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A MIXED PROBLEM FOR SEMILINEAR WAVE EQUATIONS
WITH ACOUSTIC BOUNDARY CONDITIONS IN DOMAINS

WITH NON-LOCALLY REACTING BOUNDARY

CÍCERO L. FROTA, LUIZ A. MEDEIROS, ANDRÉ VICENTE

Abstract. In this article we study the existence, uniqueness and asymptotic

stability of solution to the mixed problem for the semilinear wave equation with
acoustic boundary conditions in domains with non-locally reacting boundary.

We also prove the existence and uniqueness of solution to a problem with

nonmonotone dissipative term.

1. Introduction

This article is devoted to the study of the existence, uniqueness and uniform
stabilization of solutions (u, δ) for the problem

u′′ −∆u+ ρ(u′) = F in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),
∂u

∂ν
= δ′ on Γ1 × (0,∞),

u′ + fδ′′ − c2∆Γδ + gδ′ + hδ = 0 on Γ1 × (0,∞),

δ = 0 on ∂Γ1 × (0,∞),

u(x, 0) = φ(x), u′(x, 0) = ψ(x) x ∈ Ω,

δ(x, 0) = θ(x), δ′(x, 0) =
∂φ

∂ν
(x), x ∈ Γ1,

(1.1)

where Ω ⊂ Rn is an open, bounded and connected set with smooth boundary Γ;
Γ1 is an open and connected set of Γ with smooth boundary, ∂Γ1, and Γ0 = Γ\Γ1.
Here ′ = ∂

∂t , ∆ =
∑n
i=1

∂2

∂x2
i

and ∆Γ are the spatial Laplace and Laplace-Beltrami
operators, respectively, ν is the unit outward normal vector to Γ, c is a positive
constant, ρ : R → R, F : Ω × (0,∞) → R, f, g, h : Γ1 → R, φ, ψ : Ω → R and
θ : Γ1 → R are given functions.

When c = 0 the boundary conditions (1.1)3–(1.1)4 are the classical acoustic
boundary conditions which were introduced by Beale and Rosencrans [2] in wave
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propagation literature. Precisely, they derived

u′′ −∆u = 0 in Ω× (0,∞),
∂u

∂ν
= δ′ on Γ× (0,∞),

ρ0u
′ +mδ′′ + dδ′ + kδ = 0 on Γ× (0,∞),

(1.2)

as a theoretical model to describe the acoustic wave motion into a fluid in Ω ⊂ R3.
Here ρ0,m, d, k are physical constants. The function u(x, t) is the velocity potential
of the fluid and δ(x, t) models the normal displacement of the point x ∈ Γ in the
time t. To obtain the model, Beale and Rosencrans assumed that each point of
the surface Γ acts like a spring in response to the excess pressure and that each
point of Γ does not influence each other. Surfaces with this characteristic are called
locally reacting, see Morse and Ingard [22]. Acoustic boundary conditions has been
studied by several authors [8, 9, 10, 11, 19, 25, 26]. Frota, Cousin and Larkin [9]
obtained decay results to a nonlinear wave equation when n = 1 and Frota, Cousin
and Larkin [10] and Park and Park [25] obtained decay results when m = 0 in
(1.2)3. The results of Liu and Sun [19] and Park and Park [25] are about general
decay rates.

Recently, in [12], we introduced a new physical formulation to the acoustic con-
ditions and we proved the existence, uniqueness and uniform stabilization to (1.1)
with

u′′ −M
(∫

Ω

u2 dx
)

∆u+ αu′ + β|u′|pu′ = 0 in Ω× (0,∞) (1.3)

instead of (1.1)1, where α, β are positive constants, p > 1 if n = 2, 1 < p ≤ 2 if n = 3
and M : (0,∞) → R is a given function. The boundary conditions (1.1)3–(1.1)4

were called acoustic boundary conditions to non-locally reacting boundary, because
for its formulation we assumed that the surface Γ1 acts like an elastic membrane in
response to the excess pressure. The exponential decay was obtained by Nakao’s
Lemma [23, Theorem 1], and the assumption

c > 4k1k2, (1.4)

was necessary. Here c is the same of (1.1)4, k1 is the constant of continuity of
the trace map and k2 is the Poincaré’s constant. This is a strong assumption and
physically it means that the velocity of wave propogation on the surface Γ1 is higher
than a known constant. The case β = 0 in (1.3) was considered by Vicente and
Frota [30], where the authors assumed sufficiently small data to prove the existence
of solutions. The assumption (1.4) also was necessary to prove the asymptotic
stability. See also the recent work due Vicente and Frota [31] were the authors
considered nonlinear boundary equation. See also the papers of Coclite, Goldstein
and Goldstein [4, 5, 6, 7] were the authors studied problems with Wentzell boundary
conditions. An interesting work is due Gal, G. Goldstein and J. Goldstein [13] were
they proved, in some special case, the acoustic and Wentzell boundary conditions
are closely related.

