
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 142, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

CONTINUOUS EVOLUTION OF EQUATIONS AND INCLUSIONS
INVOLVING SET-VALUED CONTRACTION MAPPINGS WITH
APPLICATIONS TO GENERALIZED FRACTAL TRANSFORMS

HERB KUNZE, DAVIDE LA TORRE, FRANKLIN MENDIVIL, EDWARD R. VRSCAY

Abstract. Let T be a set-valued contraction mapping on a general Banach

space B. In the first part of this paper we introduce the evolution inclusion
ẋ + x ∈ Tx and study the convergence of solutions to this inclusion toward

fixed points of T . Two cases are examined: (i) T has a fixed point ȳ ∈ B
in the usual sense, i.e., ȳ = T ȳ and (ii) T has a fixed point in the sense of
inclusions, i.e., ȳ ∈ T ȳ. In the second part we extend this analysis to the case

of set-valued evolution equations taking the form ẋ+x = Tx. We also provide

some applications to generalized fractal transforms.

1. Introduction

In [2], it was shown that given a a Banach space B and a contraction mapping
T : B → B, the initial value problem

ẏ(t) = Ty(t)− y(t), y(0) = y0 ∈ B, (1.1)

admits a unique solution y : [0,∞) → B which converges exponentially rapidly to
the unique fixed point ȳ ∈ B of T . In other words, ȳ = T ȳ is the unique globally
asymptotically stable solution of (1.1). The main purpose in introducing (1.1)
was to produce a continuous evolution toward ȳ, as opposed to the usual discrete
sequence of iterates yn = Tny0 that converges to ȳ, independent of y0. The original
motivation for such an evolution arose from a desire to perform continuous (in time)
nonlocal, fractal-like operations on images, in which B denotes a Banach space of
functions defined on a compact set X ⊂ Rn.

Nevertheless, the continuous evolution method of (1.1) can also be applied in
other settings where discrete iteration has normally been considered, for example,
complex analytic dynamics, including (i) the iteration of rational maps and (ii)
Newton’s method (and its generalizations) in the complex plane.

In this paper, we wish to consider an extension of the evolution equation in
(1.1) to the case of inclusions. Set-valued differential inclusions appear to be the
most natural way to capture and explain the level of uncertainty, the absence of
controls and the variety of available dynamics that arise in many applied disciplines,
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including physics, mechanics and engineering. The importance of inclusions, which
has been realized in the control theory literature, motivated our introduction of
the notion of an Iterated Multifunction System (IMS) as a natural extension of the
classical notion of an Iterated Function System (IFS) [5, 7].

To produce such an extension, first rewrite (1.1) in the form

ẏ(t) + y(t) = T (y(t)), y(0) = y0 ∈ B. (1.2)

Now let T : B ⇒ B be a set-valued contraction mapping and consider the following
evolution inclusion,

ẏ(t) + y(t) ∈ T (y(t)), y(0) = y0 ∈ B. (1.3)

The complexity of this inclusion is much greater than (1.2). One might think that
the way to proceed is by considering regular contractive selections. In general,
however, selections with this property are difficult to establish. It is even difficult
to guarantee the existence of Lipschitz selections. As such, we consider here only
cases in which the existence of continuous selections is guaranteed.

Later in the paper we extend this approach to the case of set-valued equations

ẏ(t) + y(t) = T (y(t)), y(0) = y0 ∈ B, (1.4)

in which y : [0,∞) ⇒ B is a set-valued solution and the derivative of y w.r.t time
is constructed by means of the Minkowski sum.

We end this section with a few remarks regarding (1.1) that will be helpful in our
analysis. In [2], the solution of (1.1) was easily accomplished by applying classical
techniques to (1.2), namely, Duhamel’s formula which leads to the equation

y(t) = y0e
−t + e−t

∫ t

0

es(Ty)(s) ds. (1.5)

In the special case y0 = ȳ, we have y(t) = ȳ = T ȳ so that (1.5) leads to the trivial
equation,

ȳ = ȳe−t + e−t
∫ t

0

es(T ȳ)(s) ds. (1.6)

Subtraction, followed by Minkowski’s integral inequality, etc., leads to the desired
result,

‖y(t)− ȳ‖ ≤ ‖y0 − ȳ‖e(cT−1)t, (1.7)
where cT ∈ [0, 1) is the contractivity factor of T . One may also examine this
problem in terms of semigroups, first by writing (1.1) as

ẋ(t) = Tx(t)− x(t) = (T − I)x(t) . (1.8)

The existence of a unique classical solution to (1.8) can be established using the
following result.

Theorem 1.1 ([2]). Let B be a real Banach space and T : B → B a contraction
map on B with fixed point function x̄. Let us suppose that T −I is a closed operator
and that the resolvent set of T − I is nonempty. Then for any initial value x0 ∈ B,
the unique solution x(t) to (1.8) converges exponentially rapidly to x̄ as t→ +∞.

