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CAUCHY PROBLEMS FOR FIFTH-ORDER KDV EQUATIONS
IN WEIGHTED SOBOLEV SPACES

EDDYE BUSTAMANTE, JOSÉ JIMÉNEZ, JORGE MEJÍA

Abstract. In this work we study the initial-value problem for the fifth-order
Korteweg-de Vries equation

∂tu + ∂5
xu + uk∂xu = 0, x, t ∈ R, k = 1, 2,

in weighted Sobolev spaces Hs(R) ∩ L2(〈x〉2rdx). We prove local and global
results. For the case k = 2 we point out the relationship between decay and

regularity of solutions of the initial-value problem.

1. Introduction

In this article we consider the initial-value problem (IVP)

∂tu+ ∂5
xu+ uk∂xu = 0, x, t ∈ R

u(0) = u0,
(1.1)

with k = 1, 2. When k = 1 we refer to this problem as the IVP for the fifth-order
Korteweg-de Vries (KdV) equation. When k = 2 we refer to this problem as the
IVP for the modified fifth-order KdV equation.

For k = 1 the equation was proposed by Kakutani and Ono as a model for
magneto-acoustic waves in plasma physics (see [11]). The equations that we study
are included in the class

∂tu+ ∂2j+1
x u+ P (u, ∂xu, . . . , ∂2j

x u) = 0, x, t ∈ R, j ∈ Z+, (1.2)

where P : R2j+1 → R (or P : C2j+1 → C) is a polynomial having no constant or
linear terms, i.e.

P (z) =
l1∑

|α|=l0

aαz
α with l0 ≥ 2 and z = (z1, . . . , z2j+1).

The class in (1.2) generalizes several models, arising in both mathematics and
physics, of higher-order nonlinear dispersive equations.

For many years the well-posedness of these IVP has been studied in the context
of the classical Sobolev spaces Hs(R). In particular, fifth-order KdV equations
with more general non-linearities, than those we are considering, were studied in
[6, 13, 20, 21, 22, 27]. In 1983 Kato [12] studied the IVP for the generalized KdV
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equation in several spaces, besides the classical Sobolev spaces. Among them, Kato
considered weighted Sobolev spaces.

In this work we are concerned with the well-posedness of (1.1) in weighted
Sobolev spaces. This type of spaces arises in a natural manner when we are inter-
ested in determining if the Schwartz space is preserved by the flow of the evolution
equation in (1.1).

Kenig, Ponce and Vega [17] studied the IVP associated with equation (1.2) in
weighted Sobolev spaces Hs(R) ∩ L2(|x|mdx), with m positive integer. Pilod [26]
study the case of higher-order dispersive models in the context of weighted Besov
and Sobolev spaces.

Some relevant nonlinear evolution equations as the KdV equation, the non-linear
Schrödinger equation and the Benjamin-Ono equation, have also been studied in
the context of weighted Sobolev Spaces (see [1, 2, 3, 4, 5, 7, 8, 10, 23, 24, 25] and
references therein).

We study real valued solutions of (1.1) in the weighted Sobolev spaces

Zs,r := Hs(R) ∩ L2(〈x〉2rdx),

where 〈x〉 := (1 + x2)1/2, and s, r ∈ R.
The relation between the indices s and r for (1.1) can be found, after the following

considerations, contained in the work by Kato:
Suppose we have a solution u ∈ C([0,∞);Hs(R)) to (1.1) for some s ≥ 2. We

want to estimate (pu, u), where p(x) := 〈x〉2r and (·, ·) is the inner product in
L2(R). Proceeding formally we multiply the equation in (1.1) by up, integrate over
x ∈ R and apply integration by parts to obtain
d

dt
(pu, u) = 5(p(1)∂2

xu, ∂
2
xu)−5(p(3)∂xu, ∂xu)+(p(5)u, u)+

2
k + 2

(p(1)uk+2, 1). (1.3)

To see that (pu, u) is finite and bounded in t, we must bound the right-hand side
in (1.3) in terms of (pu, u) and ‖u‖2Hs . The most difficult term to control in the
right-hand side in (1.3) is 5(p(1)∂2

xu, ∂
2
xu). Using the interpolation Lemma 2.2 (see

section 2), for θ ∈ [0, 1] and u ∈ Zs,r we have

‖〈x〉(1−θ)ru‖Hθs ≤ C‖〈x〉ru‖1−θL2 ‖u‖θHs .

The term 5(p(1)∂2
xu, ∂

2
xu) can be controlled when θs = 2 if p(1)(x) ∼ 〈x〉2(1−θ)r.

Taking into account that p(1)(x) ∼ 〈x〉2r−1, we must require that 2r−1 = 2(1−θ)r
and θs = 2, which leads to s = 4r. In this way the natural weighted Sobolev space
to study (1.1) is Z4r,r.

Now, we describe the main results of this work. With respect to (1.1) with
k = 1 we establish local well-posedness (LWP) in Z4r,r for 5

16 < r < 1
2 and global

well-posedness (GWP) in Z4r,r, for r ≥ 1/2.
In the first case ( 5

16 < r < 1
2 ), we use the known linear estimates for the group as-

sociated to the linear part of the equation, which were obtained by Kenig, Ponce and
Vega in [14, 15, 16], and a pointwise formula for the group, related with fractional
weights, which was deduced by Fonseca, Linares, and Ponce in [2]. These ingredients
allow us to use a contraction principle in an adequate subspace of C([0, T ];Z4r,r) to
the integral equation associated to our IVP, to prove local well-posedness in Z4r,r.