On this direction it is important to mention the works of Graber and Said-Houari
[14] and Graber [15] were the authors also studied problems with nonhomogeneous
boundary condition. Precisely in [14] the authors studied the interaction between
dissipative and sources terms in the domain as well as in the boundary, for the
strongly damped wave equation with boundary conditions like General Wentzell
Boundary Condition (GWBC) type, which in some special case agree with Acoustic
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Boundary Conditions (ABC), see section 4 of [13]. Moreover in contrast with our
results on stability and decay rates, due to the source term the authors did an
analysis of blow up of solutions. On the other hand in [15] the author proved
the existence, uniqueness and uniform decay of finite energy solutions when the
boundary is taken to be porous and the coupling between the interior and boundary
dynamics is assumed to be nonlinear, furthermore was added to the boundary a
frictional damping term as a feedback control. Theorem 3 of [15], which gives decay
rates result, assumed a geometrical condition on a the set Γ0.

Our purpose in this article is to study the existence, uniqueness and asymptotic
behaviour of solution to (1.1). The existence is done by employing Galerkin’s
procedure and compactness arguments. Our main goal is to prove the exponential
decay of solution to (1.1) without the assumption (1.4). This is possible because
we use an alternative method based on an integral inequality instead of Nakao’s
Lemma. This technics are used by many authors [17, 20, 27]. We observe that the
estimates we made here can be adapted to the problem treated by Frota, Medeiros
and Vicente [12] therefore here we also improve their results. Moreover, as an
application of (1.1), we study the existence and uniqueness of global solution to
(1.1) without the assumption of monotonicity on ρ (ρ′ ≥ 0). In some related papers,
when ρ is non-monotone, the authors prove the existence of solution by semigroups
theory [20, 24, 28]. Here we solve the problem building an appropriate sequence
of functions which converge to the solution of the problem with non-monotone
dissipative term, it is an adaptation of the ideas of Li and Tsai [21].

Our paper is organized as follows: In Section 2 we present some notations. In
Section 3 we prove the existence, uniqueness and uniform decay of solution to (1.1).
Finally, in Section 4 we give the proof of the existence and uniqueness of solution
to (1.1) for the nonmonotone case.

2. Notation

The inner product and norm in L2(Ω) and L2(Γ1) are denoted, respectively, by

(u, v) =
∫

Ω

u(x)v(x) dx, |u| =
(∫

Ω

(u(x))2 dx
)1/2

,

(δ, θ)Γ1 =
∫

Γ1

δ(x)θ(x) dΓ , |δ|Γ1 =
(∫

Γ1

(δ(x))2 dΓ
)1/2

.

Let O ⊂ Ω and p ≥ 1, we denote by

|u|Lp(O) =
(∫

O

|u(x)|pR dx
)1/p

the norm in Lp(O). We define a closed subspace of the Sobolev space H1(Ω) as

V = {u ∈ H1(Ω); γ0(u) = 0 a.e. on Γ0},

where γ0 : H1(Ω) → H1/2(Γ) is the trace map of order zero and H1/2(Γ) is the
Sobolev space of order 1

2 defined over Γ, as introduced by Lions and Magenes [18].
We define the following inner product and norm in V :

((u, v)) =
n∑
i=1

∫
Ω

∂u

∂xi
(x)

∂v

∂xi
(x) dx, ‖u‖ =

( n∑
i=1

∫
Ω

( ∂u
∂xi

(x)
)2

dx
)1/2

,
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respectively. The Poincaré’s Inequality holds in V , thus there exists a constant k0

such that
|u| ≤ k0‖u‖, for all u ∈ V. (2.1)

From (2.1) we can prove the equivalence, in V , of the norm ‖ ·‖ and the usual norm
‖ · ‖H1(Ω) =

(
|u|2 + ‖u‖2

)1/2 of H1(Ω).
As Γ1 is a compact Riemannian manifold, with boundary, endowed with the

natural metric inherited from Rn, it is possible to give an intrinsic definition of the
space Hk(Γ1) by using the covariant derivative operator. In fact, the Sobolev space
Hk(Γ1) is the completion of C∞(Γ1) with respect to the norm

‖u‖Hk(Γ1) =
[ k∑
l=0

|∇lu|2Γ1

]1/2
,

where∇l is the covariant derivative operator of order l, see Hebey [16]. We also con-
sider the space H1

0 (Γ1) the closure of C∞0 (Γ1) in H1(Γ1). The Poincaré’s inequality
holds in H1

0 (Γ1), thus there exists a constant k1 such that

|δ|Γ1 ≤ k1|∇τδ|Γ1 , for all δ ∈ H1
0 (Γ1),

where ∇τ is the tangential gradient on Γ1, see Taylor [29]. This allow us to consider
the space H1

0 (Γ1) equipped with the norm and inner product:

‖δ‖Γ1 = |∇τδ|Γ1 and ((δ, θ))Γ1 =
∫

Γ1

〈∇τδ(x),∇τθ(x)〉 dΓ.