The paper is organized as follows. In Section 2 we provide a brief overview of
the method of Iterated Function Systems with Mappings which will be useful in
the sequel. In Section 3 we present an extension to set-valued inclusions and we
provide some results related to the convergence of fixed points. In Section 4 a
different approach, involving set-valued equations in Banach spaces, is considered.
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2. Iterated Function Systems with Mappings and their continuous
evolution

In general, the action of a generalized fractal transform (GFT) T : S → S
on an element u of the complete metric space (S, d) can be summarized in the
following steps. It first produces a set of N spatially-contracted copies of u and
then modifies the values of these copies by means of a suitable range-mapping.
Finally, it recombines these modified copies by means of an appropriate operator
in order to define the element v ∈ S, v = Tu. Under appropriate conditions, the
fractal transform T is a contraction on (S, d) which, from Banach’s Fixed Point
Theorem, guarantees the existence of a unique fixed point ū = T ū.

A special case of GFTs which operate on functions are Iterated Function Systems
with Mappings (IFSM), as formulated in [4]. We consider the case in which u :
[0, 1]→ R and thus the IFSM acts on the Banach space

B = {u : [0, 1]→ R, u ∈ L2[0, 1]}. (2.1)

The ingredients of an N -map IFSM on B are

(1) A set of N contractive mappings w = {w1, w2, . . . , wN}, wi(x) : [0, 1] →
[0, 1], such that [0, 1] = ∪Ni=1wi([0, 1]). In most practical situations, the wi
are assumed to be affine, i.e.,

wi(x) = six+ ai, 0 ≤ si < 1, 0 ≤ ai ≤ 1, 0 ≤ si + ai ≤ 1, i = 1, 2, . . . , N ; (2.2)

(2) A set of associated functions—the so-called greyscale maps—
φ = {φ1, φ2, . . . , φN}, φi : R→ R, assumed to be Lipschitz. Once again, in
most practical situations, affine maps are employed, i.e.,

φi(t) = αit+ βi, (2.3)

Associated with the N -map IFSM (w, φ) is the GFT operator T , the action of which
on a function u ∈ B is given by

(Tu)(x) =
N∑
i=1

′ φi(u(w−1
i (x))), (2.4)

where the prime denotes that the sum operates on all those terms for which w−1
i (x)

is defined.

Theorem 2.1. [4] T : B → B and for any u, v ∈ B we have

d2(Tu, Tv) ≤ Cd2(u, v) , (2.5)

where

C =
N∑
i=1

s
1/2
i αi. (2.6)

When C < 1, then T is contractive on X, implying the existence of a unique
fixed point ū ∈ B such that ū = T ū. Also, from Banach’s Fixed Point Theorem,
the sequence

un+1 = Tun (2.7)

converges to ū for any initial value u0.
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Example: The 3-map IFSM on [0, 1] defined as follows,

w1(x) = 0.5x , φ1(t) = 0.6t+ 0.2 ,

w2(x) = 0.4x+ 0.3 , φ2(t) = 0.25t+ 0.25 ,

w3(x) = 0.6x+ 0.4 , φ3(t) = 0.4t+ 0.6 .
(2.8)

A quick calculation shows that the Lipschitz constant in (2.6) is C ≈ 0.8922 < 1,
which implies that the fractal transform T associated with this IFSM is contractive.
In Figure 1 are plotted the functions u1(x), u2(x) and u3(x) obtained from the
iteration process in (2.7) with seed function u0(x) = 0. An approximation to the
attractor function ū(x) is also plotted. These plots were computed over a grid of
2001 equipartition points over [0, 1]. The approximation to ū required 43 iterations
of T to achieve convergence to one part in 10−5. (The computation time was only
0.003 seconds.)

Note from this figure that the iterate u1(x) is a piecewise constant function. This
is a consequence of the use of the seed function u0(x) = 0 in the iteration process
involving an IFSM with affine greyscale maps. In general, from (2.3) and (2.4), if
u0(x) = 0, then

u1(x) =
N∑
i=1

βi IXi
(x), x ∈ [0, 1], (2.9)

where Xi = wi([0, 1]) and IS(x) denotes the indicator function of a set S ⊆ [0, 1].
In this example,

u1(x) = 0.2 I[0,0.5](x) + 0.25 I[0.3,0.7](x) + 0.6 I[0.4,1.0](x) . (2.10)

We now consider the continuous evolution associated with this fractal transform
T , as defined by (1.1). It is convenient to rewrite the evolution equation in the
form

∂u

∂t
= Tu− u, u(x, 0) = u0(x) , (2.11)

where the solution u(x, t) is now expressed as a function of the spatial variable
x ∈ [0, 1] and the time variable t ≥ 0. From the discussion in the Introduction, all
solutions u(x, t) approach the attractor function ū(x) of T as t→∞.

In Figure 2 are plotted approximations to the solution u(x, t) to (2.11), with
initial condition u0(x) = 0, at times t = 0.1, 0.5, 1.0 and 2.0. The solutions were
computed over the 2001 equally-spaced gridpoints used in the previous example by
means of a simple forward Euler time-difference scheme with step size h = 0.01.
(Discretization of the time derivative of (1.1) is discussed in [2] as well as in Section
3.1 of this paper.) The vertical scale of Figure 2 has been expanded somewhat from
that of Figure 1 in order to accentuate the differences between the graphs. Note
that the solution u(x, 1) at time t = 1 is more “fractal-like” and not identical to the
piecewise constant solution u1(x) obtained from the discrete iteration process of
(2.7) and shown in Figure 1. In other words, solutions to the continuous evolution
equation do not necessarily interpolate the iterates of the discrete evolution process.
This feature was discussed in [2].