In the second case (r ≥ 1
2 ) we use the local well-posedness of (1.1) in the context

of the Sobolev spaces H4r(R), which can be obtained in a similar fashion, as it was
done by Kenig, Ponce and Vega in [15, 16] for the KdV equation, to get a solution
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u ∈ C([0, T ];H4r(R)). Then we perform a priori estimates on the the differential
equation in order to prove that if the initial data belongs to H4r(R) ∩ L2(〈x〉2rdx)
then necessarily u ∈ L∞([0, T ];L2(〈x〉2rdx). In this step of the proof we apply the
interpolation inequality (Lemma 2.2), mentioned before, which was proved in [5].
Finally, we give the proof of the continuous dependence of the solution on the initial
data in Z4r,r.

With respect to (1.1) with k = 2, we establish local and global well-posedness
in Z2,1/2. For the LWP, again, the idea of the proof is to apply the contraction
principle to the integral equation associated to the IVP, in a certain subspace of
C([0, T ];H2(R)), in which we consider additional mixed space-time norms, sug-
gested by the linear estimates of the group. This way, we obtain, firstly, a solution
in C([0, T ];H2(R)). Then, proceeding as in (1.1) with k = 1, in the case r ≥ 1/2,
we can affirm that u ∈ C([0, T ];Z2,1/2) and that (1.1) with k = 2 is local well-posed
in Z2,1/2.

To deduce global well-posedness results from local well-posedness results we use
the following conservation laws for the solutions of (1.1) (see [14]):

I1(t) :=
∫

R
u2(t)dx = I1(0), for k = 1, 2, (1.4)

I1
2 (t) :=

1
6

∫
R
u3(t)dx+

1
2

∫
R

(∂2
xu)2(t)dx = I1

2 (0), for k = 1, and, (1.5)

I2
2 (t) :=

1
12

∫
R
u4(t)dx+

∫
R

(∂2
xu)2(t)dx = I2

2 (0), for k = 2. (1.6)

Isaza, Linares and Ponce [9] showed that there exists a relation between decay and
regularity for the solutions of the KdV equation in L2(R). More precisely, they
proved that if u ∈ C(R;L2(R)) is the global solution of the equation

∂tu+ ∂3
xu+ u∂xu = 0,

obtained in the context of the Bourgain spaces (see [18]), and there exists α > 0
such that in two different times t0, t1 ∈ R

|x|αu(t0), |x|αu(t1) ∈ L2(R),

then u ∈ C(R, H2α(R)). To achieve this goal, they chose a functional setting, where
the norm ‖∂xu‖L∞(R;L2([0,T ])) of the solution u depends continuously on the initial
data in L2(R).

Following [9], and taking into account that the norm ‖∂4
xu‖L∞(R;L2([0,T ])) of the

solution u of (1.1) with k = 2, depends continuously on the initial data in Z2,1/2,
we prove that if u ∈ C([0, T ];Z2,1/2) is a solution of (1.1) with k = 2 and, for some
α > 0, there exist two different times t0, t1 ∈ [0, T ] such that |x|1/2+αu(t0) and
|x|1/2+αu(t1) are in L2(R) then u ∈ C([0, T ];H2+4α(R)).

Before stating in a precise manner the main results of this article, let us explain
the notation for mixed space-time norms. For f : R× [0, T ]→ R (or C) we have

‖f‖LpxLqT :=
(∫

R

(∫ T

0

|f(x, t)|qdt
)p/q

dx
)1/p

.

When p = ∞ or q = ∞ we must do the obvious changes with the essential supre-
mum. When in the space-time norm appears t instead of T , the time interval is
[0,+∞).

Our results read as follows:
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Theorem 1.1. Let r > 5
16 and u0 ∈ Z4r,r. Then there exist T > 0 and a unique

u, solution of (1.1) with k = 1 such that

u ∈ C([0, T ];Z4r,r), (1.7)

‖∂xu‖L4
TL
∞
x
<∞, (1.8)

‖D4r
x ∂xu‖L∞x L2

T
<∞, and (1.9)

‖u‖L2
xL
∞
T
<∞. (1.10)

Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in Z4r,r such that
the data-solution map ũ0 7→ ũ from V into the class defined by (1.7)-(1.10) with T ′

instead of T is Lipschitz.
When 5/16 < r < 1/2, T depends on ‖u0‖Z4r,r , and when r ≥ 1/2 the size of T

depends only on ‖u0‖H4r .

Let us recall that the operator D is defined through the Fourier transform by
the multiplier |ξ|.

Remark 1.2. (a) From the proof of Theorem 1.1 it is clear that if (1.1) is
globally well-posed in H4r(R), r ≥ 1

2 , then the IVP is also globally well-
posed in Z4r,r.

(b) Using the regularity property in Theorem 2.1 it follows, from Theorem 1.1,
that (1.1) is globally well-posed in Zs,r for s ≥ 4r and r ≥ 1

2 .
(c) Let us observe that applying the same method used in the proof of Theorem

1.1 it can be seen that (1.1) is locally well-posed in Zs,l with s ≥ 4r, l ≤ r
and r ≥ 1/2.

Theorem 1.3. Let r ≥ 1/2 and u0 ∈ Z4r,r. Then (1.1) for the fifth-order KdV
equation (k = 1) is globally well-posed in Z4r,r.

Theorem 1.4. Let u0 ∈ Z2,1/2. Then there exist T = T (‖u0‖H2) > 0 and a unique
u, solution of (1.1) for the modified fifth-order KdV equation (k = 2), such that

u ∈ C([0, T ];Z2,1/2) , (1.11)

‖∂4
xu‖L∞x L2

T
<∞ , (1.12)

‖u‖
L

16/5
x L∞T

<∞ , (1.13)

‖u‖L4
xL
∞
T
<∞. (1.14)

Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in Z2,1/2 such
that the data-solution map ũ0 7→ ũ from V into the class defined by (1.11)-(1.14)
with T ′ instead of T is Lipschitz.

