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WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY
HYPERBOLIC SYSTEM OF CONSERVATION LAWS

HARENDRA SINGH, MANAS RANJAN SAHOO, OM PRAKASH SINGH

ABSTRACT. In this article, we construct the weak asymptotic solution devel-
oped by Panov and Shelkovich for piecewise known solutions to a prolonged
system of conservation laws. This is done by introducing four singular waves
along a discontinuity curve, which in turn implies the existence of weak as-
ymptotic solutions for the Riemann type initial data. By piecing together the
Riemann problems, we construct weak asymptotic solution for general type
initial data.

1. INTRODUCTION

Systems of conservation laws arise in many physical contexts are not strictly
hyperbolic. For such systems classical theories of Glimm [2] and Lax [§] do not
apply. Because of the appearance of product of distributions, it is difficult to define
the notion of solutions for these problems. One way to avoid this is to work with
the generalized space of Colmbeau. For details see [9] and [I].

A system of this kind was introduced by Joseph and Vasudeva Murthy[5], namely,

J
(uj)e + Z(%)w —0, j=12....n (1.1)
i=1
For n = 1, system is Burger’s equation, which is well studied by Hopf [3].
For n = 2 case is an one dimensional model for the large scale structure formation
of universe, see, [12]. Using vanshing viscosity approach it is observed by Joseph
[4] that the second component contain 6 measure concentrated along the line of

discontinuity. The case n = 3 is studied in [6]. Solution is constructed in the
Colombeau setting. If u; = u, us = v, uz = w, (1.1) becomes

u? v?
ut—l—(?)w =0, v+ (w), =0, wt—i—(?—&—uw)w =0. (1.2)
A similar system,
u+ (u?)e =0, v+ (2uv), =0, w;+2(v* +uw), =0, (1.3)
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is studied by Panov and Shelkovich [I1]. In [II] a concept of weak asymptotic solu-
tion is introduced and a solution is constructed under this consideration and gener-
alized integral formulation is introduced for piecewise continuous data. Note that
the system can be obtained from using the transformation (u,v,w) —
(2u,v,¥). The case n = 4 is studied by joseph and Sahoo [7]. In [7], using vansh-
ing viscosity approach a solution is constructed for Riemann type initial data and
based on this a weak integral formulation is given.

In this paper we use the weak asymptotic method introduced by Panov and
Shelkovich [11] to study the case n = 4. Putting u; = u, ug = v, ug = w, ug = 2
and followed by a linear transformation, the system leads to the system

ug + (), =0, v+ (2uv), =0 (1.4)
we + 20 Fuw), =0, 2z + 2((3vw + uz),) = 0. .

The aim of this paper is to study the above system (|1.4]) with initial conditions
u(z,0) = uo(x), v(z,0) =wvo(x), w(z,0)=wo(x), z(x,0)=z(z). (1.5)
The content of the paper is as follows. We construct weak asymptotic solution by
connecting two known solutions from the left and right. As a special case we derive
weak asymptotic solution for the Riemann type initial data. Then we construct

a weak asymptotic solution when the initial data for « is a monotonic increasing
function and initial data for v,w and z are locally integrable functions.

2. WEAK ASYMPTOTIC SOLUTION FOR RIEMANN TYPE INITIAL DATA

In this section we connect two classical solutions by introducing a discontinuity
curve in asymptote level. First of all we recall the definition of weak asymptotic
solution as introduced in [111, [10].

Definition 2.1. Let us define

Li(u) = us + (u?)e,  La(u,v) = v, + (2uv),
La(u,v,w) = w; + 2(v? +uw)y, La(u,v,w,2) = 2 + 2((Bow + uz)y).

(uf, v, we, 2¢) is said to be weak asymptotic solution to problem (1.4)) with initial

data if
[ Batutat @t = o),
/Lg[u(z,t, €),v(z,t,¢e)]v(x)dx = o(1),
/ Lafu(z,t, ), vz, t, €), w(z, t, l(x)dz = o(1),
[ Batute 0.0 w0, (ot ) = of1),
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and initial conditions satisfy

(2.2)

for all ¢ € D(R).

To study weak asymptotic analysis first we need the following Lemma as in [I1],
regarding the superpositions of the singular waves 4, 4’, " and §"".

