Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 100, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

PERIODIC SOLUTIONS FOR NONLINEAR NEUTRAL DELAY INTEGRO-DIFFERENTIAL EQUATIONS

AZZEDDINE BELLOUR, EL HADI AIT DADS

ABSTRACT. In this article, we consider a model for the spread of certain infectious disease governed by a delay integro-differential equation. We obtain the existence and the uniqueness of a positive periodic solution, by using Perov's fixed point theorem in generalized metric spaces.

1. INTRODUCTION

The existence of positive solutions to the integral equation with non constant delay

$$x(t) = \int_{t-\sigma(t)}^{t} f(s, x(s))ds, \qquad (1.1)$$

was considered in [4, 13, 18, 23]. This equation is a mathematical model for the spread of certain infectious diseases with a contact rate that varies seasonally. Here x(t) is the proportion of infectious in population at time t, $\sigma(t)$ is the length of time in which an individual remains infectious, f(t, x(t)) is the proportion of new infectious per unit of time (see, for example, [5, 9, 21]).

Ait Dads and Ezzinbi [4] and Ding et al [10] studied the existence of a positive pseudo almost periodic solution. Ezzinbi and Hachimi [13], Torrejón [23], Xu and Yuan [24] showed the existence of a positive almost periodic solution. The existence of a positive almost automorphic solution was studied in [12, 15, 18]. Bica and Muresan [7,8] studied the existence and uniqueness of a positive periodic solution of (1.1) by using Perov's fixed point theorem in the case of f depends also on x'(t)and $\sigma(t) = \sigma$ is constant.

Ait Dads and Ezzinbi [3] considered the existence of a positive almost periodic solution, Ding et al [11] studied the existence of positive almost automorphic solutions for the neutral nonlinear delay integral equation

$$x(t) = \gamma x(t - \tau) + (1 - \gamma) \int_{t - \tau}^{t} f(s, x(s)) ds,$$
(1.2)

where $0 \leq \gamma < 1$. We refer to [2, 17] for the meaning of (1.2) in the context of epidemics.

²⁰¹⁰ Mathematics Subject Classification. 45D05, 45G10, 47H30.

Key words and phrases. Neutral delay integro-differential equation; periodic solution; Perov's fixed point theorem.

^{©2015} Texas State University - San Marcos.

Submitted December 14, 2014. Published April 14, 2015.

In this paper, we consider the more general equation

$$x(t) = \gamma x(t - \sigma(t)) + (1 - \gamma) \int_{t - \sigma(t)}^{t} f(s, x(s), x'(s)) ds,$$
(1.3)

Equation (1.3) includes many important integral and functional equations that arise in biomathematics (see for example [1,6,8,9,14,16,18,19,21]).

We would to use Perov's fixed point theorem to obtain conditions for the existence and uniqueness of a positive periodic solution to (1.3). This work is motivated by the work of Wei Long and Hui-Sheng Ding [18]. Moreover, the results obtained in this paper generalize several ones obtained in [6, 8, 19, 21], and the main goal in this work is to study the existence and uniqueness of solutions when $\sigma(t)$ is not constant in (1.3).

2. Preliminaries and generalized metric spaces

In this section, we recall the following notation and results in generalized metric spaces.

Definition 2.1 ([20]). Let X be a nonempty set and $d : X \times X \to \mathbb{R}^n$ be a mapping such that for all $x, y, z \in X$, one has:

- (i) $d(x,y) \ge 0_{\mathbb{R}^n}$ and $d(x,y) = 0_{\mathbb{R}^n} \Leftrightarrow x = y$,
- (ii) d(x, y) = d(y, x),
- (iii) $d(x,y) \leq d(x,z) + d(z,y)$, where for $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ from \mathbb{R}^n , we have $x \leq y \Leftrightarrow x_i \leq y_i$, for $i = \overline{1, n}$.

Then d is called a generalized metric and (X, d) is a generalized metric space.

Definition 2.2 ([22]). Let $(E, \|\cdot\|)$ be a generalized Banach space, the norm $\|\cdot\|: E \to \mathbb{R}^n$ has the following properties:

- (i) $||x|| \ge 0$ for all $x \in E$ and ||x|| = 0 if and only if x = 0.
- (ii) $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in K = \mathbb{R}$ or \mathbb{C} and for all $x \in E$.
- (iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in E$ (the inequalities are defined by components in \mathbb{R}^n).