Theorem 1.5. The initial-value problem (1.1) for the modified fifth-order KdV
equation (k = 2) is globally well-posed in Z2,1/2.

Theorem 1.6. For T > 0 let u ∈ C([0, T ];Z2,1/2) be the solution of the modified
fifth-order KdV equation (k = 2), obtained in Theorems 1.4 and 1.5. Let us suppose
that for α > 0 there exist two different times t0, t1 ∈ [0, T ], with t0 < t1, such that
|x|1/2+αu(t0) and |x|1/2+αu(t1) are in L2(R). Then u ∈ C([0, T ];H2+4α(R)).

This article is organized as follows: in section 2 we recall some linear estimates of
the group associated to the linear part of the equation in (1.1), a pointwise estimate
for this group, related with fractional weights, and an interpolation inequality in
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weighted Sobolev spaces. In section 3 we study (1.1) with k = 1 and prove Theorems
1.1 and 1.3. In section 4 we consider (1.1) with k = 2 and establish Theorems 1.4
and 1.5. In section 5 we give the proof of Theorem 1.6.

Throughout the paper the letter C will denote diverse constants, which may
change from line to line, and whose dependence on certain parameters is clearly
established in all cases.

2. Preliminary results

In this section we recall some linear estimates for the group associated to the
linear part of the equation in (1.1), a pointwise estimate for “fractional weights”,
and an interpolation inequality in weighted Sobolev spaces. On the other hand, we
establish an standard estimate in weighted Sobolev spaces.

Let us consider the linear problem associated with (1.1):

∂tu+ ∂5
xu = 0, x, t ∈ R
u(0) = u0,

(2.1)

whose solution is given by the group {W (t)}t∈R, i.e.

u(x, t) = [W (t)u0](x) := (St ∗ u0)(x),

where St(x) is defined by the oscillatory integral

St(x) = C

∫
R
eixξe−itξ

5
dξ.

Kenig, Ponce and Vega [14, 15, 16] established the following estimates for the group
{W (t)}t∈R:

(i) (Homogeneous smoothing effect) There exists a constant C such that

‖∂2
xW (t)u0‖L∞x L2

t
≤ C‖u0‖L2 . (2.2)

(ii) (Dual version of estimate (2.2)) There exists a constant C such that

‖∂2
x

∫ t

0

W (t− t′)f(·, t′)dt′‖L∞T L2
x
≤ C‖f‖L1

xL
2
T
. (2.3)

(iii) (Inhomogeneous smoothing effect) There exists a constant C such that

‖∂4
x

∫ t

0

W (t− t′)f(·, t′)dt′‖L∞x L2
t
≤ C‖f‖L1

xL
2
t
. (2.4)

(iv) (Estimate of the maximal function) For any ρ > 3
4 and s > 5

4 there exists
C such that

‖W (t)u0‖L2
xL
∞
T
≤ C(1 + T )ρ‖u0‖Hs . (2.5)

(v) There exists a constant C such that, for u0 ∈ H1/4(R) (see [19]),

‖W (t)u0‖L4
xL
∞
T
≤ C‖D1/4u0‖L2 . (2.6)

By interpolation it follows, from (2.5) and (2.6), that for ρ > 3
4 and s > 5

4 ,

‖W (t)u0‖L16/5
x L∞T

≤ C(1 + T )ρ‖u0‖Hs . (2.7)

(vi) There exists a constant C such that

‖D3/4
x W (t)u0‖L4

tL
∞
x
≤ C‖u0‖L2 . (2.8)
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Using (2.2), (2.5) and (2.6), and proceeding as in the proofs of [16, Theorem 2.1]
and [14, Theorem 1.1], it can be established the following theorem.

Theorem 2.1. Let s > 5/4. Then for any u0 ∈ Hs(R) there exist a positive value
T = T (‖u0‖Hs) (with T (ρ) → ∞ as ρ → 0) and a unique solution u of (1.1) with
k = 1, satisfying

u ∈ C([0, T ];Hs(R)) , (2.9)

‖∂xu‖L4
TL
∞
x
<∞ , (2.10)

‖Ds
x∂xu‖L∞x L2

T
<∞ , (2.11)

‖u‖L2
xL
∞
T
<∞ . (2.12)

Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in Hs(R) such
that the data-solution map ũ0 7→ ũ from V into the class defined by (2.9)-(2.12) with
T ′ instead of T is Lipschitz. Also, if u0 ∈ Hs′ with s′ > s then the above results
hold with s′ instead of s in the same time interval [0, T ] (regularity property).

Let us observe the gain of two derivatives in x in the linear estimate (2.2).
However, the condition (2.11) only uses the gain of one derivative in x.

One of the main tools for establishing local well-posedness of (1.1) with k = 1
in weighted Sobolev spaces with low regularity is the following pointwise formula,
proved by Fonseca, Linares, and Ponce in [2]:

(vii) For r ∈ (0, 1) and u0 ∈ Z4r,r we have for all t ∈ R and for almost every
x ∈ R:

|x|r[W (t)u0](x) = W (t)(|x|ru0)(x) +W (t){Φt,r(û0)}∨(x), (2.13)

where

‖(Φt,r(û0)(ξ))∨‖L2 ≤ Cr(1 + |t|)(‖u0‖L2 + ‖D4r
x u0‖L2). (2.14)

With respect to the weight 〈x〉 := (1 + x2)1/2, for N ∈ N, we will consider a
truncated weight wN of 〈x〉, such that wN ∈ C∞(R),

wN (x) =

{
〈x〉 if |x| ≤ N,
2N if |x| ≥ 3N,

(2.15)

The function wN is non-decreasing in |x| and for j ∈ N and x ∈ R, the derivatives
w

(j)
N of order j of wN satisfy

|w(j)
N (x)| ≤ cj

wj−1
N (x)

, (2.16)

where the constant cj is independent from N .
Fonseca and Ponce [5] deduced the following interpolation inequality, related to

the weights 〈x〉 and wN .

