gd+ kb+ k2bd+ λk1g)
,

The antibody immune competitive reproduction number R4 for system (1.6)-(1.7)
is

R4 =
Ngδγ

βbc
.

Theorem 3.1. (i) System (1.6)-(1.7) always has an infection free equilibrium E0 =
(λd , 0, 0, 0, 0);

(ii) When R0 > 1, system (1.6)-(1.7) has an immune-free infection equilibrium

E1 = (T1, T
∗
1 , V1, 0, 0),

where

T1 =
Nλ+ ck2e

sτ

Nk +Ndk2 − k1cesτ
,

T ∗1 =
Nλke−sτ

δ(Nk +Ndk2 − k1cesτ )

(
1− 1

R0

)
,

V1 =
N2λke−sτ

c(Nk +Ndk2 − k1cesτ )

(
1− 1

R0

)
;

(iii) When R1 > 1, system (1.6)-(1.7) has an infection equilibrium with only
CTL immune responses E2 = (T2, T

∗
2 , V2, Y2, 0), where T2 is the positive root of the

following quadric equation:

cdk1βT
2 + (βcd+ kNδγ + dk2Nδγ − λk1βc)T − λ(βc+ k2Nδγ) = 0, (3.1)

and
T ∗2 =

γ

β
, V2 =

Nδγ

βc
, Y2 =

λ− dT2 − δT ∗2 esτ

pT ∗2 e
sτ

;

(iv) When R2 > 1, system (1.6)-(1.7) has an infection equilibrium with only
antibody immune responses E3 = (T3, T

∗
3 , V3, 0, A3), where T3 is the positive root of

the following quadric equation:

gdk1T
2 + (gd+ kb+ k2bd− λk1g)T − λ(g + k2b) = 0, (3.2)
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and

T ∗3 =
e−sτ

δ
f(T3, V3), V3 =

b

g
, A3 =

N(λ− dT3)− cV3e
sτ

qV3esτ
;

(v) When R3 > 1 and R4 > 1, system (1.6)-(1.7) has an interior equilib-
rium with both CTL immune responses and antibody immune responses E4 =
(T4, T

∗
4 , V4, Y4, A4), where T4 is the positive root of the following quadric equation:

gdk1T
2 + (gd+ kb+ k2bd− λk1g)T − λ(g + k2b) = 0, (3.3)

and

T ∗4 =
γ

β
, V4 =

b

g
, Y4 =

λ− dT4 − δT ∗4 esτ

pT ∗4 e
sτ

, A4 =
Nδγg − βcb

βqb
.

Proof. (i) Obviously, the infection free equilibrium E0 always exists.
(ii) We show that (1.6)-(1.7) admits an equilibrium E1 = (T1, T

∗
1 , V1, 0, 0), when

R0 > 1, which satisfies
λ− dT1 − f(T1, V1) = 0,

e−sτf(T1, V1)− δT ∗1 = 0,

NδT ∗1 − cV1 = 0.
(3.4)

From the third equation of (3.4), we obtain T ∗1 = c
NδV1. Substituting this into the

second equation of (3.4), we obtain

kT1

1 + k1T1 + k2V1
e−sτ =

c

N
, (3.5)

which follows from the first equation of (3.4) that

λ− dT1 = f(T1, V1) =
c

N
V1e

sτ . (3.6)

Combining (3.5) and (3.6), we obtain

T1 =
Nλ+ ck2e

sτ

Nk +Ndk2 − k1cesτ
.

Here, note that R0 > 1 implies that Nk+Ndk2−k1ce
sτ > 0. Consequently, T1 > 0.

Putting T1 into (3.4), we have

V1 =
N2λke−sτ

c(Nk +Ndk2 − k1cesτ )

(
1− 1

R0

)
,

which follows

T ∗1 =
Nλke−sτ

δ(Nk +Ndk2 − k1cesτ )

(
1− 1

R0

)
.

Hence, if R0 > 1, system (1.6)-(1.7) has an immune-free infection equilibrium
E1 = (T1, T

∗
1 , V1, 0, 0).

(iii) To find the infection equilibrium with only CTL immune responses E2 =
(T2, T

∗
2 , V2, Y2, 0), we consider the equations

λ− dT − f(T, V ) = 0,

e−sτf(T, V )− δT ∗ − pY T ∗ = 0,

NδT ∗ − cV = 0,

βT ∗Y − γY = 0.