Lemma 2.2. Let {w;};er be an indexed set of Friedrich mollifiers satisfying

w;(x) = w;(—x), /wi =1.
Define

z
€

Hi(z,€) =w0i(§) = /

— 00

1 z 1 z
wz(y)dy7 6i(‘r76) = Ewl(;)7 (55(3),6) = ekt1 ’U}f(;)

The above assumptions implies the following asymptotic expansions, in the sense of
distributions,

(Hi(z,€))" = H(x) + Opr(e), (Hi(x,e)(H;(z,€)) = H(z) + Op(€)

(Hi(,0)78(2.€) = 6(2) [ wfy()uws 0}y + O (e
(5:(w,0)* = 23(z) [ )y + O (0
Hil, 08 (2. €) = = :3(2) [ wiy)uws )y + (2) [ wos(w)s )y + O (9
Hi(, 08 (2.0) = 23(z) [ wi(y)d}(0)dy + O ()
5i(2.€)85(2,6) = 3(z) [ wily)uw;(w)dy + Ops (9
5w, )3} 2,6) = +0'(2) [ gy}l (v)dy + O (o),
i, (2,) = 20(0) [ woiwhus )+ 50"() [ iy o)y + O
5. )] (.6) = +8'(2) [ ywsl)u} ()dy + O (0

Hilr, 028" (2.€) = 8'(a) [ syl (w)dy + O (0
where (Op:(€),¥(xz)) — 0 for every test function .

Proof. Let ¥ € D(R) be any test function. The first six relations can be found in
[11]; so wee prove from the seventh onward.
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Now we prove seventh asymptotic expansion. Using change of variable for-
mula (z = ey), employing third order Taylor expansion (ey) = 1(0) + ey’ (0) +
1e2y%¢"(0) + €¥y30(1), and the fact that [ yw;(y)w;(y)dy = 0, we have

1 x, 1 T

«Ma@@wxxwm>:/¥wx—rwxﬂwwwx

- % / w;(y)w; (Y)Y (ey)dy
1

:;wm/w@w@@+ww/@mww@@+m@
:f&w/m@mww@+0@‘

Now we prove eighth asymptotic expansion. Using change of variable formula

(x = ey), employing third order Taylor expansion, ¥(ey) = ¥(0) + eyy’(0) +
1e2y%9"(0) + €¥y30(1), and the fact that [ yw;(y)w;(y)dy = 0, we have

(5, 985 . ) w(a)) = 5 [ il v (en)dy

1 1
= gw(0>/wi(y)w§(y)dy+ gz/f'(O)/ywi(y)w;(y)dy
1
+ 50710 [ Puswu )y + 0
1
= 20(@) [ yuity)uw)dy + 0(0).
In the above calculation we also used the identity

/wi(y)w}(y)dy = /wai(y)wQ(y)dy =0

Following an analysis similar as above, we prove the remaining identities. Details
are as follows:

(Hi(z,€)87 (z,€),%(x))
5ﬂw@§w@w@@

1, ’ 52y2 /
— [ wniw) ) 00) + e (0) + - O)dy + O
1

= @) [ yuno)uf Wy + 58"(@) [ Puno)e] @y + 0(0),

€

=5 [ wt ey
1 62y2
= 5 [ W@ O)+ a(0) + L O)dy + 0

= 50w Wiy + 5@ [y )y
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+%5”(x)/y2wi(y) 7' (y)dy + O(e)
- L@ / ywi(y)w!” (y)dy + O(e)

€

(Hi(x, €)e 26”"( 0, %(x)
_ / woi (4) 5 ! ()1 (e) ((0) + ey (0) + 2" (0))dy + O(e)
1

2
5(x) / ywos (v (y)dy + O(e)
[

It is observed in [7], that the vanishing viscosity limit for the component z admits
combinations of §, 8", 6" waves. So we choose ansatz as the combination of the above
singular waves along the discontinuity curve. But this is not enough as it is clear in
the construction of w, see [I1]. In [I], a correction term is added in the component
w to construct weak asymptotic solution. As the solution for the component is
more complicated, extra care has to be taken to accomplish this.This is done by
choosing the correction term carefully in the component z.

Theorem 2.3. The following ansatz
u(z,t, €) = uz(z,t) + [ul Hy (= + ¢(1), €),

v(@,t,€) = va(w,t) + [v]Hy(—2 + ¢(t), €) + e(t)de(—z + ¢(t), €),
w(,t,€) = wa(z,t) + [wHy(—2 + ¢(t), €) + g(t)ds(—z + (1), €)
h(t)oy,(—z + ¢(t),€) + Ry (—z + ¢(t), €), (2.3)
z(2,t,€) = za(x, 1) + [2]Ho(—2 + ¢(t), €) + L()di(—z + &(1), €)
m(t)d,, (—z + (1), €) + n(t)d, (—z + d(t), €)