Lemma 2.2. Let a, b > 0 and f ∈ Za,b ≡ Ha(R) ∩ L2(〈x〉2bdx). Then for any
θ ∈ (0, 1)

‖Jθa(〈x〉(1−θ)bf)‖L2 ≤ C‖〈x〉bf‖1−θL2 ‖Jaf‖θL2 , (2.17)

where Jaf := (1− ∂2
x)a/2f . Moreover, inequality (2.17) is still valid with wN (x) as

in (2.15) instead of 〈x〉 with a constant C independent of N .

Finally, in our arguments we will use the following standard estimate, concerning
the weights 〈x〉 and wN .
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Lemma 2.3. Let b > 0 and n ∈ N. Suppose that Jn(〈x〉bu0) ∈ L2(R). Then

‖〈x〉b∂nxu0‖L2 ≤ C(b, n)‖Jn(〈x〉bu0)‖L2 . (2.18)

Moreover, the inequality (2.18) is still valid with wN (x) as in (2.15) instead of 〈x〉
with a constant C(b, n) independent of N .

The proof of the above lemma follows by induction on n and the Leibniz formula.

3. Well-posedness of (1.1) with k = 1

3.1. Proof of Theorem 1.1. We consider two cases.
Case: 5/16 < r < 1/2. Proceeding as in [15, 16], for u : R× [0, T ]→ R we define:

λT1 (u) := max
[0,T ]
‖u(t)‖H4r , (3.1)

λT2 (u) := ‖∂xu‖L4
TL
∞
x
, (3.2)

λT3 (u) := ‖D4r
x ∂xu‖L∞x L2

T
, (3.3)

λT4 (u) := (1 + T )−ρ‖u‖L2
xL
∞
T
, with ρ a fixed number such that ρ >

3
4
. (3.4)

Additionally, we introduce

λT5 (u) := ‖|x|ru‖L∞T L2
x
. (3.5)

Let us consider

ΛT (u) := max
1≤j≤5

λTj (u), (3.6)

XT := {u ∈ C([0, T ];H4r(R)) : ΛT (u) <∞}. (3.7)

Using the linear estimates (2.8), (2.2) and (2.5), Kenig, Ponce and Vega [16], showed
that for u0 ∈ H4r(R), T > 0 and 1 ≤ i ≤ 4,

λTi (W (t)u0) ≤ C‖u0‖H4r . (3.8)

On the other hand, from (2.13) and (2.14), it follows that, for t ∈ [0, T ],

λT5 (W (t)u0) ≤ ‖|x|ru0‖L2 + Cr(1 + T )(‖u0‖L2 + ‖D4r
x u0‖L2). (3.9)

In consequence, for u0 ∈ Z4r,r, the estimates (3.8) and (3.9) imply that

ΛT (W (t)u0) ≤ ‖|x|ru0‖L2 + C(1 + T )‖u0‖H4r . (3.10)

Let us denote by u := Φ(v) ≡ Φu0(v) the solution of the linear inhomogeneous IVP

∂tu+ ∂5
xu+ v∂xv = 0,

u(0) = u0,
(3.11)

where v ∈ Xa
T := {w ∈ XT : ΛT (w) ≤ a}, for a > 0. By Duhamel’s formula:

Φ(v)(t) ≡ u(t) = W (t)u0 −
∫ t

0

W (t− t′)(v∂xv)(t′)dt′.

Taking into account that

ΛT (u) ≤ ΛT (W (t)u0) +
∫ T

0

ΛT (W (t− t′)(v∂xv(t′)))dt′,
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from (3.10) it follows that

ΛT (u) ≤ ‖|x|ru0‖L2 + C(1 + T )‖u0‖H4r + C(1 + T )(‖v∂xv‖L1
TL

2
x

+ ‖D4r
x (v∂xv)‖L1

TL
2
x
) + ‖|x|rv∂xv‖L1

TL
2
x
.

(3.12)

In [15] (see proof of Lemma 4.1) it was proved that

‖v∂xv‖L1
TL

2
x

+ ‖D4r
x (v∂xv)‖L1

TL
2
x

≤ CT 1/2(1 + T )ρλT4 (v)λT3 (v) + CT 3/4λT2 (v)λT1 (v) + CT (λT1 (v))2

≤ C(T 1/2(1 + T )ρ + T 3/4 + T )(ΛT (v))2,

(3.13)

and let us observe that
‖|x|rv∂xv‖L1

TL
2
x
≤ CT 3/4‖|x|rv∂xv‖L4

TL
2
x

≤ CT 3/4‖|x|rv‖L∞T L2
x
‖∂xv‖L4

TL
∞
x

≤ CT 3/4λT5 (v)λT2 (v) ≤ CT 3/4(ΛT (v))2.

(3.14)

From (3.12)-(3.14) it follows that

ΛT (u) ≤ ‖|x|ru0‖L2 +C(1+T )‖u0‖H4r+C(1+T )(T 1/2(1+T )ρ+T 3/4+T )(ΛT (v))2.