Remark 2.3. A generalized Banach space is a generalized complete metric space.

Definition 2.4 ([20]). If (E, d) is a generalized complete metric space and $T : E \to E$ which satisfies the inequality

$$d(Tx, Ty) \leq Ad(x, y)$$
 for all $x, y \in E$,

where A is a matrix convergent to zero (the norms of it its eigenvalues are in the interval [0,1)). We say that T is a Picard operator or generalized contraction.

We recall the following Perov's fixed point theorem.

Theorem 2.5 ([20]). Let (E, d) be a complete generalized metric space. If $T : E \to E$ is a map for which there exists a matrix $A \in M_n(\mathbb{R})$ such that

$$d(Tx, Ty) \le Ad(x, y), \quad \forall x, y \in E$$

and the norms of the eigenvalues of A are in the interval [0,1), then T has a unique fixed point $x^* \in E$ and the sequence of successive approximations $x_m = T^m(x_0)$ converges to x^* for any $x_0 \in E$. Moreover, the following estimation holds

$$d(x_m, x^*) \le A^m (I_n - A)^{-1} d(x_0, x_1), \quad \forall m \in \mathbb{N}^*.$$

3. Main result

In this section, we study the existence and uniqueness of a positive and periodic solution for the equation (1.3). We consider the following functional spaces

$$P(\omega) = \{x \in C(\mathbb{R}) : x(t+\omega) = x(t), \ \forall t \in \mathbb{R}\}$$
$$P^{1}(\omega) = \{x \in C^{1}(\mathbb{R}) : x(t+\omega) = x(t), \ \forall t \in \mathbb{R}\}$$
$$K^{+}(\omega) = \{x \in P^{1}(\omega) : x(t) \ge 0, \ \forall t \in \mathbb{R}\}$$

and denote by E the product space $E = K^+(\omega) \times P(\omega)$ which is a generalized metric space with the generalized metric $d_C : E \times E \to \mathbb{R}^2$, defined by

$$d_C((x_1, y_1), (x_2, y_2)) = (\|x_1 - x_2\| + \|x_1' - x_2'\|, \|y_1 - y_2\|)$$

where $||u|| = \max\{|u(t)| : t \in [0, \omega]\}$ for any $u \in P(\omega)$. Before stating the main result, we need the following lemma.

Lemma 3.1. (E, d_C) is a complete generalized metric space.

Proof. Let $(x^n) = (x_n, y_n)$ be a Cauchy sequence, then for any $\epsilon = (\epsilon_1, \epsilon_2) > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n, m \ge n_0$, we have $d_C((x_m, y_m), (x_n, y_n)) \le \epsilon$. Hence, for all $n, m \ge n_0$, $||x_m - x_n|| + ||x'_m - x'_n|| \le \epsilon_1$ and $||y_m - y_n|| \le \epsilon_2$. Then, $(x_n), (x'_n)$ and (y_n) are Cauchy sequences in $P(\omega)$. It is clear that $(P(\omega), || \cdot ||)$ is a Banach space, hence there exists $y \in P(\omega)$ such that

$$\lim_{n \to +\infty} \|y_n - y\| = 0 \tag{3.1}$$

and there exist $x, w \in P(\omega)$ such that $\lim_{n \to +\infty} ||x_n - x|| = \lim_{n \to +\infty} ||x'_n - w|| = 0$. Now, since for all $n \ge n_0$, and all $t \in \mathbb{R}^+$,

$$x_n(t) = x_n(0) + \int_0^t x'_n(s) ds.$$

Then, by Lebesgue's Dominated Convergence Theorem, x'(t) = w(t) for all $t \in \mathbb{R}^+$. Therefore, for all $n \in \mathbb{N}$ and all $t \in \mathbb{R}$, $x_n(t) \ge 0$. Then for all $t \in \mathbb{R}$, $x(t) \ge 0$. As a consequence, $x \in K^+(\omega)$ and

$$\lim_{n \to +\infty} (\|x_n - x\| + \|x'_n - x'\|) = 0.$$
(3.2)

Finally, we deduce, by (3.1) and (3.2), that (x^n) converges to $(x, y) \in E$ and (E, d_C) is a complete generalized metric space.