We denote by ∆Γ = divτ ∇τ the Laplace-Beltrami operator. We define the operator
−∆Γ : H1

0 (Γ1)→ H−1(Γ1) such that

〈−∆Γδ, θ〉H−1(Γ1)×H1
0 (Γ1) =

∫
Γ1

〈∇τδ(x) , ∇τθ(x)〉 dΓ,

for all δ, θ ∈ H1
0 (Γ1). We consider (H1

0 (Γ1) ∩H2(Γ1)) endowed with the norm

|δ|H1
0 (Γ1)∩H2(Γ1) = |∆Γδ|Γ1 for all δ ∈ (H1

0 (Γ1) ∩H2(Γ1)),

which is equivalent to ‖ · ‖H2(Γ1), see Biezuner [3].
We define the subspace W of V as

W = {u ∈ (V ∩H3(Ω)); (γ1(u))|Γ1
∈ H1

0 (Γ1)},

here γ1 : H(∆,Ω) → H−
1
2 (Γ) is the Neumann trace map and H(∆,Ω) = {u ∈

H1(Ω); ∆u ∈ L2(Ω)} is equipped with the norm

‖u‖H(∆,Ω) =
(
‖u‖2H1(Ω) + |∆u|2

)1/2

.

We equipped W with the norm

‖u‖W =
(
‖u‖2 + ‖u‖2H3(Ω)

)1/2

.

The space W is necessary to estimate u′′m(0) in the estimate 2. We observe that W
is dense in V . As γ0 and γ1 are continuous there exist positive constants k2 and k3

such that

|γ0(u)|Γ1 ≤ k2‖u‖W and |γ1(u)|Γ1 ≤ k3‖u‖W , for all u ∈W. (2.2)

Results about Sobolev’s Spaces on manifolds can be found in Aubin [1], Hebey [16],
Lions and Magenes [18] and Taylor [29].
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3. Main Results

We assume
f, g, h ∈ C(Γ1) with f, g > 0 and h ≥ 0. (3.1)

We suppose that ρ ∈ C1(R) and there exist constants κ1, κ2 > 0 such that

|ρ(x)| ≤ κ1|x|q if |x| > 1, and |ρ(x)| ≤ κ2|x| if |x| ≤ 1, (3.2)

where q satisfies 1 ≤ q ≤ n+2
n−2 if n ≥ 3, or q ≥ 1 if n = 2. We also assume

ρ′(x) ≥ κ3 > 0, for all x ∈ R. (3.3)

Theorem 3.1. Suppose that (3.1)–(3.3) hold. Let (φ, ψ, θ) ∈W × (V ∩ L2q(Ω))×
(H1

0 (Γ1)∩H2(Γ1)) and F, F ′ ∈ L2
loc(0,∞;L2(Ω)). Then, there exists a unique pair

(u, δ) such that

u, u′ ∈ L∞loc(0,∞;V ), u′′ ∈ L∞loc(0,∞;L2(Ω)), u(t) ∈ H(∆,Ω) a.e. in [0,∞),

δ ∈ L∞loc(0,∞;H1
0 (Γ1) ∩H2(Γ1)), δ′ ∈ L∞loc(0,∞;H1

0 (Γ1)),

δ′′ ∈ L∞loc(0,∞;L2(Γ1))

and, for all T > 0,

u′′ −∆u+ ρ(u′) = F a.e. in Ω× (0, T ),

〈γ1(u(t)), γ0(w)〉 =
(
δ′(t), γ0(w)

)
Γ1

a.e. in [0, T ], for all w ∈ V,

u′ + fδ′′ − c2∆Γδ + gδ′ + hδ = 0 a.e. in Γ1 × (0, T ),

u(0) = φ, u′(0) = ψ, δ(0) = θ.

(3.4)

Proof. Let (wj)j∈N be an orthonormal basis in W and let (zj)j∈N be the or-
thonormal basis in L2(Γ1) given by eigenfunctions of the operator −∆Γ. Since
the embedding H1

0 (Γ1) ↪→ L2(Γ1) is compact the existence of the special basis
(zj)j∈N is a consequence of the Spectral Theory and it is an orthogonal basis of
(H1

0 (Γ1)∩H2(Γ1)) and H1
0 (Γ1). For each m ∈ N, we consider um : Ω× [0, Tm]→ R

and δm : Γ1 × [0, Tm]→ R of the form

um(x, t) =
m∑
j=1

αjm(t)wj(x) and δm(x, t) =
m∑
j=1

βjm(t)zj(x)

the local solution of the approximate problem

(u′′m(t) + ρ(u′m(t))− F (t), wj) + ((um(t), wj))− (δ′m(t), γ0(wj))Γ1
= 0, (3.5)