(3.7)
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From the third and fourth equation of (3.7), we obtain

T ∗2 =
γ

β
, V2 =

Nδ

c
T ∗2 =

Nδγ

βc
.

Substituting V2 = Nδγ
βc into the first equation of (3.7), we obtain T2 satisfies (3.2),

thus

T2 =
−b1 +

√
b21 + 4cdk1βλ(βc+ k2Nδγ)

2cdk1β
,

where b1 = βcd+ kNδγ+ dk2Nδγ−λk1βc. Obviously T2 > 0. Combining the first
and second equation of (3.7), we obtain

Y2 =
λ− dT2 − δT ∗2 esτ

pT ∗2 e
sτ

.

Obviously, λ− dT2 − δT ∗2 esτ > 0 is equal to the following inequality

k1cδγe
sτ + βλkNe−sτ > βcd+ kNδγ + λk1βc+ dk2Nδγ.

On the other hand, it follows from R1 > 1 that

k1cδγe
sτ + βλkNe−sτ

βcd+ kNδγ + λk1βc+ dk2Nδγ
> 1.

Thus, we know that R1 > 1 implies Y2 > 0.
(iv) To find the infection equilibrium with only antibody immune responses E3 =

(T3, T
∗
3 , V3, 0, A3), we consider the following equations:

λ− dT − f(T, V ) = 0,

e−sτf(T, V )− δT ∗ = 0,

NδT ∗ − cV − qAV = 0,
gAV − bA = 0.

(3.8)

From the fourth equation of (3.8), we obtain V3 = b
g , Substituting V3 = b

g into the
first equation of (3.8), we obtain T3 > 0 satisfies (3.2). From the second equation
of (3.8), we obtain

T ∗3 =
e−sτ

δ
(λ− dT3) =

e−sτ

δ
f(T3, V3) > 0.

By (3.8), we also obtain

A3 =
N(λ− dT3)− cV3e

sτ

qV3esτ
.

On the other hand, λ− dT3 − cV3e
sτ

N > 0 is equivalent to the inequality

k1c
2besτ +N2λgke−sτ > cN(gd+ kb+ k2bd+ λk1g).

Obviously, it follows from R2 > 1 that

k1c
2besτ +N2λgke−sτ

cN(gd+ kb+ k2bd+ λk1g)
> 1.

Thus, we know that R2 > 1 implies A3 > 0.
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(v) To find the interior equilibria E4 = (T4, T
∗
4 , V4, Y4, A4), we consider the

following equations:
λ− dT − f(T, V ) = 0,

e−sτf(T, V )− δT ∗ − pY T ∗ = 0,

NδT ∗ − cV − qAV = 0,

βT ∗Y − γY = 0,
gAV − bA = 0.

(3.9)

It follows from (3.9) that

T ∗4 =
γ

β
, V4 =

b

g
, A4 =

Nδγg − βcb
βqb

=
c

q
(R4 − 1).

Thus, it follows from R4 > 1 that A4 > 0. Substituting V4 = b
g into the first

equation of (3.9), we obtain T4 > 0 satisfies (3.3). From the first and the second
equation of (3.9), we obtain

Y4 =
λ− dT4 − δT ∗4 esτ

pT ∗4 e
sτ

.

It is not difficult to show that the inequality λ− dT4 − δT ∗4 esτ > 0 is equivalent to

λkbe−sτ + k1gδ
2 γ

2

β2
esτ >

γ

β
δ(gd+ kb+ k2bd+ λk1g).

Obviously, R3 > 1 is equal to λ− dT4 − δT ∗4 esτ > 0. Consequently, Y4 > 0. �

4. Global stability of the equilibria

In this section, we consider the global asymptotic stabilities of three equilibria.
For convenience, define

g(x) = x− 1− lnx, x ∈ (0,+∞).

It is easy to see that g(x) ≥ 0 for all x ∈ (0,+∞) and min
0<x<+∞

g(x) = g(1) = 0.

Theorem 4.1. If R0 ≤ 1, then the infection-free equilibrium E0 = (λd , 0, 0, 0, 0) is
globally asymptotically stable in Γ.