Equation (1.3) will be studied under the following assumptions:

(H1) $f \in C(\mathbb{R} \times \mathbb{R}^+ \times \mathbb{R}, (0, +\infty))$ and there exists $\omega > 0$ such that

$$f(t+\omega, x, y) = f(t, x, y) , \quad \forall (t, x, y) \in \mathbb{R} \times \mathbb{R}^+ \times \mathbb{R}.$$

(H2) There exist $\alpha, \beta > 0$ such that

$$|f(t, u, v) - f(t, u', v')| \le \alpha |u - u'| + \beta |v - v'|,$$

for all $t \in \mathbb{R}$ and all $u, u' \in \mathbb{R}^+$, for all $v, v' \in \mathbb{R}$.

(H3) $\sigma \in P^1(\omega)$ and $\inf_{t \in [0,\omega]} \sigma(t) = \sigma_0 > 0$. Let $\sigma_1 = \sup_{t \in [0,\omega]} \sigma(t)$, $\sigma_2 = \sup_{t \in [0,\omega]} |\sigma'(t)|$ and assume that $\gamma(1 + \sigma_2) < 1$.

Under the hypothesis (H1)–(H3), we will use Perov's fixed point theorem to prove the following main result.

Theorem 3.2. If the hypotheses (H1)-(H3) hold, and if

$$\gamma(1+\sigma_2) + (1-\gamma)\beta(2+\sigma_2) + L + \sqrt{\zeta} < 2,$$

where,
$$L = \max(\gamma(1 + \sigma_2), \gamma + (1 - \gamma)\alpha(2 + \sigma_1 + \sigma_2))$$
 and
 $\zeta = \gamma^2 \sigma_2(2 + \sigma_2) + (1 - \gamma)^2 \beta(2 + \sigma_2)(\beta(2 + \sigma_2) + 4\alpha(2 + \sigma_1 + \sigma_2)) + (L - \gamma)^2 + 2\gamma\beta(1 - \gamma)(1 + \sigma_2)(2 + \sigma_2) - 2L(\beta(1 - \gamma)(2 + \sigma_2) + \gamma\sigma_2).$

Then, (1.3) has a unique solution in $K^+(\omega)$.

Proof. If we differentiate (1.3) with respect to t and denoting x'(t) = y(t), for all $t \in \mathbb{R}$, we obtain

$$y(t) = \gamma(1 - \sigma'(t))y(t - \sigma(t)) + (1 - \gamma) \Big[f(t, x(t), y(t)) - (1 - \sigma'(t))f(t - \sigma(t), x(t - \sigma(t)), y(t - \sigma(t))) \Big],$$

which leads to

$$\begin{aligned} x(t) &= \gamma x(t - \sigma(t)) + (1 - \gamma) \int_{t - \sigma(t)}^{t} f(s, x(s), y(s)) ds, \\ y(t) &= \gamma (1 - \sigma'(t)) y(t - \sigma(t)) + (1 - \gamma) \Big[f(t, x(t), y(t)) \\ &- (1 - \sigma'(t)) f(t - \sigma(t), x(t - \sigma(t)), y(t - \sigma(t))) \Big]. \end{aligned}$$

Let $T: E \to C(\mathbb{R}) \times C(\mathbb{R})$ be the map defined by

$$T(x,y)(t) = \begin{pmatrix} T_1(x,y)(t) \\ T_2(x,y)(t) \end{pmatrix},$$

where

$$T_1(x,y)(t) = \gamma x(t - \sigma(t)) + (1 - \gamma) \int_{t - \sigma(t)}^t f(s, x(s), y(s)) ds,$$

and

$$T_{2}(x,y)(t) = \gamma(1 - \sigma'(t))y(t - \sigma(t)) + (1 - \gamma) \Big[f(t,x(t),y(t)) - (1 - \sigma'(t))f(t - \sigma(t),x(t - \sigma(t)),y(t - \sigma(t))) \Big].$$
(3.3)