(γ0(u′m(t)) + fδ′′m(t) + gδ′m(t) + hδm(t), zj)Γ1
+ c2 ((δm(t), zj))Γ1

= 0, (3.6)

um(0) =
m∑
i=1

φiwi → φ in W ; u′m(0) =
m∑
i=1

ψiwi → ψ in V ∩ L2q(Ω), (3.7)

δm(0) =
m∑
i=1

θizi → θ in H1
0 (Γ1) ∩H2(Γ1), δ′m(0) = (γ1(u0m))|Γ1

. (3.8)

Here 1 ≤ j ≤ m and φi, ψi, θi, i = 1, . . . ,m, are known scalars. The estimate 1
will allow us to extend the local solution to the whole interval [0, T ], for all T > 0.
From (3.5) and (3.6) we have the following approximate equations

(u′′m(t) + ρ(u′m(t))− F (t), w) + ((um(t), w))− (δ′m(t), γ0(w))Γ1
= 0, (3.9)

(γ0(u′m(t)) + fδ′′m(t) + gδ′m(t) + hδm(t), z)Γ1
+ c2 ((δm(t), z))Γ1

= 0, (3.10)
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which hold for all w ∈ span{w1, . . . , wm} and z ∈ span{z1, . . . , zm}, respectively.
Estimate 1: Setting w = u′m(t) and z = δ′m(t) in (3.9) and (3.10), respectively,
we deduce

1
2
d

dt

[
|u′m(t)|2 + ‖um(t)‖2 + |f1/2δ′m(t)|2Γ1

+ |h1/2δm(t)|2Γ1
+ c2‖δm(t)‖2Γ1

]
+ (ρ(u′m(t)), u′m(t)) + |g1/2δ′m(t)|2Γ1

= (F (t), u′m(t)) .

Employing the inequality ab ≤ a2

2 + b2

2 and integrating over (0, t), we have

|u′m(t)|2 + ‖um(t)‖2 + |f1/2δ′m(t)|2Γ1
+ |h1/2δm(t)|2Γ1

+ c2‖δm(t)‖2Γ1

+
∫ t

0

(ρ(u′m(ξ)), u′m(ξ)) + |g1/2δ′m(ξ)|2Γ1
dξ

≤ |ψ|2 + ‖φ‖2 + k2
2 max
x∈Γ1

|f |‖φ‖2W + max
x∈Γ1

|h||θ|2Γ1

+ c2‖θ‖2Γ1
+
∫ t

0

|F (ξ)|2 + |u′m(ξ)|2 dξ.

Now, taking into account (3.2), (3.3) and employing Gronwall’s lemma we conclude
that there exists a positive constant C1, which does not depend on m and t, such
that

|u′m(t)|2 + ‖um(t)‖2 + |δ′m(t)|2Γ1
+ |δm(t)|2Γ1

+ ‖δm(t)‖2Γ1
≤ C1, (3.11)

for all t ∈ [0, T ], where T > 0 is arbitrary.
Estimate 2: Substituting t = 0 in (3.9)–(3.10) and using Green’s Formula we
obtain

(u′′m(0) + ∆um(0) + ρ(u′m(0))− F (0), w) = 0, (3.12)(
γ0(u′m(0)) + fδ′′m(0) + c2∆Γδm(0) + gδ′m(0) + hδm(0), z

)
Γ1

= 0. (3.13)

Considering

Ω1 = {x ∈ Ω; |u′m(x, 0)| ≤ 1} and Ω2 = {x ∈ Ω; |u′m(x, 0)| > 1}

from the assumption (3.2) and the inclusion L2q(Ω) ↪→ L2(Ω) we obtain(∫
Ω1

|ρ(u′m(x, 0))|2dx
)1/2

≤ C2

(∫
Ω1

|u′m(x, 0)|2dx
)1/2

≤ C2|u′m(0)| ≤ C3|u′m(0)|L2q(Ω)

≤ C3(|u′m(0)|qL2q(Ω) + |u′m(0)|L2q(Ω))

(3.14)

and (∫
Ω2

|ρ(u′m(x, 0))|2dx
)1/2

≤ C4

(∫
Ω2

|u′m(x, 0)|2qdx
)1/2

≤ C5|u′m(0)|qL2q(Ω)

≤ C5(|u′m(0)|qL2q(Ω) + |u′m(0)|L2q(Ω)).