The solutions u(x, 1) and u(x, 2) in Figure 2 demonstrate an evolution of u(x, t)
toward the attractor function ū(x) of T plotted in Figure 1. Further evidence
of numerical convergence is shown in Figure 3, where the difference functions
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(a) u1(x) (b) u2(x)

(c) u3(x) (d) ū(x)

Figure 1. Iterates u1, u2 and u3 produced by the iteration scheme
un+1 = Tun for the IFSM in the Example in the text, starting with
the seed function u0(x) = 0. The attractor function ū(x) of the
IFSM is also shown.

∆(x, t) = ū(x) − u(x, t) are plotted for t = 5, 10 and 15. At t = 20, the differ-
ences between u(x, 20) and ū(x) are within 2 parts in 10−3 over all 2001 gridpoints.
(The computation time is only 0.002 seconds.)

3. Set-valued inclusions involving set-valued contraction mappings

We now consider the following evolution inclusion,

ẏ(t) + y(t) ∈ T (y(t)), y(0) = y0 ∈ B, (3.1)

where T : B → B is a set-valued contraction mapping, as defined below.

Definition 3.1. Let (Z, d) be a metric space and T : Z ⇒ Z be a set-valued
mapping. We say that T is a contraction if there exists a cT ∈ [0, 1) such that the
following property holds

dH(T (z1), T (z2)) ≤ cT d(z1, z2) (3.2)

for all z1, z2 ∈ Z, where

dH(T (x1), T (x2)) = max
{

sup
a1∈Tx1

inf
a2∈Tx2

‖a1 − a2‖, sup
a2∈Tx2

inf
a1∈Tx1

‖a1 − a2‖
}

is the standard Hausdorff distance between sets.
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(a) t = 0.1 (b) t = 0.2

(c) t = 1 (d) t = 2

Figure 2. Some solutions u(x, t) to the continuous evolution
equation (2.11) where T is the fractal transform associated with
the 3-map IFSM in (2.8). Initial condition: u(x, 0) = 0.

Figure 3. A plot of the difference functions ∆(x, t) = ū(x) −
u(x, t) for t = 5 (top), t = 10 (middle) and t = 15 (bottom) for
0 ≤ x ≤ 1, demonstrating the numerical convergence of u(x, t) to
ū(x).

For compact and convex sets A,B ⊂ B, it is easy to see that

dH(A,B) = sup
p∈B∗,‖p‖=1

| supp(p,A)− supp(p,B)|,

where
supp(·, A) : B∗ → R given by p 7→ sup

a∈A
p(a)
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is the support function of the convex set A (see [11, Ch. 13] for details on support
functions).

Theorem 3.2 ([3]). Let B be a Banach space and T : B ⇒ B be a set-valued
contraction mapping taking compact and convex values. Then there exists at least
one solution z̄ ∈ B to the fixed point inclusion z ∈ T (z).

As mentioned earlier, the complexity of (3.1) is much greater than that of its
counterpart in (1.2). The existence of contractive selections is, in general, difficult
to establish. It is even difficult to guarantee the existence of Lipschitz selections.
For a finite dimensional Banach space the following result holds.

Theorem 3.3. [1] Consider a Lipschitz set-valued mapping F from a metric space
to nonempty closed convex subsets of Rn. Then F has a Lipschitz selection f .

The extension of this result to infinite dimensional Banach spaces is quite com-
plex and it holds if extra conditions are satisfied. The existence of a continuous
selection is guaranteed by the Michael selection theorem (see [9]).

Theorem 3.4 ([9]). A multivalued mapping T : B1 ⇒ B2 admits a continuous
single-valued selection, provided that the following conditions are satisfied:

• B1 is a paracompact space,
• B2 is a Banach space,
• T is a lower semicontinuous mapping,
• For every x ∈ X, T (x) is a nonempty convex subset of B2, and
• For every x ∈ X, T (x) is a closed subset of B2.

Since all metric (and thus Banach) spaces are paracompact, we do not need to
consider paracompactness in what follows.

We now list some results which guarantee the convergence of trajectories towards
fixed points. We assume that the existence of a continuous selection can be guar-
anteed, for example by assuming that B is a Banach space and T takes nonempty
closed and convex values. We consider two possible cases for the contractive set-
valued mapping T : B ⇒ B.
Case 1: A fixed point ȳ ∈ B satisfying the equation ȳ = T ȳ exists. Note that a
contractive set-valued mapping T : B ⇒ B cannot have two distinct fixed points ȳ1

and ȳ2 since this would imply that

‖ȳ1 − ȳ2‖ = dH(T (ȳ1), T (ȳ2)) ≤ cT ‖ȳ1 − ȳ2‖ . (3.3)

This, in turn, implies that cT ≥ 1, contradicting the hypothesis of the contractivity
of T .