Proof. Define a Lyapunov functional

U0(t) =
T0

1 + k1T0
U01(t) + U02(t),

where

U01(t) = g
(T (t)
T0

)
, U02(t) = esτT ∗(t) +

esτ

N
V (t) +

∫ t

t−τ
f(T (θ), V (θ))dθ.

Clearly, U0(t) is non-negative definite in Γ with respect to E0. Note that

dU01(t)
dt

=
T (t)− T0

T0T (t)
(λ− dT (t)− f(T (t), V (t))).

Substituting λ = dT0 to the above gives

dU01(t)
dt

= − d

T0T (t)
(T (t)− T0)2 −

( 1
T0
− 1
T (t)

)
f(T (t), V (t)).
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Direct computations give
dU02(t)

dt
= esτ (e−sτf(T (t− τ), V (t− τ))− δT ∗(t)− pY (t)T ∗(t))

+
esτ

N
(NδT ∗(t)− cV (t)− qA(t)V (t))

+ f(T (t), V (t))− f(T (t− τ), V (t− τ))

= −pesτY (t)T ∗(t)− cesτ

N
V (t)− qesτ

N
A(t)V (t) + f(T (t), V (t)).

Consequently,
dU0(t)

dt
= − d(T (t)− T0)2

(1 + k1T0)T (t)
+ C0(t),

where

C0(t)

= f(T (t), V (t))
(

1− T (t)− T0

(1 + k1T0)T (t)

)
− pesτY (t)T ∗(t)− esτ

N
V (t)(c− qA(t))

=
kT0

1 + k1T0

V (t)(1 + k1T (t))
1 + k1T (t) + k2V (t)

− cesτ

N
V (t)− pesτY (t)T ∗(t)− qesτ

N
A(t)V (t)

= (R0 − 1)
cesτV (t)(1 + k1T (t))

N(1 + k1T (t) + k2V (t))
− ck2e

sτ

N(1 + k1T (t) + k2V (t))
V 2(t)

− pesτY (t)T ∗(t)− qesτ

N
A(t)V (t).

Note that C0(t) ≤ 0 when R0 ≤ 1. Thus dU0(t)
dt ≤ 0. Let

M0 =
{

(T (t), T ∗(t), V (t), Y (t), A(t)) : U̇0(t) = 0
}
.

Clearly, U̇0(t) = 0 implies T (t) = T0 = λ
d . Thus, Ṫ (t) = λ− dT0 − f(T0, V (t)) = 0,

which gives V (t) = 0. Then, V̇ (t) = NδT ∗(t) = 0, which gives T ∗(t) = 0. Clearly,
the largest compact invariant set in M0:

M0 =
{

(T (t), T ∗(t), V (t), Y (t), A(t)) : T (t) =
λ

d
, T ∗(t) = V (t) = Y (t) = A(t) = 0

}
.

By the above discussion, in view of the LaSalle invariance principle [4, Theorem
5.3.1], we see that all positive solutions approach the largest compact invariant set
E0 in M0. Thus, E0 is globally asymptotically stable in Γ. �

Theorem 4.2. If R1 ≤ 1 < R0 and R2 ≤ 1, then the immune-free infection
equilibrium E1 = (T1, T

∗
1 , V1, 0, 0) is globally asymptotically stable in Γ.

Proof. Define a Lyapunov functional

U1(t) = e−sτU11(t) + T ∗1 g
(T ∗(t)
T ∗1

)
+
V1

N
g
(V (t)
V1

)
+
p

β
Y (t) +

q

Ng
A(t) + δT ∗1U12(t),

where

U11(t) = T (t)− T1 −
∫ T (t)

T1

f(T1, V1)
f(θ, V1)

dθ, U12(t) =
∫ t

t−τ
g
(e−sτ
δT ∗1

f(T (θ), V (θ))
)

dθ.

Let

H(T ) = T − T1 −
∫ T

T1

f(T1, V1)
f(θ, V1)

dθ, T ∈ (0,+∞).
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Since
dH(T )

dT
= 1− f(T1, V1)

f(T, V1)
,

we have
dH(T )

dT
< 0 for T ∈ (0, T1),

dH(T )
dT

> 0 for T ∈ (T1,+∞),
dH(T1)

dT
= 0.

We also have H(T1) = 0. Then H(T ) > 0 for all T > 0. Hence, U11(t) ≥ 0 for all
t ≥ 0. Obviously, U1(t) is non-negative definite in Γ with respect to E1.