(3.15)

Thanks to (3.7), (3.14) and (3.15) we deduce

(ρ(u′m(0)), w) ≤ |ρ(u′m(0))||w| ≤ C6|w|. (3.16)
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Taking w = u′′m(0) and z = δ′′m(0) in (3.12) and (3.13), respectively, using Hölder’s
inequality, noting (3.7), (3.8) and (3.16) we obtain

|u′′m(0)|+ |δ′′m(0)|Γ1 ≤ C7. (3.17)

Differentiating (3.9) and (3.10) with respect to t and taking w = u′′m(t) and z =
δ′′m(t) we obtain

1
2
d

dt

[
|u′′m(t)|2 + ‖u′m(t)‖2 + |f1/2δ′′m(t)|2Γ1

+ |h1/2δ′m(t)|2Γ1
+ c2‖δ′m(t)‖2Γ1

]
+ (ρ′(u′m(t))u′′m(t), u′′m(t)) + |g1/2δ′′m(t)|2Γ1

= (F ′(t), u′′m(t)) .
(3.18)

Integrating from 0 to t, taking into account (3.3) and (3.17) we have

|u′′m(t)|2 + ‖u′m(t)‖2 + |f1/2δ′′m(t)|2Γ1
+ |h1/2δ′m(t)|2Γ1

+ c2‖δ′m(t)‖2Γ1
+ |g1/2δ′′m(ξ)|2Γ1

≤ C8 +
∫ t

0

|F ′(ξ)|2 + |u′′m(ξ)|2 dξ.

(3.19)
This inequality and Gronwall’s lemma yield

|u′′m(t)|2 + ‖u′m(t)‖2 + |δ′′m(t)|2Γ1
+ |δ′m(t)|2Γ1

+ ‖δ′m(t)‖2Γ1
≤ C9, (3.20)

for all t ∈ [0, T ], where T > 0 is arbitrary. Here C9 is independent of m and t.

Estimate 3: Substituting z = ∆Γδm(t) in (3.10) we find

|∆Γδm(t)|Γ1 ≤ C10

[
|f1/2δ′′m(t)|Γ1 + |g1/2δ′m(t)|Γ1 + |h1/2δm(t)|Γ1 + |γ0(u′m(t))|Γ1

]
,

for all t ∈ [0, T ]. As f, g, h ∈ C(Γ1) and the map γ0 is continuous we obtain

|∆Γδm(t)|Γ1 ≤ C11

[
|δ′′m(t)|Γ1 + |δ′m(t)|Γ1 + |δm(t)|Γ1 + ‖u′m(t)‖

]
.

Taking into account (3.11) and (3.20) we conclude that

|∆Γδm(t)|Γ1 ≤ C12, for all t ∈ [0, T ], (3.21)

where T > 0 is arbitrary.

Passage to the Limit: Using the estimates (3.11), (3.20)–(3.21) and compactness
argument, we can see that there exist a subsequence of (um)m∈N and a subsequence
of (δm)m∈N, which we will denote by the same notations, and functions u and δ,
such that

um
∗
⇀ u in L∞(0, T ;V ) δm

∗
⇀ δ in L∞(0, T ;H1

0 (Γ1) ∩H2(Γ1))

u′m
∗
⇀ u′ in L∞(0, T ;V ) δ′m

∗
⇀ δ′ in L∞(0, T ;H1

0 (Γ1))

u′′m
∗
⇀ u′′ in L∞(0, T ;L2(Ω)) δ′′m

∗
⇀ δ′′ in L∞(0, T ;L2(Γ1)).

(3.22)

The convergences above and the Aubin-Lions Theorem lead us to

um → u in L2(0, T ;L2(Ω)), u′m → u′ in L2(0, T ;L2(Ω)). (3.23)

Convergences (3.22) and (3.23) are sufficient to pass to the limit in approximate
problem (3.5)–(3.8) and we can conclude (u, δ) satisfies (3.4) (see Frota, Medeiros
and Vicente [12]). By the regularity (3.22) we apply the energy method to obtain
the uniqueness. �
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Now, we prove the exponential decay of the energy associated to (1.1) when
F ≡ 0. Let (u, δ) be the solution of (1.1) given by Theorem 3.1. We define the
energy by

E(t) =
1
2

[
|u′(t)|2 + ‖u(t)‖2 + |f1/2δ′(t)|2Γ1

+ c2‖δ(t)‖2Γ1
+ |h1/2δ(t)|2Γ1

]
. (3.24)

Lemma 3.2. Let ϕ : R+ → R+ be a non-increasing function and assume that there
exists a constant A > 0 such that∫ ∞

t

ϕ(ξ) dξ ≤ Aϕ(t), for all t ∈ R+.

Then
ϕ(t) ≤ ϕ(0) exp

(
1− t

A

)
, for all t ≥ 0.

For a proof of the above lemma, see Komornik [17].
Suppose F ≡ 0. Multiplying (3.4)1 by u′, (3.4)3 by δ′ and integrating over Ω

and Γ1, respectively, we see

E′(t) = − (ρ(u′(t)), u′(t))− |g1/2δ′(t)|2Γ1
≤ 0. (3.25)

Lemma 3.3. If all assumptions of Theorem 3.1 hold and moreover F ≡ 0, then
we have

2
∫ T

S

E(t) dt ≤ C14E(S)−
∫ T

S

(u(t), ρ(u′(t))) dt+
∫ T

S

(2u(t)− gδ(t), δ′(t))Γ1
dt,

(3.26)
for all 0 ≤ S < T <∞.