From Conditions (H1) and (H3), one has that $T_1(E) \subset C^1(\mathbb{R})$. Hence, from the condition that f is ω -periodic with respect to t, it follows that $T_1(E) \subset K^+(\omega)$. indeed

$$T_1(x,y)(t+\omega) = \gamma x(t+\omega - \sigma(t+\omega)) + (1-\gamma) \int_{t+\omega - \sigma(t+\omega)}^{t+\omega} f(s,x(s),y(s))ds$$
$$= \gamma x(t-\sigma(t)) + (1-\gamma) \int_{t-\sigma(t)}^t f(s-\omega,x(s-\omega),y(s-\omega))ds$$
$$= T_1(x,y)(t), \quad \forall t \in \mathbb{R}, \ \forall (x,y) \in E.$$

In addition in the same way, one has $T_2(x, y)(t + \omega) = T_2(x, y)(t)$. Consequently, $T(E) \subset E$. Moreover, from Conditions (H2),

$$\begin{aligned} |T_1(x_1, y_1)(t) - T_1(x_2, y_2)(t)| + |T_1'(x_1, y_1)(t) - T_1'(x_2, y_2)(t)| \\ &\leq \gamma |x_1(t - \sigma(t)) - x_2(t - \sigma(t))| \end{aligned}$$

$$\begin{aligned} &+ (1-\gamma) \int_{t-\sigma(t)}^{t} [\alpha |x_1(s) - x_2(s)| + \beta |y_1(s) - y_2(s)|] ds \\ &+ \gamma (1-\sigma'(t)) |x_1'(t-\sigma(t)) - x_2'(t-\sigma(t))| \\ &+ (1-\gamma) (\alpha |x_1(t) - x_2(t)| + \beta |y_1(t) - y_2(t)|) \\ &+ (1-\gamma) |1-\sigma'(t)| \alpha |x_1(t-\sigma(t)) - x_2(t-\sigma(t))| \\ &+ (1-\gamma) |1-\sigma'(t)| \beta |y_1(t-\sigma(t)) - y_2(t-\sigma(t))| \\ &+ (1-\gamma) |1-\sigma'(t)| \beta |y_1(t-\sigma(t)) - y_2(t-\sigma(t))| \\ &\leq L(||x_1-x_2|| + ||x_1'-x_2'||) + (1-\gamma) \beta (1+\sigma_1+\sigma_2) ||y_1-y_2|| \end{aligned}$$

where

$$L = \max(\underbrace{\gamma(1+\sigma_2)}_{r_1}, \underbrace{\gamma+(1-\gamma)\alpha(2+\sigma_1+\sigma_2)}_{r_2}).$$

Similarly, one has

$$\begin{aligned} |T_2(x_1, y_1)(t) - T_2(x_2, y_2)(t)| \\ &\leq (2 + \sigma_2)(1 - \gamma)\alpha ||x_1 - x_2|| + [\gamma(1 + \sigma_2) + (1 - \gamma)\beta(2 + \sigma_2)] ||y_1 - y_2|| \\ &\leq (2 + \sigma_2)(1 - \gamma)\alpha(||x_1 - x_2|| + ||x_1' - x_2'||) \\ &+ [\gamma(1 + \sigma_2) + (1 - \gamma)\beta(2 + \sigma_2)] ||y_1 - y_2||. \end{aligned}$$

 So

$$d_C(T(x_1, y_1), T(x_2, y_2)) \le A \begin{pmatrix} \|x_1 - x_2\| + \|x_1' - x_2'\| \\ \|y_1 - y_2\| \end{pmatrix},$$

where

$$A = \begin{pmatrix} L & (1-\gamma)\beta(2+\sigma_1+\sigma_2) \\ (2+\sigma_2)(1-\gamma)\alpha & \gamma(1+\sigma_2) + (1-\gamma)\beta(2+\sigma_2) \end{pmatrix}.$$

The eigenvalues of this matrix are

$$\lambda_1 = \frac{1}{2} [\gamma(1+\sigma_2) + (1-\gamma)\beta(2+\sigma_2) + L + \sqrt{\zeta}],$$

$$\lambda_2 = \frac{1}{2} [\gamma(1+\sigma_2) + (1-\gamma)\beta(2+\sigma_2) + L - \sqrt{\zeta}]$$

where

$$\begin{split} \zeta &= \gamma^2 \sigma_2 (2 + \sigma_2) + (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 4\alpha (2 + \sigma_1 + \sigma_2)) + (L - \gamma)^2 \\ &+ 2\gamma \beta (1 - \gamma) (1 + \sigma_2) (2 + \sigma_2) - 2L (\beta (1 - \gamma) (2 + \sigma_2) + \gamma \sigma_2). \end{split}$$

In what follows, we show that the eigenvalues of the matrix A are nonnegative real numbers $(\lambda_1, \lambda_2 \in \mathbb{R}^+)$.