+ Ra (=2 +6(t), ©),

where

Ry(w,t,¢) = @ P(t)5F (—x + 6(t). ),

R.(z,t,€) = €(Q(t)IR (—x + ¢(t), €) + R(t)SF' (—x + (1), ).
is weak asymptotic solution to the problem if the following relations hold:
Lifu ] =0, Li[us] =0,
Lofuy,v1]) =0, Lafug,vs] =0,
Li[uy,v1,w1] =0, Lsfug, v, wa] =0,

¢(t) = (ul + u2)|x=¢(t)v e(t) = [u] ('Ul + U2)|x=¢(t)

(0) = (2ol (v1 +02) + [ +w2)] i (RO ((0), 1)) = (),

dt
1
/w()u(y)wj(y)dy = /y2w()v(y)we(y)dy = bR Jj=e.g,h,
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/wu(y)wh(y)dy = /wg(y)dy, P(t) = Ul(g(lt) t)’

Lyfui,vi,w1,21] =0, Lafug,vs, we, 22) =0,

( )= —[z qS(t) + 2[3vw 4 uz],

where A is a constant,

[ uwnytidy =5 [ oy = [ wouwnwis =3,

m(t) = 2[3{(va + [v] / wou (Y)wg(y)dy)g(t) + (w2 + [w] / wow (Y)we(y)dy)e(t)}
- 3{(v30 + [vs] / wou (y)wn(y)dy)(t)}

N | =

¥ (uge + %)m(t) + (trge + [“;7”] (b)),

n(t) = 2[3{(v2 + [v] /wm(y)wzm(y)dy)h(t)} = (2uze + [ua])n(2)];

. //// (y)dy [Se(t)h(t)/ywe(y)wﬁl(y)dy

R(t) fwou
+3e(D)p(t) / e ()t (v)dy]
Q) = : [3e(t)g(t) [ wel)uy(0)d
T Jwwg(yay 70T T

— 3[ulh(t) / wy (y)wn (y)dy — [u]m () / W) wm (y)dy

+ 0 v [ wouwuty Gay)

Proof. If the first thirteen relations above hold, then the expression for u,v and w

in (2.3) is a weak asymptotic solution, is shown in [I1]. So, we only prove that the

expression for the component z in equation (2.3) is a weak asymptotic solution.
Multiplying the ansatz given for v and w in the equation (2.3]) and using lemma

we obtain

v(x,t, e)w(z, t,€)
= vgwy + [vw]H (—z + ¢(t)) + {(U2 + [v] / wou (Y)wy (y)dy)g(t)

+(wz ) [ w0 W)y bz + o)
(o2 [0] [ o y)un ()8 (o + ()
T (e(t)g(t) / we(y)w,(y)dy — [o]h(t) / wo(yun(y)dy) -5~ + (1)

+ (e(t)h(t) / ywe (y)wy, (y)dy + e(t)p(t) / ywe(y)wp (y)dy) - 5'(—x+¢(t))
+O0p(e).

Similarly,
u(z,t,e)z(xz,t,€)
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= ug2o + [uz]H(—z + ¢(t))
s+ (0] [ wou(p) ()52 + 6(0)
Hluz + 4] wou@)un(o)dylm 5 (~a + 6(6)
oo+ 2 [ Py sl (o + 6(0)
+ ) [ wa@un(o)dy + ) [ wo @)y
HQU) [ w ) uty(u)dy) 20— + 0(t)
IR [ w0 @y (<o -+ 6(0) + Opr(e).

Arranging the coefficient of § and the derivatives, 1§ and 16’ of 3v(z,t, €)w(z, t, €)+
u(zx,t,€)z(x,t,€), we obtain

3v(z, t,e)w(z, t,€) + ulx, t,€)z(x,t,€)
= (3vawgy + ugz2) + [Bvw + uz|H(—z + ¢(t))

+3{(02+ o] [ wn0)wyW)dn)gle) + (w2 + [0] [ wouw)edn)e(o)
(a4 ] [ wou ) un(w)dI(e) + 3{(v2s + [02) [ wouWun(u)dh(e))
(s + [1s] [ wou () )

2

T B{(v + ] / wou(y)wn (v)dy) (D)} + (us + [ / wWou (4w (y)dy)m()

~ 2z + 2 [P wn )0y (— + 60)

a2 [ P, )i,y 0" (2 + 6(0)
+ [3e09(0) [ wetwwawidy = 30hte) [ wn)un(w)dy
~ nt) [ @)y + ) [ wouwynts)dy
QM) [ vl )y

RO [ wou ) W)dy] ],y 18-+ 6(6)