Proof. Multiplying (3.4)1 by u, (3.4)3 by δ, integrating over Ω × (S, T ) and Γ1 ×
(S, T ), respectively, and integrating by parts we obtain∫ T

S

(|u′(t)|2 − ‖u(t)‖2)dt+
∫ T

S

(|f1/2δ′(t)|2Γ1
− c2‖δ(t)‖2Γ1

)dt−
∫

Ω

uu′dx
∣∣∣T
S

−
∫

Γ1

(fδδ′ + uδ)dΓ
∣∣∣T
S

+
∫ T

S

[2 (δ′(t), u(t))Γ1
− |h1/2δ(t)|2Γ1

]dt

−
∫ T

S

(u(t), ρ(u′(t))) dt−
∫ T

S

(gδ(t), δ′(t))Γ1
dt = 0.

(3.27)
We note that

−
∫ T

S

(‖u(t)‖2 + c2‖δ(t)‖2Γ1
+ |h1/2δ(t)|2Γ1

)dt

= −2
∫ T

S

E(t)dt+
∫ T

S

(|u′(t)|2 + |f1/2δ′(t)|2Γ1
)dt.

(3.28)

Combining (3.27) and (3.28), we infer that

2
∫ T

S

E(t)dt = −
∫

Ω

uu′dx
∣∣∣T
S
−
∫

Γ1

(fδδ′ + δu)dΓ
∣∣∣T
S

+ 2
∫ T

S

[|u′(t)|2 + |f1/2δ′(t)|2Γ1
+ (δ′(t), u(t))Γ1

]dt

−
∫ T

S

(u(t), ρ(u′(t))) dt−
∫ T

S

(gδ(t), δ′(t))Γ1
dt.

(3.29)
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By Hölder and Young’s inequalities and (3.24), we have∣∣ ∫
Ω

uu′ dx
∣∣ ≤ 1

2

∫
Ω

|u|2dx+
1
2

∫
Ω

|u′|2dx ≤ C15E(t),

thus ∫
Ω

uu′ dx
∣∣∣T
S
≤ C16E(S). (3.30)

Analogously, ∫
Γ1

(fδδ′ + δu) dΓ
∣∣∣T
S
≤ C17E(S). (3.31)

From (3.3) and (3.25), we obtain

2
∫ T

S

[|u′(t)|2 + |f1/2δ′(t)|2Γ1
]dt ≤ 2

κ3

∫ T

S

∫
Ω

ρ(u′)u′dx+ C18

∫
Γ1

g(δ′)2dΓ dt

≤ C19

∫ T

S

(ρ(u′(t)), u′(t)) + |g1/2δ′(t)|2Γ1
dt

= −C19

∫ T

S

E′(t)dt ≤ C20E(S).

(3.32)
Combining (3.29)–(3.32), we obtain (3.26). �

Theorem 3.4. If all assumptions of Theorem 3.1 hold and F ≡ 0, then there exist
positive constants a and b such that E(t) ≤ a exp(−bt), for all t ≥ 0.

Proof. For each t > 0 fixed, we set

Ωt1 = {x ∈ Ω; |u′(x, t)| ≤ 1} and Ωt2 = {x ∈ Ω; |u′(x, t)| > 1}.
From (3.2) and (3.25), we have

|ρ(u′(t))|2L2(Ωt
1) =

∫
Ωt

1

|ρ(u′)||ρ(u′)|dx ≤ C21

∫
Ωt

1

|u′||ρ(u′)|dx

≤ C21 (ρ(u′(t)), u′(t))

= −C21[E′(t) + |g1/2δ′(t)|2Γ1
] ≤ C22|E′(t)|;

therefore,∣∣ ∫
Ωt

1

uρ(u′)dx
∣∣ ≤ |u(t)|L2(Ωt

1)|ρ(u′(t))|L2(Ωt
1) ≤ C23E

1/2(t)|E′(t)|1/2. (3.33)

Using the Sobolev’s imbedding V ↪→ Lq+1(Ω), (3.2), (3.24) and (3.25), we obtain∣∣∣ ∫
Ωt

2

uρ(u′)dx
∣∣∣ ≤ |u(t)|Lq+1(Ωt

2)|ρ(u′(t))|
L

q+1
q (Ωt

2)

≤ C24‖u(t)‖
[ ∫

Ωt
2

|ρ(u′)|
1
q |ρ(u′)| dx

] q
q+1

≤ C25‖u(t)‖
[ ∫

Ωt
2

u′ρ(u′) dx
] q

q+1 ≤ C26E
1/2(t)|E′(t)|

q
q+1 .