Proposition 3.5. Let B be a real Banach space, T : B ⇒ B be a set-valued con-
traction mapping taking nonempty closed and convex values, and v : B → B,
v(x) ∈ T (x) for all x ∈ B, be a continuous selection. Let y(t) : [0,+∞) → B
be a continuous solution to the evolution equation

ẏ(t) + y(t) = v(y(t)), y(0) = y0 ∈ B (3.4)

Suppose that there exists a ȳ ∈ B such that ȳ = T ȳ. Then limt→+∞ ‖y(t)− ȳ‖ = 0.

Proof. We proceed in a manner somewhat parallel to the approach employed in [2].
Let y : [0,+∞)→ B be a solution to the equation

ẏ(t) + y(t) = v(y(t)) . (3.5)
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Multiplying both sides by et, we obtain

etẏ(t) + ety(t) = etv(y(t)); (3.6)

that is,
(ety(t))′ = etv(y(t)). (3.7)

This implies that

y(t) = y0e
−t +

∫ t

0

es−tv(y(s)) ds. (3.8)

In the case y0 = ȳ, the above equation becomes

ȳ = ȳe−t +
∫ t

0

es−t ȳ ds . (3.9)

Subtracting (3.9) from (3.8) yields

y(t)− ȳ = e−t(y0 − ȳ) +
∫ t

0

es−t(v(y(s))− ȳ) ds , (3.10)

from which it follows that

‖y(t)− ȳ‖ ≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t‖v(y(s))− ȳ‖ ds . (3.11)

For each fixed s ∈ [0, t], we take the the supremum with respect to v ∈ T (y(s)) to
obtain

‖y(t)− ȳ‖ ≤ e−t‖y0 − v̄‖+
∫ t

0

es−t sup
v∈T (y(s))

‖v − ȳ‖ ds

≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t dH(T (y(s)), T (ȳ)) ds

≤ e−t‖y0 − ȳ‖+ cT

∫ t

0

es−t‖y(s)− ȳ‖ ds .

(3.12)

Gronwall’s lemma then implies that for t ≥ 0,

‖y(t)− ȳ‖ ≤ ‖y0 − ȳ‖e(cT−1)t . (3.13)

Since cT ∈ [0, 1), it follows that ‖y(t)− ȳ‖ → 0 as t→∞, once again exponentially
rapidly. �

Case 2: No points ȳ ∈ B satisfying the fixed point equation ȳ = T ȳ exist.

Proposition 3.6. Let B be a real Banach space, T : B ⇒ B be a set-valued con-
traction mapping taking nonempty closed and convex values, and v : B → B,
v(x) ∈ T (x) for all x ∈ B, be a continuous selection. Let ȳ ∈ T ȳ be one of its
fixed points – in the sense of inclusions – and suppose that

sup
s∈T (x)

sup
l∈T (ȳ)

‖s− l‖ ≤ c ‖x− ȳ‖ (3.14)

for all x ∈ B and for some c ∈ [0, 1). Furthermore, let y(t) : [0,+∞) → B be a
solution to the evolution equation

ẏ(t) + y(t) = v(y(t)), y(0) = y0 ∈ B. (3.15)

Then limt→+∞ ‖y(t)− ȳ‖ = 0.
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Proof. The first part of the proof is identical to that of Proposition 3.5 and is
therefore omitted. The only difference lies in the following development,

‖y(t)− ȳ‖ ≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t‖v(y(s))− ȳ‖ ds

≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t sup
v∈T (y(s))

sup
l∈T ȳ
‖v − l‖ ds

≤ e−t‖y0 − ȳ‖+ c

∫ t

0

es−t‖y(s)− ȳ‖ ds.

(3.16)

Once again, Gronwall’s lemma can be used to establish the desired result. �

Lemma 3.7. Let B be a real Banach space, T : B ⇒ B be a set-valued contraction
mapping taking nonempty closed and convex values and let ȳ ∈ B one of its fixed
points. Construct the single-valued map

ψ(x) = ΠT (x)ȳ , (3.17)

where ΠT (x)ȳ is the projection of ȳ onto T (x). Then ψ is locally contractive at ȳ.

Proof. By computing, we have:

‖ψ(x)− ψ(ȳ)‖ = ‖ψ(x)− ȳ‖ = d(T (x), ȳ) ≤ dH(T (x), T (ȳ)) ≤ c‖x− ȳ‖. (3.18)

�

Proposition 3.8. Let B be a real Banach space and T : B ⇒ B be a set-valued
contraction mapping taking nonempty closed and convex values. Let ȳ ∈ T ȳ be one
of its fixed points – in the sense of inclusions. Now consider the selection ψ : B → B
defined as follows,

ψ(x) = ΠT (x)ȳ , (3.19)

where ΠT (x)ȳ denotes the projection of the element ȳ onto the set T (x). Suppose
that the differential equation,

ẏ(t) + y(t) = ψ(y(t)), y(0) = y0 ∈ B, (3.20)

admits a solution, ∀t ≥ 0. Then limt→+∞ ‖y(t)− ȳ‖ = 0.