Taking a := 2(‖|x|ru0‖L2 + C(1 + T )‖u0‖H4r ) and T sufficiently small in order to
have

C(1 + T )(T 1/2(1 + T )ρ + T 3/4 + T )a <
1
2
,

it can be seen that Φ : Xa
T → Xa

T . Reasoning as in [16] (proof of Theorem 2.1), for
T > 0 small enough, Φ : Xa

T → Xa
T is a contraction. In consequence, there exists a

unique u ∈ Xa
T such that Φ(u) = u. In other words, for t ∈ [0, T ]:

u(t) = W (t)u0 −
∫ t

0

W (t− t′)(u∂xu)(t′)dt′.

To conclude the proof of this case we reason in the same manner as it was done at
the end of the proof of [16, Theorem 2.1].
Case: r ≥ 1/2. By Theorem 2.1 there exist T = T (‖u0‖H4r ) and a unique u in
the class defined by the conditions (2.9)-(2.12) with s = 4r, which is a solution of
(1.1) with k = 1. Let {u0m}m∈N be a sequence in C∞0 (R) such that u0m → u0

in H4r(R) and let um ∈ C([0, T ];H∞(R)) be a solution of the equation in (1.1)
corresponding to the initial data u0m. (Without loss of generality we can suppose
that um is defined in the same interval [0, T ] (see regularity property in Theorem
2.1)). By Theorem 2.1 um → u in C([0, T ];H4r(R)). We multiply the equation

∂tum + ∂5
xum + um∂xum = 0 (3.15)

by umw
2r
N , where wN is the truncated weight defined in (2.15), and for a fixed

t ∈ [0, T ], we integrate in R with respect to x and use integration by parts to
obtain

d

dt
(um(t), um(t)w2r

N )

= 5(∂2
xum(t), ∂2

xum(t)(w2r
N )(1))− 5(∂xum(t), ∂xum(t)(w2r

N )(3))

+ (um(t), um(t)(w2r
N )(5)) +

2
3

(1, um(t)3(w2r
N )(1)),

(3.16)

where (·, ·) denotes the inner product in L2(R).
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Integrating the above equation with respect to the time variable in the interval
[0, t], we have

(um(t), um(t)w2r
N )

= (u0m, u0mw
2r
N ) + 5

∫ t

0

(∂2
xum(t′), ∂2

xum(t′)(w2r
N )(1))dt′

− 5
∫ t

0

(∂xum(t′), ∂xum(t′)(w2r
N )(3))dt′ +

∫ t

0

(um(t′), um(t′)(w2r
N )(5))dt′

+
2
3

∫ t

0

(1, um(t′)3(w2r
N )(1))dt′.

(3.17)

Since um → u in C([0, T ];H4r(R)), with 4r ≥ 2, and the weight w2r
N and its

derivatives are bounded functions, it follows from equality (3.17), after passing to
the limit when m→∞, that

(u(t), u(t)w2r
N )

= (u0, u0w
2r
N ) + 5

∫ t

0

(∂2
xu(t′), ∂2

xu(t′)(w2r
N )(1))dt′

− 5
∫ t

0

(∂xu(t′), ∂xu(t′)(w2r
N )(3))dt′

+
∫ t

0

(u(t′), u(t′)(w2r
N )(5))dt′ +

2
3

∫ t

0

(1, u(t′)3(w2r
N )(1))dt′

≡ I + II + III + IV + V.

(3.18)

Let us estimate the terms on the right-hand side of (3.18). First of all

I ≤ ‖u0‖2L2(〈x〉2rdx). (3.19)

With respect to the term II, using Lemmas 2.3 and 2.2, we have

|II| ≤ 10r
∫ t

0

(∂2
xu(t′), ∂2

xu(t′)w2r−1
N |(wN )(1)|)dt′ (3.20)

≤ C
∫ t

0

(∂2
xu(t′), ∂2

xu(t′)w2r−1
N )dt′ ≤ C

∫ t

0

‖J2(wr−
1
2

N u(t′))‖2L2dt′ (3.21)

≤ C
∫ t

0

‖J4ru(t′)‖1/rL2 ‖wrNu(t′)‖2−1/r
L2 dt′ ≤ C

∫ t

0

‖wrNu(t′)‖2−1/r
L2 dt′ (3.22)

≤ C
∫ t

0

(1 + ‖wrNu(t′)‖2L2)dt′ ≤ Ct+ C

∫ t

0

(u(t′), u(t′)w2r
N )dt′. (3.23)

Using inequality (2.16) for the derivatives of wN it can be seen that

|(w2r
N )(3)| ≤ Cw2r−3

N and |(w2r
N )(5)| ≤ Cw2r−5

N . (3.24)

In this manner we can bound the term III as follows:

|III| ≤ C
∫ t

0

(∂xu(t′), ∂xu(t′)w2r−3
N )dt′ . (3.25)

If 2r − 3 ≤ 0, since u ∈ C([0, T ];H4r(R)) with 4r ≥ 2, it is clear that

|III| ≤ Ct . (3.26)
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If 2r − 3 > 0, we apply Lemmas 2.3 and 2.2 to conclude that

|III| ≤ C
∫ t

0

‖J(wr−
3
2

N u(t′))‖2L2dt′

≤ C
∫ t

0

‖J4ru(t′)‖
1
2r
L2‖w

r(r−3/2)
(r−1/4)

N u(t′)‖
4r−1
2r

L2 dt′

≤ C
∫ t

0

‖w
r(r−3/2)
(r−1/4)

N u(t′)‖2−
1
2r

L2 dt′ ≤ C
∫ t

0

‖wrNu(t′)‖2−
1
2r

L2 dt′

≤ C
∫ t

0

(1 + ‖wrNu(t′)‖2L2)dt′ ≤ Ct+ C

∫ t

0

(u(t′), u(t′)w2r
N )dt′.