(3.34)

We also observe that
| (2u(t)− gδ(t), δ′(t))Γ1

| ≤ C27[‖u(t)‖+ |δ(t)|Γ1 ]|δ′(t)|Γ1

≤ C28E
1/2(t)|g1/2δ′(t)|Γ1 ≤ C28E

1/2(t)|E′(t)|1/2.
(3.35)
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Using Lemma 3.3, (3.33)–(3.35), we obtain

2
∫ T

S

E(t) dt ≤ C29

[
E(S) +

∫ T

S

E1/2(t)|E′(t)|1/2 + E1/2(t)|E′(t)|
q

q+1 dt
]
. (3.36)

Now, we estimate the last term of (3.36). Applying Young’s inequality and using
(3.25), we have

E1/2(t)|E′(t)|1/2 + E1/2(t)|E′(t)|
q

q+1

≤ C30

[1
2
E(t) + |E′(t)|+

(
E

1
q+1E

q−1
2(q+1) (t)|E′(t)|

q
q+1

) q+1
q
]

≤ C31

[
E(t) + |E′(t)|+ E

q−1
2q (0)|E′(t)|

]
.

(3.37)

Taking into account (3.36), (3.37) and letting T →∞, we conclude that∫ ∞
S

E(t) dt ≤ C32E(S), for all S ≥ 0. (3.38)

Hence, Lemma 3.2 yields E(t) ≤ C33 exp(−C34t), for all t ≥ 0. �

Remark 3.5. Suppose p > 1 if n = 2 or 1 < p ≤ 2 if n = 3. Setting u′′ −
M(|u(t)|2)∆u+αu′+β|u′|pu′ = 0, in Ω×(0,∞), instead of (1.1)1, using the method
above we can prove the exponential decay without the assumption c > 4k1k2 made
by Frota, Medeiros and Vicente [12].

4. Non-monotone dissipative term

Let λ ∈ C1(R) be such that

|λ(x)| ≤ κ4|x|q, if |x| > 1 and |λ(x)| ≤ κ5|x|, if |x| ≤ 1, (4.1)

where q satisfies 1 ≤ q ≤ n+2
n−2 if n ≥ 3 or q ≥ 1 if n = 2. We also assume

λ(x)x ≥ 0 and λ′(x) > −α2, for all x ∈ R, (4.2)

where α is a constant. We consider
u′′ −∆u+ λ(u′) = 0 in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),
∂u

∂ν
= δ′ on Γ1 × (0,∞),

u′ + fδ′′ − c2∆Γδ + gδ′ + hδ = 0 on Γ1 × (0,∞),

δ = 0 on ∂Γ1 × (0,∞),

u(x, 0) = φ(x), u′(x, 0) = ψ(x) x ∈ Ω,

δ(x, 0) = θ(x), δ′(x, 0) =
∂φ

∂ν
(x) x ∈ Γ1,

(4.3)

Theorem 4.1. Suppose that (4.1)–(4.2) hold. Let (φ, ψ, θ) ∈W × (V ∩ L2q(Ω))×
(H1

0 (Γ1)∩H2(Γ1)). Then there exists a unique pair (u, δ) which is solution of (4.3)
and satisfies

u, u′ ∈ L∞loc(0,∞;V ), u′′ ∈ L∞loc(0,∞;L2(Ω)) , u(t) ∈ H(∆,Ω) a.e. in [0,∞),

δ ∈ L∞loc(0,∞;H1
0 (Γ1) ∩H2(Γ1)), δ′ ∈ L∞loc(0,∞;H1

0 (Γ1)),

δ′′ ∈ L∞loc(0,∞;L2(Γ1)).
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Proof. Let (uk)k≥0 and (δk)k≥0 be the sequences defined by u0(x, t) = φ(x), for all
(x, t) ∈ Ω × [0, T ], δ0(x, t) = θ(x), for all (x, t) ∈ Γ1 × [0, T ], T > 0, and (uk, δk),
k = 1, 2, . . ., the solution of

u′′k −∆uk + λ(u′k) + α2u′k = Fk−1 = α2u′k−1 in Ω× (0, T ),

uk = 0 on Γ0 × (0, T ),
∂uk
∂ν

= δ′k on Γ1 × (0, T ),

u′k + fδ′′k − c2∆Γδk + gδ′k + hδk = 0 on Γ1 × (0, T ),

δk = 0 on ∂Γ1 × (0, T ),

uk(x, 0) = φ(x), u′k(x, 0) = ψ(x) x ∈ Ω;

δk(x, 0) = θ(x), δ′k(x, 0) =
∂φ

∂ν
(x) x ∈ Γ1,

(4.4)

for k = 1, 2, . . ., here u′1(x, t) = ψ(x) for all (x, t) ∈ Ω × [0, T ]. Since ρ(ξ) =
λ(ξ) + α2ξ satisfies (3.2)–(3.3) and Fk−1, F

′
k−1 ∈ L2(0, T ;L2(Ω)), for k = 1, 2, . . .,

the existence and uniqueness of solution (uk, δk) for (4.4) is given by Theorem 3.1.
Multiplying (4.4)1 by u′k, (4.4)4 by δ′k, integrating over Ω and Γ1, respectively,

and substituting the second equation into the first, we obtain
1
2
d

dt

[
|u′k(t)|2 + ‖uk(t)‖2 + |f1/2δ′k(t)|2Γ1

+ |h1/2δk(t)|2Γ1
+ c2‖δk(t)‖2Γ1

]
≤ α2

(
u′k−1(t), u′k(t)

)
.