Proof. Once again, the first part of the proof is identical to that of Proposition 3.5
and is omitted. We proceed with the following development,

‖y(t)− ȳ‖ ≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t‖ψ(y(s))− ȳ‖ ds

≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t inf
v∈T (y(s))

‖v − ȳ‖ ds

≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t sup
l∈T (ȳ)

inf
v∈T (y(s))

‖v − l‖ ds

≤ e−t‖y0 − ȳ‖+
∫ t

0

es−t dH(T (y(s)), T (ȳ)) ds

≤ e−t‖y0 − ȳ‖+ cT

∫ t

0

es−t ‖y(s)− ȳ‖ ds.

(3.21)

The proof then follows from Gronwall’s lemma. �
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Since a set-valued contraction mapping has, in general, more than one fixed point
it looks reasonable to use a particular ȳ in the construction of (3.20). The following
result states a global convergence result.

Proposition 3.9. Let B be a real Banach space, T : B ⇒ B be a set-valued con-
traction mapping taking nonempty closed and convex values. Let ȳ ∈ T ȳ be one of
its fixed points – in the sense of inclusions – and suppose that

dH(Tx, ȳ) ≤ c‖x− ȳ‖ (3.22)

for all x ∈ B and for some c ∈ [0, 1). Let y(t) : [0,+∞) → B be a continuous
solution to the evolution inclusion

ẏ(t) + y(t) ∈ T (y(t)), y(0) = y0 ∈ B. (3.23)

Then limt→+∞ ‖y(t)− ȳ‖ = 0.

Proof. By taking any p in the dual of B, we obtain

p(y(t))′ + p(y(t)) ≤ supp(p, T (y(t))). (3.24)

Standard arguments imply that the function t → supp(p, T (y(t))) is measurable,
and so we have

p(y(t)) ≤ e−t
∫ t

0

es supp(p, T (y(s)))ds+ e−tp(y(0)). (3.25)

Then

p(y(t))− p(ȳ) ≤ e−t
∫ t

0

es(supp(p, T (y(s)))− p(ȳ))ds+ e−t(p(y(0))− p(ȳ))

≤ e−t
∫ t

0

es(supp(p, T (y(s)))− supp(p, ȳ))ds+ e−t(p(y(0))− p(ȳ))

≤ e−t
∫ t

0

esdH(T (y(s)), ȳ)ds+ e−t(p(y(0))− p(ȳ))

≤ e−t
∫ t

0

es‖y(s)− ȳ‖ds+ e−t(p(y(0))− p(ȳ)).

(3.26)
Gronwall’s lemma can once again be used to establish the desired result. �

3.1. Discretization. As studied in [2], employing the simple forward Euler scheme
with time step h > 0 for the derivative in (1.1) leads to the discrete dynamical
system,

yn+1 = yn + (Tyn − yn)h, n = 0, 1, 2, · · · . (3.27)
Here, y0 is the initial condition. In the special case h = 1, (3.27) becomes the usual
iteration procedure,

yn+1 = Tyn, (3.28)
which necessarily converges to the fixed point ȳ = T ȳ.

The continuous evolution inclusion,

ẏ(t) + y(t) ∈ T (y(t)), (3.29)

can also be discretized according to classical numerical schemes, including the
above-mentioned Euler scheme with time step h > 0, yielding the discrete dy-
namical inclusion,

yn+1 − yn ∈ (T (yn)− yn)h, (3.30)
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where, once again, y0 ∈ B denotes the initial condition. When h = 1, (3.30)
becomes

yn+1 ∈ T (yn). (3.31)
Let us suppose that ȳ is a fixed point of T and construct the map ψ(x) = ΠT (x)ȳ.
In the special case that for each n ≥ 1, we choose the particular point,

yn+1 = ΠT (yn)ȳ ∈ T (yn), (3.32)

that is, the projection Π of ȳ onto T (yn), then we have a converging discrete
iteration process (see also [5]).

3.2. An application to fractal transforms. The idea of using set-valued anal-
ysis in fractal theory is recent (see [6] and references therein). In this paragraph
we introduce a set-valued extension of the classical IFSM operator which satisfies
the hypotheses of the main results presented in the previous section. Let X = [0, 1]
and B = Lp([0, 1]) be the Banach space of all p-integrable functions and consider
the set-valued map T : Lp([0, 1]) ⇒ Lp([0, 1]) defined as

(Tf)(x) =
{
g ∈ Lp([0, 1]) : g(x) =

n∑
i=1

αif(w−1
i (x)) + βi, αi ∈ [γ1, γ2],

βi ∈ [θ1, θ2]
}
⊂ Lp([0, 1])

(3.33)

where wi : [0, 1] → [0, 1] is a set of N contractive affine maps, wi(x) = six + ai,
i = 1 . . . N . The following results prove that T takes convex and closed values and
that it is a contraction.

Proposition 3.10. T : Lp([0, 1]) ⇒ Lp([0, 1]) takes compact and convex values.