Step 1: We show that λ_1, λ_2 are real numbers. It suffices to prove that $\zeta \ge 0$. We have two cases:

Case 1: If $L = r_1$, then

$$\begin{split} \zeta &= \gamma^2 \sigma_2 (2 + \sigma_2) + (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 4\alpha (2 + \sigma_1 + \sigma_2)) + \gamma^2 \sigma_2^2 \\ &+ 2\gamma \beta (1 - \gamma) (1 + \sigma_2) (2 + \sigma_2) - 2\gamma (1 + \sigma_2) (\beta (1 - \gamma) (2 + \sigma_2) + \gamma \sigma_2) \\ &= \gamma^2 \sigma_2 (2 + \sigma_2) + (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 4\alpha (2 + \sigma_1 + \sigma_2)) + \gamma^2 \sigma_2^2 \\ &- 2\gamma^2 \sigma_2 (1 + \sigma_2) \\ &= (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 4\alpha (2 + \sigma_1 + \sigma_2)) \ge 0. \end{split}$$

Case 2: If $L = r_2$, then

$$\begin{split} \zeta &= \gamma^2 \sigma_2 (2 + \sigma_2) + (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 4\alpha (2 + \sigma_1 + \sigma_2)) \\ &+ (1 - \gamma)^2 \alpha^2 (2 + \sigma_1 + \sigma_2)^2 + 2\gamma \beta (1 - \gamma) (1 + \sigma_2) (2 + \sigma_2) \\ &- 2(\gamma + (1 - \gamma)\alpha (2 + \sigma_1 + \sigma_2)) (\beta (1 - \gamma) (2 + \sigma_2) + \gamma \sigma_2) \\ &= \gamma^2 \sigma_2 (2 + \sigma_2) + (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 2\alpha (2 + \sigma_1 + \sigma_2)) \\ &+ (1 - \gamma)^2 \alpha^2 (2 + \sigma_1 + \sigma_2)^2 + 2\gamma \beta (1 - \gamma) \sigma_2 (2 + \sigma_2) \\ &- 2\gamma \sigma_2 (\gamma + (1 - \gamma)\alpha (2 + \sigma_1 + \sigma_2)) \\ &= \gamma^2 \sigma_2^2 + (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 2\alpha (2 + \sigma_1 + \sigma_2)) \\ &+ (1 - \gamma)^2 \alpha^2 (2 + \sigma_1 + \sigma_2)^2 + 2\gamma \beta (1 - \gamma) \sigma_2 (2 + \sigma_2) \\ &- 2\gamma \sigma_2 (1 - \gamma) \alpha (2 + \sigma_1 + \sigma_2) \\ &= (1 - \gamma)^2 \beta (2 + \sigma_2) (\beta (2 + \sigma_2) + 2\alpha (2 + \sigma_1 + \sigma_2)) + 2\gamma \beta (1 - \gamma) \sigma_2 (2 + \sigma_2) \\ &+ ((1 - \gamma)\alpha (2 + \sigma_1 + \sigma_2) - \gamma \sigma_2)^2 \ge 0. \end{split}$$

Step 2: We show that λ_2 is nonnegative. We have two cases: **Case 1:** If $L = r_1$, then

$$[\gamma(1+\sigma_2) + (1-\gamma)\beta(2+\sigma_2) + L]^2 - \zeta$$

= $4\gamma^2(1+\sigma_2)^2 + (1-\gamma)^2\beta^2(2+\sigma_2)^2 + 4\gamma(1+\sigma_2)(1-\gamma)\beta(1+\sigma_2) - \zeta$
= $4\gamma^2(1+\sigma_2)^2 + 4(1-\gamma)\beta(2+\sigma_2)(r_1-r_2+\gamma) \ge 0.$