First, we calculate dU11(t)
dt and dU12(t)

dt .

dU11(t)
dt

=
(

1− f(T1, V1)
f(T (t), V1)

)dT (t)
dt

,

and
dU12(t)

dt
=
e−sτ

δT ∗1

(
f(T (t), V (t))− f(T (t− τ), V (t− τ))

)
+ ln

f(T (t− τ), V (t− τ))
f(T (t), V (t))

=
e−sτ

δT ∗1

(
f(T (t), V (t))− f(T (t− τ), V (t− τ))

)
+ ln

f(T1, V1)
f(T (t), V1)

+ ln
T ∗(t)V1

T ∗1 V (t)
+ ln

V (t)f(T (t), V1)
V1f(T (t), V (t))

+ ln
T ∗1 f(T (t− τ), V (t− τ))

T ∗(t)f(T1, V1)
.

Thus
dU1(t)

dt
= e−sτ

(
1− f(T1, V1)

f(T (t), V1)

)
(λ− dT (t)− f(T (t), V (t)))

+
(

1− T ∗1
T ∗(t)

)(
e−sτf(T (t− τ), V (t− τ))− δT ∗(t)− pY (t)T ∗(t)

)
+
p

β
(βT ∗(t)− γ)Y (t) +

q

Ng
(gV (t)− b)A(t)

+ e−sτ
(
f(T (t), V (t))− f(T (t− τ), V (t− τ))

)
+ δT ∗1

(
ln

f(T1, V1)
f(T (t), V1)

+ ln
T ∗(t)V1

T ∗1 V (t)
+ ln

V (t)f(T (t), V1)
V1f(T (t), V (t))

+ ln
T ∗1 f(T (t− τ), V (t− τ))

T ∗(t)f(T1, V1)

)
Substituting

V1 =
N2λke−sτ

c(Nk +Nd− k1cesτ )

(
1− 1

R0

)
and

λ = dT1 + f(T1, V1), δesτT ∗1 = f(T1, V1), NδT ∗1 = cV1

into the above gives

dU1(t)
dt

= −de
−sτ (1 + k2V1)

1 + k1T1 + k2V1

(T (t)− T1)2

T (t)
+ C1(t),

where

C1(t) = p
(
T ∗1 −

γ

β

)
Y (t) +

qb

Ng

(gV1

b
− 1
)
A(t)

+ δT ∗1

[
ln
f(T (t− τ), V (t− τ))

f(T (t), V (t))
− V (t)

V1
+
f(T (t), V (t))
f(T (t), V1)
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+
(

3− f(T1, V1)
f(T (t), V1)

− T ∗(t)V1

T ∗1 V (t)
− T ∗1
T ∗(t)

f(T (t− τ), V (t− τ))
f(T1, V1)

)]
.

Next, we claim that C1(t) is not positive. In fact,

C1(t) =
pγ

β
(R1 − 1)Y (t) +

qb

Ng
(R2 − 1)A(t)− δT ∗1

[
g
( f(T1, V1)
f(T (t), V1)

)
+ g
(T ∗(t)V1

T ∗1 V (t)

)
+ g
(V (t)f(T (t), V1)

V1f(T1, V1)

)
+ g
( T ∗1
T ∗(t)

f(T (t− τ), V (t− τ))
f(T1, V1)

)
+ 1 +

V (t)
V1
− f(T (t), V (t))

f(T (t), V1)
− V (t)f(T (t), V1)
V1f(T (t), V (t))

]
=
pγ

β
(R1 − 1)Y (t) +

qb

Ng
(R2 − 1)A(t)− δT ∗1

[
g
( f(T1, V1)
f(T (t), V1)

)
+ g
(T ∗(t)V1

T ∗1 V (t)

)
+ g
(V (t)f(T (t), V1)

V1f(T1, V1)

)
+ g
( T ∗1
T ∗(t)

f(T (t− τ), V (t− τ))
f(T1, V1)

)
+

k2(1 + k1T (t))(V (t)− V1)2

V1(1 + k1T (t) + k2V (t))(1 + k1T (t) + k2V1)

]
.

Clearly, C1(t) ≤ 0 when R1 ≤ 1 and R2 ≤ 1. Hence, dU1(t)
dt ≤ 0. Let

M1 =
{

(T (t), T ∗(t), V (t), Y (t), A(t)) : U̇1(t) = 0
}
.