Proof. It is easy to see that for all f ∈ Lp([0, 1]) we have that Tf is a compact
subset of Lp([0, 1]), this follows from the fact that Tf is homeomorphic to the
compact set [γ1, γ2]× [θ1, θ2]. To prove Tf is convex, let ξ1, ξ2 ∈ Tf and λ ∈ [0, 1].
We have

ξ1(x) =
N∑
i=1

α∗i f(w−1
i (x)) + β∗i , (3.34)

ξ2(x) =
N∑
i=1

α∗∗i f(w−1
i (x)) + β∗∗i (3.35)

and then

λξ1(x)+(1−λ)ξ2(x) =
N∑
i=1

(λα∗i +(1−λ)α∗∗i )f(w−1
i (x))+λβ∗i +(1−λ)β∗∗i (3.36)

which proves the thesis. �

Proposition 3.11. T : Lp([0, 1]) ⇒ Lp([0, 1]) is a contractive multifunction if∑N
i=1 s

1/p
i max{|γ1|, |γ2|} < 1.

Proof. By means of some straightforward calculations,

max
α∗∗i ∈[γ1,γ2], β∗∗i ∈[θ1,θ2]

min
α∗i∈[γ1,γ2], β∗i ∈[θ1,θ2]

∥∥∥ N∑
i=1

α∗i f1(w−1
i (x)) + β∗i
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−
N∑
i=1

α∗∗i f2(w−1
i (x))− β∗∗i

∥∥∥
p

≤ max
α∗∗i ∈[γ1,γ2], β∗∗i ∈[θ1,θ2]

∥∥∥ N∑
i=1

α∗∗i f1(w−1
i (x))−

N∑
i=1

α∗∗i f2(w−1
i (x))

∥∥∥
p

= max
α∗∗i ∈[γ1,γ2]

∥∥ N∑
i=1

α∗∗i f1(w−1
i (x))−

N∑
i=1

α∗∗i f2(w−1
i (x))

∥∥∥
p

≤
( N∑
i=1

s
1/p
i max{|γ1|, |γ2|}

)
‖f1 − f2‖p ,

which implies that T is contractive multifunction. �

The results presented in the previous section can be applied to this set-valued
mapping.

4. Alternative approach: Set-valued ODEs in Banach spaces

A completely different alternative approach to generalizing the results of [2] is
to define a set-valued evolution equation. This can be done in two equivalent ways,
either directly as a set-valued ODE or as an ODE in a Banach space via the natural
embedding of the space of compact and convex sets as the positive cone in a Banach
space [10]. In this section we discuss this approach.

Let B be a Banach space and Kcc = {A ⊂ B : ∅ 6= A is compact and convex}.
Recall that Kcc is complete under the Hausdorff metric. Let S∗ = {p ∈ B∗ : ‖p‖ =
1} be the collection of all continuous linear functionals on B of unit norm. We
assume that T : B ⇒ B is a contractive set-valued function with T (x) ∈ Kcc for all
x. We also assume that T satisfies the convexity condition

λT (x) + (1− λ)T (y) ⊆ T (λx+ (1− λ)y). (4.1)

These conditions on T imply that if A ∈ Kcc then T (A) = {T (a) : a ∈ A} ∈ Kcc as
well. In particular, this means that T induces a mapping T : Kcc → Kcc with the
same contractivity factor as T and so there is some ȳ ∈ Kcc with T (ȳ) = ȳ.

Definition 4.1. For a set-valued mapping T : R → Kcc, we say that A ∈ Kcc is
the derivative of T at t0 if

lim
h→0+

dH(T (t0 − h) +Ah, T (t0))
h

= 0, lim
h→0+

dH(T (t0 + h), T (t0) +Ah)
h

= 0.

(4.2)
In this case, we write A = T ′(t0).

This is a natural extension of the notion of derivative for a function f : Rp → Rq
but where we now use the Hausdorff metric to measure distance. This definition of
derivative is also very naturally related to the embedding from [10].

The idea behind this embedding is that Kcc has a natural addition (Minkowski
addition) and a natural scalar multiplication (at least for λ ≥ 0). In addition,
λ(A+ B) = λA+ λB for all λ and λ1A+ λ2A = (λ1 + λ2)A as long as λ1 and λ2

have the same sign. Furthermore, the Hausdorff distance on Kcc defines a natural
“norm” by ‖A‖ = dH(A, {0}), since {0} is the additive identity for this semigroup.
The semigroup structure, along with the norm, is used to define the Banach space
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X in which Kcc is embedded as a closed cone. The space X can be chosen so that
the closed cone has nonempty interior and we do so. Since the norm on X is given
by an extension of the Hausdorff distance between elements of Kcc, the definition of
derivative in (4.2) agrees with the derivative as defined in X, at least for elements
of the cone associated with Kcc.

Using definition 4.1, we interpret (1.2) directly as a set-valued evolution equation
with initial condition y(0) = y0 ∈ Kcc.