Case 2: If $L = r_2$, then

$$\begin{split} &[\gamma(1+\sigma_2)+(1-\gamma)\beta(2+\sigma_2)+L]^2-\zeta\\ &=[\gamma(2+\sigma_2)+(1-\gamma)\beta(2+\sigma_2)+(1-\gamma)\alpha(2+\sigma_1+\sigma_2)]^2-\zeta\\ &=\gamma^2(2+\sigma_2)^2+(1-\gamma)^2\beta(2+\sigma_2)(\beta(2+\sigma_2)+2\alpha(2+\sigma_1+\sigma_2))\\ &+2\gamma\beta(1-\gamma)(2+\sigma_2)^2+(1-\gamma)^2\alpha^2(2+\sigma_1+\sigma_2)^2\\ &+2\gamma(1-\gamma)(2+\sigma_2)\alpha(2+\sigma_1+\sigma_2)-\zeta\\ &=4\gamma^2(1+\sigma_2)+4\gamma\beta(1-\gamma)(2+\sigma_2)+4\gamma(1-\gamma)\alpha(2+\sigma_1+\sigma_2)(1+\sigma_2)\geq 0 \end{split}$$

Which implies that $\lambda_2 \geq 0$.

We remark that $\lambda_1 > \lambda_2$, this implies that λ_1 and λ_2 belong to the open unit disc of \mathbb{R}^2 if and only if $\lambda_1 < 1$, which is equivalent to

$$\gamma(1+\sigma_2) + (1-\gamma)\beta(2+\sigma_2) + L + \sqrt{\zeta} < 2.$$

Then, by Perov's fixed point theorem, the operator T has a unique solution $x^* = (x_*, y_*) \in K^+(\omega) \times P(\omega)$, which implies that $x_* \in C^1(\mathbb{R})$, and for all $t \in \mathbb{R}$,

$$(x_*)'(t) = \gamma(1 - \sigma'(t))(x_*)'(t - \sigma(t)) + (1 - \gamma) \Big[f(t, x_*(t), y_*(t)) \\ - (1 - \sigma'(t)) f(t - \sigma(t), x_*(t - \sigma(t)), y_*(t - \sigma(t))) \Big].$$

Hence, by using (3.3), for all $t \in \mathbb{R}$,

$$((x_*)' - y_*)(t) = \gamma(1 - \sigma'(t))((x_*)' - y_*)(t - \sigma(t)).$$

Then, $||(x_*)' - y_*|| \le \gamma(1 + \sigma_2)||(x_*)' - y_*||$. We deduce, by Condition (H3), that $(x_*)' = y_*$ and x_* is the unique solution of (1.3).

To illustrate this result, we have the following example.

Example 3.3. Consider (1.3) where f is ω -periodic with respect to t and σ is ω -periodic, $\gamma = \sigma_1 = \sigma_2 = \frac{1}{4}$, $\alpha = \frac{1}{6}$, $\beta = \frac{1}{5}$, then $\gamma(1 + \sigma_2) = \frac{5}{16} < 1$, $L = \max(\frac{5}{16}, \frac{9}{16}) = \frac{9}{16}$ and

$$\gamma(1+\sigma_2) + (1-\gamma)\beta(2+\sigma_2) + L + \sqrt{\zeta} = \frac{67+\sqrt{2749}}{80} \cong 1.86 < 2.$$

Thus, by Theorem 3.2, Equation (1.3) has a unique positive ω -periodic solution.

The following proposition gives an estimation of the error between the exact solution and the approximate solution of (1.3).

Proposition 3.4. Under the assumptions of Theorem 3.2, the solution of (1.3), which is obtained by the successive approximations method starting from any $x^0 = (x_0, y_0) \in E$, satisfies the estimate

$$d_C(x^m, x^*) \le \frac{1}{\mu(\lambda_1 - \lambda_2)} \begin{pmatrix} e_1 \lambda_1^m + e_2 \lambda_2^m & e_3 \lambda_1^m + e_4 \lambda_2^m \\ e_5 \lambda_1^m + e_6 \lambda_2^m & e_7 \lambda_1^m + e_8 \lambda_2^m \end{pmatrix} \times d_C(x^1, x^0),$$

where $\mu = (1-L)(1-\gamma(1+\sigma_2)-\beta(2+\sigma_2)(1-\gamma)) - (1-\gamma)^2 \alpha \beta(2+\sigma_2)(2+\sigma_1+\sigma_2), x^m = T(x^{m-1}), x^m = (x_m, y_m), \text{ for all } m \in \mathbb{N}^* \text{ and }$