It can be verified from the derivative of U̇1(t) = 0 if and only if T (t) = T1, V (t) = V1,
T∗(t)V1
T∗1 V (t) = 1. Hence, T ∗(t) = T ∗1 . It follows from the second and the third equation
of the model (1.6)-(1.7) that Y (t) = A(t) = 0. Clearly, the largest compact invariant
set in M1 is {

(T (t), T ∗(t), V (t), Y (t), A(t)) : T (t) = T1, T
∗(t) = T ∗1 ,

V (t) = V1, Y (t) = A(t) = 0
}
.

By the LaSalle invariance principle [4, Theorem 5.3.1 5.3.1], we know that, when
R1 ≤ 1 < R0 and R2 ≤ 1, the equilibrium E1 is globally asymptotically stable in
Γ. �

Theorem 4.3. If R1 > 1 and R4 ≤ 1, then the infection equilibrium E2 =
(T2, T

∗
2 , V2, Y2, 0) with only CTL immune responses is globally asymptotically stable

in Γ.

Proof. Define a Lyapunov functional as follows:

U2(t) = e−sτU21(t) + T ∗2 g
(T ∗(t)
T ∗2

)
+
δ + pY2

Nδ
g
(V (t)
V2

)
+
pY2

β
g
(Y (t)
Y2

)
+

q

Ng

(
1 +

p

δ
Y2

)
A(t) + (δ + pY2)T ∗2U22(t),

where

U21(t) = T (t)− T2 −
∫ T (t)

T2

f(T2, V2)
f(θ, V2)

dθ,

U22(t) =
∫ t

t−τ
g
( e−sτ

(δ + pY2)T ∗2
f(T (θ), V (θ))

)
dθ.
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Obviously, U2(t) is non-negative definite in Γ with respect to E2.
Next we calculate the time derivative of U2(t) along the solution of system.

(1.6)-(1.7):

dU2(t)
dt

= e−sτ
(

1− f(T2, V2)
f(T (t), V2)

)(
λ− dT (t)− f(T (t), V (t))

)
+
(

1− T ∗2
T ∗(t)

)(
e−sτf(T (t− τ), V (t− τ))− δT ∗(t)− pY (t)T ∗(t)

)
+
δ + pY2

Nδ

(
1− V2

V (t)

)(
NδT ∗(t)− cV (t)− qA(t)V (t)

)
+
p

β

(
1− Y2

Y (t)

)
(βT ∗(t)− γ)Y (t) +

q

Ng

(
1 +

p

δ
Y2

)
(gV (t)− b)A(t)

+ e−sτ
(
f(T (t), V (t))− f(T (t− τ), V (t− τ))

)
+ (δ + pY2)T ∗2

(
ln

f(T2, V2)
f(T (t), V2)

+ ln
T ∗(t)V2

T ∗2 V (t)
+ ln

V (t)f(T (t), V2)
V2f(T (t), V (t))

+ ln
T ∗2 f(T (t− τ), V (t− τ))

T ∗(t)f(T2, V2)

)
.

Substituting

λ = dT2 + f(T2, V2), esτ (δ + pY2)T ∗2 = f(T2, V2), T ∗2 =
γ

β
,

T ∗2
V2

=
c

Nδ

into the above gives

dU2(t)
dt

= −de
−sτ (1 + k2V2)

1 + k1T2 + k2V2

(T (t)− T2)2

T (t)
+ C2(t),

where

C2(t) =
bq

gN

(
1 +

p

δ
Y2

)( b
g
V2 − 1

)
A(t) + (δ + pY2)T ∗2

[
ln
f(T (t− τ), V (t− τ))

f(T (t), V (t))

+
(

3− f(T2, V2)
f(T (t), V2)

− T ∗(t)V2

T ∗2 V (t)
− T ∗2
T ∗(t)

f(T (t− τ), V (t− τ))
f(T2, V2)

)
+
(
− V (t)

V2
+
f(T (t), V (t))
f(T (t), V2)

)]
=

bq

gN

(
1 +

p

δ
Y2

)
(R4 − 1)A(t)− (δ + pY2)T ∗2

[
g
( f(T2, V2)
f(T (t), V2)

)
+ g
(T ∗(t)V2

T ∗2 V (t)

)
+ g
(V (t)
V2

f(T (t), V2)
f(T (t), V (t))

)
+ g
( T ∗2
T ∗(t)

f(T (t− τ), V (t− τ))
f(T2, V2)

)
+

k2(1 + k1T (t))(V (t)− V2)2

V2(1 + k1T (t) + k2V (t))(1 + k1T (t) + k2V2)

]
.