(3.27)

In any case the estimate (3.27) holds. In a similar manner it can be shown the
following estimate for the term IV:

|IV | ≤ C
∫ t

0

(u(t′), u(t′)w2r
N )dt′. (3.28)

With respect to the term V we have:

|V | ≤ C
∫ t

0

‖u(t′)‖L∞(u(t′), u(t′)w2r−1
N )dt′

≤ C
∫ t

0

‖u(t′)‖H4r (u(t′), u(t′)w2r
N )dt′

≤ C
∫ t

0

(u(t′), u(t′)w2r
N )dt′ .

(3.29)

From equality (3.18) and the estimates (3.19)-(3.29) it follows that, for t ∈ [0, T ],

(u(t), u(t)w2r
N ) ≤ ‖u0‖2L2(〈x〉2rdx) + Ct+ C

∫ t

0

(u(t′), u(t′)w2r
N )dt′ .

Gronwall’s inequality enables us to conclude that, for t ∈ [0, T ],

(u(t), u(t)w2r
N )

≤ ‖u0‖2L2(〈x〉2rdx) + Ct+ C

∫ t

0

(‖u0‖2L2(〈x〉2rdx) + Ct′)eC(t−t′)dt′ .
(3.30)

Passing to the limit in (3.30) when N →∞ we obtain, for t ∈ [0, T ],

‖u(t)‖2L2(〈x〉2rdx)

≤ ‖u0‖2L2(〈x〉2rdx) + Ct+ C

∫ t

0

(‖u0‖2L2(〈x〉2rdx) + Ct′)eC(t−t′)dt′ ≤ C(T ),
(3.31)

which implies that u ∈ L∞([0, T ];L2(〈x〉2rdx)).
Now let us see that u ∈ C([0, T ];L2(〈x〉2rdx)). For that we follow an argument

contained in [1] and [8]. From (3.31) it is clear that there is a positive constant M
such that, for all t ∈ [0, T ],

‖u(t)‖2L2
w
≤ ‖u0‖2L2

w
+Mt, (3.32)

where the notation L2
w := L2(〈x〉2rdx) was used.
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Taking into account that u ∈ C([0, T ];L2) and using (3.32), it can be seen that,
for φ ∈ L2

w, the function t 7→ (φ, u(t))L2
w

is continuous from [0, T ] to C. From this
fact and (3.32) it follows that

‖u(t)− u(0)‖2L2
w

= ‖u(t)‖2L2
w

+ ‖u(0)‖2L2
w
− 2 Re(u(0), u(t))L2

w

≤ ‖u(0)‖2L2
w

+Mt+ ‖u(0)‖2L2
w
− 2 Re(u(0), u(t))L2

w
→ 0

as t→ 0+, which proves that u : [0, T ]→ L2(〈x〉2rdx) is continuous at t = 0.
The continuity of u at a point t0 ∈ (0, T ] is a consequence from the continuity

of u at t = 0 and from the fact that the functions v1(x, t) := u(x, t0 + t) and
v2(x, t) := u(−x, t0 − t) are also solutions of the fifth-order KdV equation. In this
manner, we had proved that if u0 ∈ Z4r,r (r ≥ 1

2 ) there exist T = T (‖u0‖H4r ) > 0
and a unique u ∈ C([0, T ];Z4r,r), solution of (1.1), with k = 1, belonging to the
class defined by the conditions (2.9)-(2.12) with s = 4r.

Finally, let us prove that if ũm ∈ C([0, T ];Z4r,r) is the solution of the fifth-order
KdV equation, corresponding to the initial data ũm0, where ũm0 → u0 in Z4r,r

when m → ∞, then ũm → u in C([0, T ];Z4r,r). By Theorem 2.1 we have that
ũm → u in C([0, T ];H4r). In consequence we only must prove that ũm → u in
C([0, T ];L2(〈x〉2rdx)). Let vm := ũm − u and vm0 := ũm0 − u0. Proceeding in a
similar manner as it was done when we established that u ∈ L∞([0, T ];L2(〈x〉2rdx))
and taking into account that vm → 0 in C([0, T ];H4r) it can be seen that, for
t ∈ [0, T ],

‖vm(t)‖2L2(w2r
N dx)) ≤ ‖vm0‖2L2(〈x〉2rdx) + Cmt+ C

∫ t

0

‖vm(t′)‖2L2(w2r
N dx))dt

′ ,

where limm→∞ Cm = 0. Hence, by Gronwall’s inequality, we have for t ∈ [0, T ] and
N ∈ N that

‖vm(t)‖2L2(w2r
N dx)) ≤ (‖vm0‖2L2(〈x〉2rdx) + CmT )eCT .

From this inequality it follows, after passing to the limit when N →∞, that

vm → 0 in C([0, T ];L2(〈x〉2rdx)) .

The proof of Theorem 1.1 is complete.

3.2. Proof of Theorem 1.3. Taking into account Remarks 1.2(a) and 1.2(b) it is
sufficient to show that (1.1) for the fifth-order KdV equation is globally well-posed
in H2(R).

To see this, first of all, we prove that if u ∈ C([0, T ];H2(R)) is a solution of (1.1)
then, for all t ∈ [0, T ],

‖u(t)‖2H2 ≤ K ≡ K(‖u0‖H2), (3.33)

where K depends only on ‖u0‖H2(R). Let us observe that∫
R

(∂xu)2(t)dx ≤ 1
2

[ ∫
R

(∂2
xu)2(t)dx+

∫
R
u2(t)dx

]
. (3.34)
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Using the definition of the H2-norm, inequality (3.34) and the conservation laws
(1.4) and (1.5) it follows that

‖u(t)‖2H2 =
∫

R
u2(t)dx+

∫
R
(∂xu)2(t)dx+

∫
R

(∂2
xu)2(t)dx

≤ 3
2

∫
R
u2(t)dx+

3
2

∫
R

(∂2
xu)2(t)dx

=
3
2
I1(t) + 3I1

2 (t)− 1
2

∫
R
u3(t)dx

=
3
2
‖u0‖2L2 + 3

[1
2
‖∂2
xu0‖2L2 +

1
6

∫
R
u3

0dx
]
− 1

2

∫
R
u3(t)dx.