+ [3e(t)h(t) / ywe(y)wy, (y)dy + 3e(t)p(t) / ywe (y)wy (y)dy

R [ o) 0)dy] |,y 68 (~2 + 9(8) + O )

e+ 2 [ 0000 )0y 6+ 600)
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Bu(z, t,e)w(z, t,€) +u(z, t,€)z(x, t,€)),
= (Buaws + u222)x + [(Bvw + uz) | H(—x + ¢(t)) — [Bow + uz]d(—z + &(t))

~ 3{(02 + 0] [ o (y)wgdn)g(t) + (w2 + 0] [ wou(y)ww)dy)e(®)
(w4 ] w0 ()dn)E) + 3{ (w2 + o) [ o (yn ()0}

+ (uge + [ua] / wou () (y)dy)m(t)

+ (u2zz + % /yzw%(y)wn(y)dy)n(t)} |I:¢(t)5l(*x +9(t))

~ [3{(02+ o] [ woul0)wnw)dy)h(®)} + (uz + [u] [ wnuly)wn (y)dy)m(o)

— Q(UQJC + 9

~ e+ 2 [ P )i,y 3" (-2 + 6(0)
- [3e09(®) [y, )y~ 3elhte) [ wotwyun(u)dy
~ m(t) [ wag)wn()dy

+ [uln(t) / wou(y)wn (y)dy + [W]Q(1) / ! (y)wly (y)dy

[ nm)en (o], 8" (-2 + 6(0)

RO [ w0u )0 )] ],y 1 (o + 610)

~ [pen(0) [ i)y + 3e0p0) [ vty )y

R [ woulo)w )] |,y 18" + 6(6)) + O ().

(2.4)
Differentiating z with respect to t,
zi(x,t,€)
= 210+ [l H(=2 + 6() + [[210(8) + ()| 6(~z + 6()
(2.5)

+ [1)d(t) + 10 (1) (—z + 6(t) + [m()d(t) + ()] 8" (—x + ¢(t))

+n(t)o(t)d" (—z + ¢(t)) + Opr(e).

Putting the value of z:(z,t,€) from the equations (2.5) and (3v(z,t,€)w(x,t,€) +
u(z,t,€)z(z,t,€)), from the equations (2.4) in the fourth equation of (1.4]), we
obtain

zt + 2((Bvw + uz),)
= 211 + 2(Bvows + u22), + [[zt] + 2[(3vw + uz)x]} H(—x + ¢(t))

+ |16 + i(t) - 2B3vw + uz] (2 + (1))
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+ [1006(0) + m(e) — 203{(02 + (0] [ won (s ())g(e)

+(wa ] [ o @ )dne)

(a4 ) [ () ()dy)ie) + 3{(vzs -+ 0] [ wo(w)uno)dn)h(6)}
(s + 0] [ wou )y

Lo [ uou(w)wno)tnn@]] 5 (= + 6(0)

+ [m@3(0) +0(0) - 23{(02 + (o] [ w0, (Wun(e)dy)h(o)

+ (ngw +

+uz+ 0] [ o (y)m ()

= (uzs + (] [ Pwnuly)un@)dy)n(0)]8" (<2 + (0)

+ [0030) — 202 + (0] [ Pwouw)n()dyln(0)] (2 +0(2)
= 2[3e(t)gt) [ welvwg(wdy — 30hte) [ wng)wn()dy

~ () [ wawn(wdy

+aln(t) [ wouyenlo)dy + WQE) [ vy
RO [ wnu)u 0],y 28 (-2 + 00)

= 2[3e(t)n) [y yuh )y + 3ep(t) [ yueluwy )y
LR [0 ()0 ()] ], 78" (2 +0(0) + Ops )

So if the relations 14-21 holds then the coefficients of 6 and their derivatives, %6
and %5' vanishes. The proof is complete. O

For Riemann type data the above expression is simple, and it is described in the
following corollary.

Corollary 2.4. If u;,v;, w; z; fori=1,2 are constants then expression (2.3)) is a
weak asymptotic solution provided the following equalities hold.

d)(t) = (ul + u2)|x=¢(t)a e(t) = [u](vl + U2)|$=¢(t)7

g(t) = (2[v](v1 + v2) + [u] (w1 + wz)}z:(b(t),quad%(h(t)[u(da(t),t)]) = %62(15)
/ﬂ)ou(y)wj(y)dy = /y2w0v(y)we(y)dy = %7 ] = evga h,
/wu(y)wh(y)dy = /wf(y)d% P(t) = ul(q;?t) nt where A is a constant,
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I(t) = —[2](t) + 2[3vw + uz],

[y =5 [ vuounws = [ wouwwnwis =3,

ii(t) = 2[3{(v2 + [v] / wou )y ()dy)g(£) + (ws + o] / wou () we (v)dy)e(t)},
A(t) = 203{(vs + [v] / wou(y)wn(y)dy)h(t)},
]' /
wau //// )dy [Se(t)h(t)/ywe(y)wh(y)dy

+ 3e(t)p(t) / ywe (y)wl () dy),

N | = =

R(t) =

1

Q) = a0 [ vy

— 3[v]h(t) / wy (y)wn (y)dy — [u]m(t) / Wy (Y)wi (y)dy + w

Piecing together the Riemann problems we construct a weak asymptotic solution
for general type initial data under the assumption that v is a monotonic increasing
function.