Since R4 = b
gV2, thus, when R4 ≤ 1, C2(t) ≤ 0. Hence, dU2(t)

dt ≤ 0. Let

M2 =
{

(T (t), T ∗(t), V (t), Y (t), A(t)) : U̇2(t) = 0
}
.

It can be verified from the derivative of U̇2(t) = 0 if and only if

V (t) = V2,
T ∗(t)V2

T ∗2 V (t)
= 1, A(t) = 0.
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Then, T ∗(t) = T ∗2 . From the first and the second equation of the model (1.6)-(1.7),
we have T (t) = T2, Y (t) = Y2. Clearly, the largest compact invariant set in M2 is{

(T (t), T ∗(t), V (t), Y (t), A(t)) : T (t) = T2, T
∗(t) = T ∗2 , V (t) = V2,

Y (t) = Y2, A(t) = 0
}
.

Hence the LaSalle invariance principle [4, Theorem 5.3.1] implies that the equilib-
rium E2 is globally asymptotically stable in Γ when R1 > 1 and R4 ≤ 1. �

Theorem 4.4. If R2 > 1 and R3 ≤ 1, then the infection equilibrium E3 =
(T3, T

∗
3 , V3, 0, A3) with only antibody immune responses is globally asymptotically

stable in Γ.

Proof. Define a Lyapunov functional

U3(t) = e−sτU31(t) + T ∗3 g
(T ∗(t)
T ∗3

)
+
V3

N
g
(V (t)
V3

)
+
p

β
Y (t) +

q

Ng
g
(A(t)
A3

)
+ δT ∗3U32(t),

where

U31(t) = T (t)− T3 −
∫ T (t)

T3

f(T3, V3)
f(θ, V3)

dθ, U32(t) =
∫ t

t−τ
g
(e−sτ
δT ∗3

f(T (θ), V (θ))
)

dθ.

Obviously, U3(t) is non-negative definite in Γ with respect to E3. The time deriva-
tive of U3(t) along the solution of system (1.6)-(1.7) is

dU3(t)
dt

= e−sτ
(

1− f(T3, V3)
f(T (t), V3)

)(
λ− dT (t)− f(T (t), V (t))

)
+
(

1− T ∗3
T ∗(t)

)(
e−sτf(T (t− τ), V (t− τ))− δT ∗(t)− pY (t)T ∗(t)

)
+

1
N

(
1− V3

V (t)

)(
NδT ∗(t)− cV (t)− qA(t)V (t)

)
+
p

β

(
βT ∗(t)− γ

)
Y (t) +

q

Ng

(
1− A3

A(t)

)
(gV (t)− b)A(t)

+ e−sτ
(
f(T (t), V (t))− f(T (t− τ), V (t− τ))

)
+ δT ∗3

(
ln

f(T3, V3)
f(T (t), V3)

+ ln
T ∗(t)V3

T ∗3 V (t)
+ ln

V (t)f(T (t), V3)
V3f(T (t), V (t))

+ ln
T ∗3 f(T (t− τ), V (t− τ))

T ∗(t)f(T3, V3)

)
.

Substituting

λ = dT3 + f(T3, V3), esτδT ∗3 = f(T3, V3), NδT ∗3 = (c+ qA3)V3, V3 =
b

g

in the above gives

dU3(t)
dt

= −de
−sτ (1 + k2V3)

1 + k1T3 + k2V3

(T (t)− T3)2

T (t)
+ C3(t),

where

C3(t)

=
pγ

β

(β
γ
T ∗3 − 1

)
Y (t) + δT ∗3

[
ln
f(T (t− τ), V (t− τ))

f(T (t), V (t))
− V (t)

V3
+
f(T (t), V (t))
f(T (t), V3)
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+
(

3− f(T3, V3)
f(T (t), V3)

− T ∗(t)V3

T ∗3 V (t)
− T ∗3
T ∗(t)

f(T (t− τ), V (t− τ))
f(T3, V3)