(3.35)

Now, from the Sobolev lemma, we have∫
R
u3

0dx ≤ ‖u0‖L∞
∫

R
u2

0dx ≤ C‖u0‖3H2 . (3.36)

On the other hand, the Sobolev lemma, the conservation law (1.4) and Young’s
inequality imply that∣∣ ∫

R
u3(t)dx

∣∣ ≤ ‖u(t)‖L∞‖u(t)‖2L2

≤ C‖u(t)‖H1‖u(t)‖2L2 = C‖u(t)‖H1‖u0‖2L2

≤ 1
2
‖u(t)‖2H1 +

C2

2
‖u0‖4L2

≤ 1
2
‖u(t)‖2H1 +

C2

2
‖u0‖4H2 .

(3.37)

Therefore, from (3.35)–(3.37), we have

‖u(t)‖2H2 ≤
3
2
‖u0‖2H2 + C‖u0‖3H2 +

C2

4
‖u0‖4H2 +

1
4
‖u(t)‖2H2 ,

and from the above inequality

‖u(t)‖2H2 ≤ C(‖u0‖2H2 + ‖u0‖3H2 + ‖u0‖4H2) ≡ K, (3.38)

which proves (3.33).
Now we show how to extend the local solution u to any time interval. From the

proof of Theorem 2.1 it can be seen that the size of the time interval of the solution
u ∈ C([0, T ];H2(R)) of (1.1) is such that

T ≥ min
{

1,
1

C‖u0‖2H2

}
.

Reasoning as in the proof of Theorem 2.1 we obtain a solution u ∈ C([T, T +
t0];H2(R)) of the IVP

∂tv + ∂5
xv + v∂xv = 0, x, t ∈ R
v(T ) = u(T ),

such that

t0 ≥ min
{

1,
1

C‖u(T )‖2H2

}
.
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In this manner we obtain a solution u ∈ C([0, T + t0];H2(R)) of (1.1). By the a
priori estimate (3.33) we have that

1
‖u(t)‖2H2

≥ 1
K
,

for t ∈ [0, T + t0], and therefore

t0 ≥ min
{

1,
1
CK

}
.

We repeat this argument n+ 1 times to obtain a solution u ∈ C([0, T + t0 + · · ·+
tn];H2(R)) with

tj ≥ min
{

1,
1
CK

}
, j = 0, . . . , n.

Since
∑n
j=0 tj →∞ as n→∞ then we can extend the solution to any time interval.

The proof is complete.

4. Well-posedness of (1.1) with k = 2

4.1. Proof of Theorem 1.4. For T > 0, let us define the space

YT := {u ∈ C([0, T ];H2(R)) : ‖∂4
xu‖L∞x L2

T
<∞, ‖u‖

L
16/5
x L∞T

<∞, ‖u‖L4
xL
∞
T
<∞},

(4.1)

and, for u ∈ YT , let us consider the norms

λT1 (u) := max
[0,T ]
‖u(t)‖H2 , (4.2)

λT2 (u) := ‖∂4
xu‖L∞x L2

T
, (4.3)

λT3 (u) := ‖u‖
L

16/5
x L∞T

, (4.4)

λT4 (u) := ‖u‖L4
xL
∞
T
, (4.5)

ΛT (u) := max
1≤i≤4

λTi (u). (4.6)

For a > 0, let Y aT be the closed ball in YT defined by

Y aT := {u ∈ YT : ΛT (u) ≤ a}. (4.7)

We shall prove that there exist T > 0 and a > 0 such that the operator Ψ :
Y aT → Y aT defined by

Ψ(v) = W (t)u0 −
∫ t

0

W (t− t′)(v2∂xv)(t′)dt′

is a contraction.
Also the linear estimates in section 2, we will need some nonlinear estimates in

order to prove that Ψ is a contraction.
First of all we establish these nonlinear estimates. Let u ∈ YT :

(i) Using interpolation we have

‖u2∂xu‖L1
xL

2
T
≤ ‖u2‖

L
8/5
x L∞T

‖∂xu‖L8/3
x L2

T

≤ ‖u‖2
L

16/5
x L∞T

‖u‖3/4
L2
xL

2
T
‖∂4
xu‖

1/4

L∞x L
2
T

≤ CT 3/4‖u‖2
L

16/5
x L∞T

‖u‖3/4L∞T L
2
x
‖∂4
xu‖

1/4

L∞x L
2
T
.

(4.8)
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(ii) By (2.4) and (4.8) it follows that

‖∂4
x

∫ t

0

W (t− t′)(u2∂xu)(t′)dt′‖L∞x L2
T

≤ C‖u2∂xu‖L1
xL

2
T

≤ CT 3/4‖u‖2
L

16/5
x L∞T

‖u‖3/4L∞T L
2
x
‖∂4
xu‖

1/4

L∞x L
2
T
.

(4.9)

(iii) By (2.3) and (4.8) it follows that

‖∂2
x

∫ t

0

W (t− t′)(u2∂xu)(t′)dt′‖L∞T L2
x

≤ C‖u2∂xu‖L1
xL

2
T

≤ CT 3/4‖u‖2
L

16/5
x L∞T

‖u‖3/4L∞T L
2
x
‖∂4
xu‖

1/4

L∞x L
2
T
.