$$e_{1} = (a(L - \lambda_{2}) - c^{2}), e_{2} = (a(\lambda_{1} - L) + c^{2})$$

$$e_{3} = (b(L - \lambda_{2}) - c(1 - L)), e_{4} = (b(\lambda_{1} - L) + c(1 - L))$$

$$e_{5} = (L - \lambda_{1})(\frac{a(L - \lambda_{2})}{c} - c), e_{6} = (L - \lambda_{2})(c - \frac{a(L - \lambda_{1})}{c})$$

$$e_{7} = (L - \lambda_{1})(\frac{b(L - \lambda_{2})}{c} + L - 1), e_{8} = (L - \lambda_{2})(1 - L - \frac{b(L - \lambda_{1})}{c})$$
(3.4)

such that

$$a = 1 - \gamma(1 + \sigma_2) - \beta(2 + \sigma_2)(1 - \gamma)$$

$$b = (1 - \gamma)\beta(2 + \sigma_1 + \sigma_2)$$

$$c = (2 + \sigma_2)(1 - \gamma)\alpha.$$

Proof. From Theorem 2.5, by the conditions of Theorem 3.2, one has

$$d_C(x^m, x^*) \le A^m (I - A)^{-1} d_C(x^1, x^0), \quad \forall m \in \mathbb{N}^*.$$

We have

$$A^{m} = \frac{1}{\lambda_{1} - \lambda_{2}} \begin{pmatrix} (L - \lambda_{2})\lambda_{1}^{m} + (\lambda_{1} - L)\lambda_{2}^{m} & (1 - \gamma)\alpha(2 + \sigma_{2})(\lambda_{2}^{m} - \lambda_{1}^{m}) \\ \frac{(L - \lambda_{1})(L - \lambda_{2})(\lambda_{1}^{m} - \lambda_{2}^{m})}{(1 - \gamma)\alpha(2 + \sigma_{2})} & (\lambda_{1} - L)\lambda_{1}^{m} + (L - \lambda_{2})\lambda_{2}^{m} \end{pmatrix},$$

and

$$(I-A)^{-1} = \frac{1}{\mu} \begin{pmatrix} \underbrace{1-\gamma(1+\sigma_2) - \beta(2+\sigma_2)(1-\gamma)}_{a} & \underbrace{(1-\gamma)\beta(2+\sigma_1+\sigma_2)}_{b} \\ \underbrace{(2+\sigma_2)(1-\gamma)\alpha}_{c} & 1-L \end{pmatrix},$$

where $\mu = (1-L)(1-\gamma(1+\sigma_2)-\beta(2+\sigma_2)(1-\gamma))-(1-\gamma)^2\alpha\beta(2+\sigma_2)(2+\sigma_1+\sigma_2)$. Which implies

$$A^{m}(I-A)^{-1} = \frac{1}{\mu(\lambda_{1}-\lambda_{2})} \begin{pmatrix} e_{1}\lambda_{1}^{m} + e_{2}\lambda_{2}^{m} & e_{3}\lambda_{1}^{m} + e_{4}\lambda_{2}^{m} \\ e_{5}\lambda_{1}^{m} + e_{6}\lambda_{2}^{m} & e_{7}\lambda_{1}^{m} + e_{8}\lambda_{2}^{m} \end{pmatrix},$$

where e_i , $i = 1, \ldots, 8$ are given by (3.4).