By using support functions we can convert the set-valued ODE (1.2) into a
collection of scalar ODEs. That is, for each p ∈ S∗ (each linear functional p of
norm one), we have

supp(p, y′(t)) + supp(p, y(t)) = supp(p, T (y(t)),

supp(p, y(0)) = supp(p, y0) for y0 ∈ Kcc.
(4.3)

Now for A,B ∈ Kcc, we have dH(A,B) = sup{| supp(p,A) − supp(p,B)| : p ∈ S∗}
and thus if A = T ′(t0), then we have for all p ∈ B∗,

supp(p,A) = supp(p, T ′(t0)) =
d

dt
(supp(p, T (t))|t=t0 . (4.4)

Thus, if we let yp(t) = supp(p, y(t)), we have the collection of ODEs (one for each
p ∈ S∗):

y′p(t) + yp(t) = supp(p, T (y(t))), yp(0) = supp(p, y0). (4.5)
Notice that since T is contractive, x 7→ supp(p, T (x)) is Lipschitz for all p ∈ S∗
and thus we have existence and uniqueness of solutions for (4.5) for all p ∈ S∗.
However, this by itself is not enough to have existence and uniqueness of solutions
to the set-valued ODE. In order for yp(t) (as p ranges over S∗) to be a collection
of support functions for some compact and convex set y(t), these functions must
satisfy some additional conditions. These conditions are not obviously true just
from being solutions to (4.5).

However, looking at (1.2) instead as an ODE in the embedded Banach space X
we do have existence and uniqueness of solutions in X, and as long as these solutions
remain in the cone associated with Kcc we can interpret y(t) as an element of Kcc
and thus yp(t) is a collection of support functions for y(t) ∈ Kcc. Our next result
shows that the cone Kcc in X is positively invariant and thus y(t) ∈ Kcc for all
t ≥ 0.

Lemma 4.2. Let X be a Banach space, K ⊂ X be closed and convex and T : X→ X
be Lipschitz and satisfy T (K) ⊆ K. Then the solution y(t) to

y′ + y = T (y), y(0) = y0 ∈ K (4.6)

satisfies y(t) ∈ K for all t ≥ 0.

Proof. We know that the solution to (4.6) can be written as

y(t) = y0e
−t + e−t

∫ t

0

e−sT (y(s)) ds. (4.7)

Choose p ∈ S∗ and let u = supp(p,K). Then

p(y(t)) = e−tp(y0) + e−t
∫ t

0

e−sp(T (y(s))) ds

≤ e−tu+ e−t
∫ t

0

e−su ds
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= e−tu+ u(1− e−t) = u.

That is, p(y(t)) ≤ u := supp(p,K) for all t ≥ 0. Since this is true for all p ∈ S∗,
this means that y(t) ∈ K for all t ≥ 0. �

In summary, we can either view (1.2) as a set-valued evolution equation or al-
ternatively as a family (4.5) of scalar ODEs, one for each “direction” p ∈ S∗.

With this framework in place, we have the following result. All the hard work is
in setting the framework.

Proposition 4.3. Let T : B → Kcc be contractive and satisfy the convexity condi-
tion (4.1). Then the solution y : [0,∞)→ Kcc of the set-valued evolution equation

y′(t) + y(t) = T (y(t)), y(0) = y0 ∈ Kcc, (4.8)

satisfies dH(y(t), ȳ)→ 0 as t→∞.

The idea of this proof is the same as the proof of [2, Theorem 1], and is omitted.

4.1. Weak* compact and convex sets. For some applications (in particular to
spaces of probability measures) it is important to be able to use weak* compact
sets rather than norm compact sets. Since the embedding from [10] also works in
this situation, the same framework will work. To this end, in the case where B is
separable and the dual of a Banach space, we also define Kwcc = {A ⊂ B : ∅ 6=
A is bounded, weak∗ compact and convex}.

Since B is separable, the weak* topology is metrizable but only on norm bounded
subsets; this is the reason for the boundedness restriction in the definition of Kwcc.
We need T to preserve boundedness, so we assume that

there is some κ > 0 so that whenever ‖A‖ ≤ κ then ‖T (A)‖ ≤ κ as well. (4.9)

With this, we use as our “base” space Y = {x ∈ B : ‖x‖ ≤ κ} and then Ω = {A ⊆
Y : ∅ 6= A is weak* compact and convex} replaces Kwcc. Since Y ⊂ B is bounded,
the weak* topology on Y is metrizable and this in turn induces the Hausdorff
metric on Ω. Further, Ω is complete because Y is complete. Note that we also
have Ω = {A ⊂ B : A ∈ Kwcc, ‖A‖ ≤ κ}. As a subspace of X, Ω is the cone
Kwcc intersected with the ball of radius κ centered at 0. In particular, Ω is weak*
compact and convex.

Given all of this setup, we obtain the same result as before.

Proposition 4.4. Let T : B → Kwcc be contractive and satisfy the convexity
condition (4.1) and the boundedness condition (4.9). Let y0 ∈ Kwcc be such that
‖y0‖ ≤ κ. Then the solution y : [0,∞)→ Kcc of the set-valued evolution equation

y′(t) + y(t) = T (y(t)), y(0) = y0, (4.10)

satisfies dH(y(t), ȳ)→ 0 as t→∞.

The collection of ODEs in (4.5), one for each p ∈ S, gives a practical method for
obtaining a finite dimensional polyhedral approximation to the set-valued solution
of the evolution equation (4.10). This is especially simple in the case that B is a
Hilbert space.