(4.5)

Denoting by

ek(t) =
1
2

ess sup0<s<t

{
|u′k(s)|2 + ‖uk(s)‖2 + |f1/2δ′k(s)|2Γ1

+ |h1/2δk(s)|2Γ1

+ c2‖δk(s)‖2Γ1

}
,

e(0) =
1
2

[
|ψ|2 + ‖φ‖2 + k2 max

x∈Γ1

|f |‖φ‖W + max
x∈Γ1

|h||θ|2Γ1
+ c2‖θ‖2Γ1

]
and integrating (4.5), we have

ek(t) ≤ e(0) + α4t

∫ t

0

|u′k−1(ξ)|2dξ +
1
4t

∫ t

0

|u′k(ξ)|2dξ.

However,
1
4t

∫ t

0

|u′k(ξ)|2dξ ≤ 1
2
ek(t), for all k = 1, 2, . . . .

Therefore,
1
2
ek(t) ≤ e(0) + 2α4t2ek−1(t), for all k = 1, 2, . . . . (4.6)

Let M be a constant such that M > 2e(0). By induction, it is easy to prove

ek(t) ≤ 2e(0) + 4α4t2M < M, for all t ≤ τ1 =
(M − 2e(0)

4α4M

)1/2

, (4.7)

k = 1, 2, . . ..
Differentiating the equations (4.4)1 and (4.4)4 with respect to t, proceeding as

in (3.14), (3.15), (3.18), (3.19) and above we obtain

|u′′k(t)|2 + ‖u′k(t)‖2 + |f1/2δ′′k (t)|2Γ1
+ |h1/2δ′k(t)|2Γ1

+ c2‖δ′k(t)‖2Γ1
≤M, (4.8)
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for all t ∈ [0, τ2], where τ2 =
(
M−2e(0)

4M

)1/2

with M > 2e(0) and

e(0) =
1
2

{
[|∆φ|+ Cv(|ψ|qL2q(Ω) + |ψ|L2q(Ω)) + α2|ψ|)1/2 + ‖ψ‖2 + (k0‖ψ‖W

+ c2|∆Γθ|Γ1 + k2 max
x∈Γ1

|g|‖φ‖W + max
x∈Γ1

|h||θ|Γ1)1/2

+ k2 max
x∈Γ1

|h|‖φ‖W + c2k1‖φ‖2W
}
.

Employing the same argument to obtain (3.21), we have

|∆Γδk(t)|Γ1 ≤ C35, for all t ∈ [0, τ ], (4.9)

where τ = min{τ1, τ2}. Using the estimates (4.7)–(4.9) and compactness argument,
we can see that there exist a subsequence of (uk)k≥0 and a subsequence of (δk)k≥0,
which we will denote by the same notations, and functions u and δ, such that

uk
∗
⇀ u in L∞(0, τ ;V ), δk

∗
⇀ δ in L∞(0, τ ;H1

0 (Γ1) ∩H2(Γ1)),

u′k
∗
⇀ u′ in L∞(0, τ ;V ), δ′k

∗
⇀ δ′ in L∞(0, τ ;H1

0 (Γ1)),

u′′k
∗
⇀ u′′ in L∞(0, τ ;L2(Ω)), δ′′k

∗
⇀ δ′′ in L∞(0, τ ;L2(Γ1)).

(4.10)

These convergences are sufficient to pass to the limit in (4.4). Therefore (u, δ) is
a local solution of (4.3). The proof of the uniqueness is standard. Now, we will
extend the local solution to whole interval [0, T ], for all T > 0. In fact, let (u, δ)
the local solution of (4.3), we consider the problem

v′′ −∆v + λ(v′) = 0 in Ω× (0,∞),

v = 0 on Γ0 × (0,∞),
∂v

∂ν
= σ′ on Γ1 × (0,∞),

v′ + fσ′′ − c2∆Γσ + gσ′ + hσ = 0 on Γ1 × (0,∞);

σ = 0 on ∂Γ1 × (0,∞),

v(x, 0) = u(x,
τ

2
), v′(x, 0) = u′(x,

τ

2
) x ∈ Ω;

σ(x, 0) = δ(x,
τ

2
), σ′(x, 0) =

∂u

∂ν
(x,

τ

2
) x ∈ Γ1,

(4.11)

then we have a local solution (v, σ) of (4.11) on [ τ2 ,
3τ
2 ]. By uniqueness, we obtain

(u, δ) = (v, σ) on [ τ2 , τ ]. Therefore we can extend the solution (u, δ) to whole
interval [0, 3τ

2 ]. Then we have a global solution of (4.3). �
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