Theorem 2.5. If ug,vg, wy and zy are locally integrable functions on R, and ug is
monotonic increasing, then there exists weak asymptotic solution (u,v,w,z) to the

system (1.4) with initial data (1.5).

Proof. Let ¢ be a test function on R having support in [— K, K]. Given € > 0, there
exist piecewise constant functions (uge, Voe, Woe, 20¢) such that

[ @) —uelde<e [ o) - unlo)lds <«

[-K,K] [-K,K]

/ |wo () — woe(x)|dx < €, / |z0(x) — 2zpe(x)|dx < €.
[-K,K] [-K,K]

In addition to this we can take wug. monotonic increasing and all functions have
same points of discontinuities. (uge, Voe, Woe, 20¢) in [—K, K] can be represented as

Uge — Zuol(H(x — ai,1> — H(J,’ — ai)),

woe = Zw(]l(H(z —a;-1) — H(z — a;)),

Z0e — ZZOZ'(H(JZ — ai_l) — H(J? — ai)).

Since up. is a monotonic increasing function, discontinuity curve arising in the
solution of (u,v,w, z) do not intersect for any time. So the following functions are
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weak asymptotic solutions

n—1
u(z,t,n) = vt Hy(—x + c1t + a1,m) + Z Ug; (Hu(:c —¢i—1t — aj—1,m)
i=2
— Hy(x — c;t — ay, 77)) + uon (Hy(x — o1t — an—1,7m),
n—1
v(z,t,n) = vorHy(—x + c1t + a1,1m) + Z Voi (Hy(l" —ci—1t —ai—1,1)
i=2

— H,(x —cit — amz)) + vonHy(x — cp1t — an—1,7)
n—1

+ Z ei(t)de(—z + cit,m),
i=1
n—1
w(z,t,n) = werHy(—x + 1t + a1,n) + Z Wo; (Hw(x —¢i—1t — aj—1,7m)
i=2

— Hy(x —cit — ai,n)) + wonHuw(x — cp_1t — an—1,7)

n—1 n—1

+ ) 0it)0g(—z + cit,n) + Y hi()dh(—x + it n)
=1 =1
n—1

+ Z Rwi(_x + Cit, 77)7
i=1

n—1
z(x,t,n) = ZOle(—l' + Clt =+ al,ﬂ) + Z 204 (HZ(ZL' — Ciflt — ai,l,n)
=2

— H, (x —cit — ai,n)) + 2on(H,(z — cp_1t — an—1,7))

n—1 n—1

+) LG~z +eitn) + Y mi(t)d, (—x + cit,n)
i=1 i=1
n—1 n—1

+ Z nl(t)ts'lri(_x + Cit, 77) =+ Z Rzi(_x + Cit7 77)7
1=1 =1

where e;, g, hi, l;; my, n;, Ry and R,; satisfy (2.6) with wy, us, v1, ve, wy, wa,
z1, 22, €, g, h, I, m, n, Ry, and R, replaced by w;_1, u;, vi—1, v;, Wi—1, Wy, Zi—1, Zi,

e, 9i, hiy l;, my, n;, Ry; and R,;. Given € > 0 choose 7(e) small enough such that
the following estimates hold.

| [ alatetan@@de] <0, | [ Lalute,tone) ol tnte)li)] <
| [ Ealutastonte)ofe. (e, e, ton(eli(ada] < e
| [ Ealurs e vl ton(e) e, (@), 2 () ] <
[ (w6010 = wo(w) e < 2
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| [ (v6a.0.000) = (@) oo < 2,
|/ (w(x,O,n(e)) — wo(x))w(x)dx{ < 2e,
|/(z(x,om(e)) - zo(x))¢(x)dx} < 2.
Define
(a(x’ t7 6)’ 17(3:’ t’ 6)7 w(x’ t’ 6)’ 2(x7 t? 6))
= (u(z, t,n(e),v(z,t, n(e), wlz, t,n(e), z(x, 1, n(c)).
Then (u,v,w, z) is a weak asymptotic solution of system (1.4))-(1.5]). O
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