The strategy is to choose finitely many pi ∈ S, i = 1, 2, . . . ,M and solve the
corresponding scalar ODEs (4.5) for each pi; call this solution yi(t). Then define the
polyhedron P (t) to be the convex hull, co(yi(t)pi), of the points yi(t)pi ∈ B. Since y0

is compact, it is certainly possible to choose pi so that co(pi) closely approximates y0
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in the Hausdorff distance. In principle because y(t) is a differentiable function, it is
also possible to choose the pi in such a way that co(yi(t)pi) is a close approximation
to y(t) for all t in some finite time interval [0, τ ]. However, in practice it is difficult
to know a priori which pi to choose since y(t) is changing. In the example below
(using (4.11) and (4.13)), the first few elements of a Haar basis for L2([0, 1]) adapted
to the IFS {wi} would work well.

4.2. An application to fractal transforms. Let X = [0, 1] and B = Lp([0, 1]) be
the Banach space of all p-integrable functions and Kcc be the space of all nonempty,
compact and convex subsets of B. Let wi : X → X, i = 1, 2, . . . , N , be affine with
the contraction factor of wi being si and let αi ∈ R. Then for any f ∈ Lp([0, 1])
the function

∑
i αif ◦ w−1 is in Lp([0, 1]) as well. Next choose a fixed β ∈ Kcc

(so that β ⊂ Lp([0, 1]) is compact and convex) and consider the set-valued map
T : Lp([0, 1]) ⇒ Lp([0, 1]) defined as

(Tf) = β +
∑
i

αif ◦ w−1
i . (4.11)

Notice that by definition T (f) ∈ Kcc for each f ∈ B, since T (f) is a translate of β.
For λ ∈ [0, 1] we have

(λT (f) + (1− λ)T (g)) = λ
(
β +

∑
i

αif ◦ w−1
i

)
+ (1− λ)

(
β +

∑
i

αig ◦ w−1
i

)
= λβ + (1− λ)β +

∑
i

αi(λf + (1− λ)g) ◦ w−1
i

= β +
∑
i

αi(λf + (1− λ)g) ◦ w−1
i

= T (λf + (1− λ)g).

Note that λβ+(1−λ)β = β since β ∈ Kcc. Thus T satisfies the convexity condition
(4.1) and so T induces a mapping T : Kcc → Kcc.

Proposition 4.5. T : Lp([0, 1]) ⇒ Lp([0, 1]) as defined in (4.11) is a contractive
multifunction if

∑n
i=1 s

1/p
i |αi| < 1.

Proof. This proof is very similar to the proof of proposition 3.11. With si the
contraction factor of wi and γ1, γ2 selections of β, we compute

max
γ1∈β

min
γ2∈β

‖γ1 +
∑
i

αif ◦ w−1
i − γ2 −

∑
i

αig ◦ w−1
i ‖p

≤ ‖
∑
i

αi(f ◦ w−1
i − g ◦ w

−1
i )‖p

≤
∑
i

|αi|‖f ◦ w−1
i − g ◦ w

−1
i ‖p

≤
(∑

i

s
1/p
i |αi|

)
‖f − g‖p.

Note that the inequality in the first line comes from choosing γ2 = γ1. Thus we
have our result. �

In particular, the induced mapping T : Kcc → Kcc has the same Lipschitz
constant of

∑
i s

1/p
i |αi| as T . Thus we have a unique fixed set A ∈ Kcc and the
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solution y(t) to the set-valued evolution equation (1.2) will converge to A. As in
section 5 of [8], we can write the fixed set A of T in Kcc as

A = β +
∞∑
n=1

∑
σ∈{1,2,...,N}n

ασ1ασ2 · · ·ασn
β ◦ (w−1

σ1
◦ w−1

σ2
◦ · · · ◦ w−1

σn
), (4.12)

where we use the notation β ◦ φ = {g ◦ φ : g ∈ β}. Each set in the sum (4.12) is in
Kcc and the limit for the infinite sum is taken in the Hausdorff metric on Kcc.

For a more definite example, we can take

β = ∪c∈[β1,β2]{g(x) = c for all x ∈ [0, 1]} ⊂ Lp([0, 1]). (4.13)

Then the operator (4.11) is related in a simple way to that in (3.33) in that we vary
the β values but not the αs. Using this choice of β, for each g ∈ β, the IFSM (see
[4])

Tg(f) = g +
∑
i

αif ◦ w−1
i (4.14)

has a unique fixed point fg and the fixed set A of T (given by (4.12)) contains all of
these fixed points. Each of these operators Tg could be thought of as a “selection”
of the operator T . In a sense, the set-valued evolution will converge to a set which
contains all the fixed points fg for all the “selections” Tg of T . Of course, A contains
much more than just the collection {fg : g ∈ β}, just like the attractor of a standard
IFS contains much more than the collection of the fixed points of the individual wi.
Even though this β is one-dimensional, the limiting set A is infinite dimensional. To
see this, we just notice that T (β) consists of functions which are piecewise constant
on the N sets wi([0, 1]), T 2(β) consists of functions which are piecewise constant
on the N2 sets wi ◦ wj([0, 1]), etc..
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