References

- E. Ait Dads, O. Arino, K. Ezzinbi; Existence de solution périodique d'une équation intégrale non linéaire à retard dépendant du temps, Journal Facta Universitatis, Ser. Math, and Inf. (1996), 79-92.
- [2] E. Ait Dads, P. Cieutat, L. Lhachimi; Existence of positive almost periodic or ergodic solutions for some neutral nonlinear integral equations, Journal of Differential and integral equations. 22 (2009), 1075-1096.
- [3] E. Ait Dads, K. Ezzinbi; Almost periodic solution for some neutral nonlinear integral equation, Nonlinear Anal. 28 (1997), 1479-1489.
- [4] E. Ait Dads, K. Ezzinbi; Existence of positive pseudo almost periodic solution for a class of functional equations arising in epidemic problems, Cybernetics and Systems Analysis. 30 (1994), 133-144.
- [5] J. Bélair; Population models with state-dependent delays, in Mathematical Population Dynamics (O. Arino, D. E. Axelrod and M. Kimmel, eds.), Marcel Dekker, New York. (1991), 165-176.
- [6] A. M. Bica, S. Mureşan; Periodic solutions for a delay integro-differential equations in Biomathematics, RGMIA Res. Report Coll. 6 (2003), 755-761.
- [7] A. M. Bica, S. Mureşan; Parameter dependence of the solution of a delay integro-differential equation arising in infectious diseases, Fixed Point Theory. 6 (2005), 79-89.
- [8] A. M. Bica, S. Mureşan; Smooth dependence by LAG of the solution of a delay integrodifferential equation from Biomathematics, Communications in Mathematical Analysis. 1 (2006), 64-74.
- [9] K. L. Cooke, J. L. Kaplan; A periodicity threshold theorem for epidemics and population growth, Math. Biosciences. 31 (1976), 87-104.
- [10] H. S. Ding, Y. Y. Chen, G. M. N'Guérékata; Existence of positive pseudo almost periodic solutions to a class of neutral integral equations, Nonlinear Analysis TMA. 74 (2011), 7356-7364.
- [11] H. S. Ding, J. Liang, G. M. N'Guérékata, T. J. Xiao; Existence of positive almost automorphic solutions to neutral nonlinear integral equations, Nonlinear Analysis TMA. 69 (2008), 1188-1199.
- [12] H. S. Ding, J. Liang, T. J. Xiao; Positive almost automorphic solutions for a class of nonlinear delay integral equations, Applicable Analysis. 88 (2009), 231-242.
- [13] K. Ezzinbi, M. A. Hachimi; Existence of positive almost periodic solutions of functional equations via Hilberts projective metric, Nonlinear Anal. 26 (1996) 1169-1176.
- [14] C. A. Iancu; Numerical method for approximating the solution of an integral equation from biomathematics, Studia Univ. Babes-Bolyai, Mathematica. 43 (1988), 37-45.
- [15] L. Kikina, K. Kikina; Positive almost automorphic solutions for some nonlinear integral equations, Int. journal of Math. Analysis. 5 (2011), 1459-1467.
- [16] D. Guo, V. Lakshmikantham; Positive solutions of nonlinear integral equations arising in infections diseases, J. Math. Anal. Appl. 134 (1988), 1-8.
- [17] L. Lhachimi; Contribution à l'étude qualitative et quantitative de certaines équations fonctionnelles: Etude de cas d'équations intégrales à retard et de type neutre, équations différentielles et équations aux différences., Thèse de doctorat, Université Cadi Ayyad Marrakech, 2010.
- [18] W. Long, H. S. Ding; Positive almost automorphic solutions for some nonlinear delay integral equations, Electronic Journal of Differential Equations. 2008, 57 (2008), 1-8.
- [19] S. Mureşan, A. Bica; Parameter dependence of the solution of a delay integro-differential equation arising in infectious diseases, Fixed Point Theory. 6 (2005), 79-89.
- [20] A. I. Perov, A. V. Kibenko; On a general method to study the boundary value problems, Iz. Akod. Nank. 30 (1966), 249-264.

- [21] H. L. Smith; On periodic solutions of a delay integral equation modelling epidemics, J. Math. Biology. 4 (1977), 69-80.
- [22] A. Szilard; A note on Perov's fixed point theorem, Fixed point theory. 4 (2003), 105-108.
- [23] R. Torrejón; Positive almost periodic solutions of a nonlinear integral equation from the theory of epidemics, J. Math. Analysis Applic. 156 (1991), 510-534.
- [24] B. Xu, R. Yuan; The existence of positive almost periodic type solutions for some neutral nonlinear integral equation, Nonlinear Analysis. 60 (2005), 669-684.

Azzeddine Bellour

Department of Mathematics, Ecole Normale Superieure de Constantine, Constantine, Algeria

 $E\text{-}mail\ address: \texttt{bellourazze123@yahoo.com}$

El Hadi Ait Dads

UNIVERSITY CADI AYYAD, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES SEMLALIA B.P. 2390, MARRAKECH, MOROCCO.

UMMISCO UMI 209, UPMC, IRD BONDY FRANCE. UNITÉ ASSOCIÉE AU CNRST URAC 02 E-mail address: aitdads@uca.ma