)]
=
pγ

β

(β
γ
T ∗3 − 1

)
Y (t)− (δ + pY3)T ∗3

[
g
( f(T3, V3)
f(T (t), V3)

)
+ g
(T ∗(t)V3

T ∗3 V (t)

)
+ g
(V (t)
V3

f(T (t), V3)
f(T (t), V (t))

)
+ g
( T ∗3
T ∗(t)

f(T (t− τ), V (t− τ))
f(T3, V3)

)
+

k2(1 + k1T (t))(V (t)− V3)2

V3(1 + k1T (t) + k2V (t))(1 + k1T (t) + k2V3)

]
.

By Theorem 3.1 (iv), we have

T3 =
−b2 +

√
b22 + 4λgdk1(g + k2b)

2gdk1
, T ∗3 =

e−sτ

δ
(λ− dT3).

where b2 = gd+ kb+ k2bd− λk1g.
Obviously, it is not difficult to show that R3 ≤ 1 is equals to λ−dT3−δ γβ e

sτ ≤ 0.
We then get

λ− dT3 − δ
γ

β
esτ = δesτ

(λ− dT3

δesτ
− γ

β

)
= δesτ

(
T ∗3 −

γ

β

)
≤ 0,

which follows β
γ T
∗
3 − 1 ≤ 0. Then we have C3(t) ≤ 0, if R3 ≤ 1. Hence, dU3(t)

dt ≤ 0.
Let

M3 =
{

(T (t), T ∗(t), V (t), Y (t), A(t)) : U̇3(t) = 0
}
.

It can be verified from the derivative of U̇3(t) = 0 if and only if T (t) = T3, V (t) =
V3,T

∗(t)V3
T∗3 V (t) = 1, Y (t) = 0. Then, T ∗(t) = T ∗3 . From the third equation of the model

(1.6)-(1.7), we have A(t) = A3. Clearly, the largest compact invariant set in M3 is{
(T (t), T ∗(t), V (t), Y (t), A(t)) : T (t) = T3, T

∗(t) = T ∗3 , V (t) = V3,

Y (t) = 0, A(t) = A3

}
.

Using the LaSalle invariance principle [4, Theorem 5.3.1], we see that, when R2 > 1
and R3 ≤ 1, the equilibrium E3 is globally asymptotically stable in Γ. �

Theorem 4.5. If R3 > 1 and R4 > 1, then the interior equilibrium

E4 = (T4, T
∗
4 , V4, Y4, A4)

with both CTL immune responses and antibody immune responses is globally asymp-
totically stable in Γ.

Proof. Define a Lyapunov functional

U4(t) = e−sτU41(t) + T ∗4 g
(T ∗(t)
T ∗4

)
+
δ + pY2

Nδ
g
(V (t)
V4

)
+
p

β
g
(Y (t)
Y4

)
+

q

Ng

(
1 +

pY4

δ

)
g
(A(t)
A4

)
+ (δ + pY4)T ∗4U42(t),

where

U41(t) = T (t)− T4 −
∫ T (t)

T4

f(T4, V4)
f(θ, V4)

dθ,

U42(t) =
∫ t

t−τ
g
( e−sτ

(δ + pY4)T ∗4
f(T (θ), V (θ))

)
dθ.



16 Y. ZHAO, Z. XU EJDE-2014/132

Obviously, the Lyapunov functional U4(t) is non-negative definite in Γ with respect
to E4. Then the time derivative of U4(t) along the solution of system (1.6)-(1.7) is

dU4(t)
dt

= e−sτ
(

1− f(T4, V4)
f(T (t), V4)

)(
λ− dT (t)− f(T (t), V (t))

)
+
(

1− T ∗4
T ∗(t)

)(
e−sτf(T (t− τ), V (t− τ))− δT ∗(t)− pY (t)T ∗(t)

)
+
δ + pY4

Nδ

(
1− V4

V (t)

)(
NδT ∗(t)− cV (t)− qA(t)V (t)

)
+
p

β

(
1− Y4

Y (t)

)
(βT ∗(t)− γ)Y (t) +

q

Ng

(
1 +

pY4

δ

)
(gV (t)− b)A(t)

+ e−sτ
(
f(T (t), V (t))− f(T (t− τ), V (t− τ))

)
+ (δ + pY4)T ∗4

(
ln

f(T4, V4)
f(T (t), V4)

+ ln
T ∗(t)V4

T ∗4 V (t)
+ ln

V (t)f(T (t), V4)
V4f(T (t), V (t))

+ ln
T ∗4 f(T (t− τ), V (t− τ))

T ∗(t)f(T4, V4)

)
Substituting

λ = dT4 + f(T4, V4), esτ (δ + pY4)T ∗4 = f(T4, V4), NδT ∗4 = (c+ qA4)V4,

T ∗4 =
γ

β
, V4 =

b

g
, A4 =

Nδγg − βcb
βqb

into the above gives

dU4(t)
dt

= − de−sτ (1 + k2V4)
(1 + k1T4 + k2V4)

(T (t)− T4)2

T (t)
+ C4(t),

where

C4(t) = (δ + pY4)T ∗4
[(
− V (t)

V4
+
f(T (t), V (t))
f(T (t), V4)

)
+ ln

f(T (t− τ), V (t− τ))
f(T (t), V (t))

+
(

3− f(T4, V4)
f(T (t), V4)

− T ∗(t)V4

T ∗4 V (t)
− T ∗4
T ∗(t)

f(T (t− τ), V (t− τ))
f(T4, V4)

)]
= −(δ + pY4)T ∗4

[
g
( f(T4, V4)
f(T (t), V4)

)
+ g
(T ∗(t)V4

T ∗4 V (t)

)
+ g
(V (t)
V4

f(T (t), V4)
f(T (t), V (t))

)
+ g
( T ∗4
T ∗(t)

f(T (t− τ), V (t− τ))
f(T4, V4)

)
+

k2(1 + k1T (t))(V (t)− V4)2

V4(1 + k1T (t) + k2V (t))(1 + k1T (t) + k2V4)

]
.

Thus C4(t) ≤ 0. Hence, dU4(t)
dt ≤ 0. Let

M4 =
{

(T (t), T ∗(t), V (t), Y (t), A(t)) : U̇4(t) = 0
}
.

It can be verified from the derivative of U̇4(t) = 0 if and only if

T (t) = T4, V (t) = V4,
T ∗(t)V4

T ∗4 V (t)
= 1,
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Therefore, T ∗(t) = T ∗4 . From the second and the third equation of the model (1.6)-
(1.7), we have Y (t) = Y4, A(t) = A4. Clearly, the largest compact invariant set in
M4 is {

(T (t), T ∗(t), V (t), Y (t), A(t)) : T (t) = T4, T
∗(t) = T ∗4 , V (t) = V4,

Y (t) = Y4, A(t) = A4

}
.

Hence, when R3 > 1 and R4 > 1, the equilibrium E4 is globally asymptotically
stable in Γ by the LaSalle invariance principle [4, Theorem 5.3.1]. Thus, the proof
is complete. �

Discussion. Many authors had investigated the global dynamics of viral infection
models. Korobeinikov [7] studied the basic viral infection model (1.1) using Lya-
punov functionals. Nowak and Bangham [13] added the effect of CTLS immune
response to the basic virus dynamics model, which exists in many biological organ-
ism. Recently, the global dynamics for a delayed viral infection model which has
bilinear incidence rate and the saturated infection rate were analyzed by Yan and
Wang [21] and Wang and Liu [18], respectively. They all showed that the thresh-
olds parameters work as an important parameter which determines that is globally
asymptotically.

In this paper, we assume that the incidence rate of the virus model is described
by a Beddington-DeAngelis functional responses. Then we obtained the global
dynamics of a delayed differential equations for a virus model with CTL and anti-
body immune responses. The global stabilities of the infection free equilibrium, the
immune free equilibrium, the CTL-activated equilibrium, the antibody-activated
equilibrium, and the interior equilibrium of system (1.6)-(1.7) have been completely
established by using the Lasalle type theorem. From Theorems 4.1–4.5, we see that
the five equilibria are globally asymptotically stable when the five threshold param-
eters satisfy certain conditions. For cases where system (1.6) has bilinear incidence
rate or the saturated infection rate; i.e., for systems (1.4) or (1.5), Theorems 4.1–
4.5 reduce to [21, Theorems 4.1–4.5] or [18, Theorems 4.1], respectively. Thus, our
analytic results generalize those results in [21, 18].
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