(4.10)

Now we prove that there exist T > 0 and a > 0 such that Ψ(Y aT ) ⊂ Y aT . Let
v ∈ Y aT . Then by (4.10),

λT1 (Ψ(v))

≤ λT1 (W (t)u0) + λT1

(∫ t

0

W (t− t′)(v2∂xv)(t′)dt′
)

≤ ‖u0‖H2 + C
(

sup
[0,T ]

‖
∫ t

0

W (t− t′)(v2∂xv)(t′)dt′‖L2

+ sup
[0,T ]

‖∂2
x

∫ t

0

W (t− t′)(v2∂xv)(t′)dt′‖L2

)
≤ ‖u0‖H2 + CT sup

[0,T ]

‖v(t)‖3H2 + CT 3/4‖v‖2
L

16/5
x L∞T

‖v‖3/4L∞T L
2
x
‖∂4
xv‖

1/4

L∞x L
2
T

≤ ‖u0‖H2 + CT 3/4(T 1/4 + 1)(ΛT (v))3.

(4.11)

From (2.2) and (4.9) it follows that

λT2 (Ψ(v)) ≤ ‖∂4
xW (t)u0‖L∞x L2

T
+ ‖∂4

x

∫ t

0

W (t− t′)(v2∂xv)(t′)dt′‖L∞x L2
T

≤ C‖∂2
xu0‖L2 + CT 3/4‖v‖2

L
16/5
x L∞T

‖v‖3/4L∞T L
2
x
‖∂4
xv‖

1/4

L∞x L
2
T

≤ C‖u0‖H2 + CT 3/4(ΛT (v))3.

(4.12)

Using (2.7), the Leibniz rule and interpolation, we obtain

λT3 (Ψ(v))

≤ ‖W (t)u0‖L16/5
x L∞T

+ ‖
∫ t

0

W (t− t′)(v2∂xv)dt′‖
L

16/5
x L∞T

≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρ
∫ T

0

‖v2∂xv(t′)‖H2dt′

≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρ
∫ T

0

‖v2∂xv(t′)‖L2dt′

+ C(1 + T )ρ
∫ T

0

‖∂2
x(v2∂xv)(t′)‖L2dt′
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≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρT (ΛT (v))3 + C(1 + T )ρ
(∫ T

0

‖(∂xv)3(t′)‖L2dt′

+
∫ T

0

‖(v∂xv∂2
xv)(t′)‖L2dt′ +

∫ T

0

‖(v2∂3
xv)(t′)‖L2dt′

)
≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρT (ΛT (v))3 + C(1 + T )ρT 1/2‖v2∂3

xv‖L2
TL

2
x

≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρT (ΛT (v))3

+ C(1 + T )ρT 1/2‖v2‖
L

16/7
x L8

T

‖∂3
xv‖L16

x L
8/3
T

≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρT (ΛT (v))3

+ C(1 + T )ρT 1/2‖v‖
L

16/5
x L∞T

‖v‖L8
xL

8
T
‖v‖1/4L4

xL
∞
T
‖∂4
xv‖

3/4

L∞x L
2
T

≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρT (ΛT (v))3

+ C(1 + T )ρT 1/2λT3 (v)T 1/8λT1 (v)λT4 (v)1/4λT2 (v)3/4

≤ C(1 + T )ρ‖u0‖H2 + C(1 + T )ρT (ΛT (v))3 + C(1 + T )ρT 5/8(ΛT (v))3. (4.13)

Applying (2.6) we have that

λT4 (Ψ(v))

≤ ‖W (t)u0‖L4
xL
∞
T

+
∫ T

0

‖W (t− t′)(v2∂xv)(t′)‖L4
xL
∞
T
dt′

≤ C‖D1/4
x u0‖L2 + C

∫ T

0

‖D1/4
x (v2∂xv(t′))‖L2

x
dt′

≤ C‖D1/4
x u0‖L2 + C

∫ T

0

‖(v2∂xv)(t′)‖L2dt′ + C

∫ T

0

‖∂x(v2∂xv)(t′)‖L2dt′

≤ C‖u0‖H2 + CT (ΛT (v))3.

(4.14)

From (4.11)–(4.14) we obtain

ΛT (Ψ(v)) ≤ C(1 + T )ρ‖u0‖H2 + CT 5/8[T 1/8(T 1/4 + 1)

+ (1 + T )ρ(1 + T 3/8) + T 3/8](ΛT (v))3.
(4.15)

Let us take a := 2C(1 + T )ρ‖u0‖H2 and T in such a way that

CT 5/8[T 1/8(T 1/4 + 1) + (1 + T )ρ(1 + T 3/8) + T 3/8]a2 ≤ 1
2
. (4.16)

Since ΛT (v) ≤ a, from (4.15) and (4.16), we have that

ΛT (Ψ(v)) ≤ a

2
+

1
2

(ΛT (v)) ≤ a

2
+
a

2
= a,

i.e. Ψ(Y aT ) ⊂ Y aT . Now we find an additional condition on the size of T in order to
guarantee that the operator Ψ : Y aT → Y aT is a contraction. Let v, w ∈ Y aT . Then

Ψ(w)−Ψ(v) =
∫ t

0

W (t− t′)(v2∂x(v − w))(t′)dt′

+
∫ t

0

W (t− t′)((v + w)(v − w)∂xw)(t′)dt′.
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Therefore, proceeding as before,

λT1 (Ψ(w)−Ψ(v))

≤ λT1
(∫ t

0

W (t− t′)(v2∂x(v − w))(t′)dt′
)

+ λT1

(∫ t

0

W (t− t′)((v + w)(v − w)∂xw)(t′)dt′
)

≤ CT (λT1 (v))2λT1 (v − w) + CT 3/4(λT3 (v))2λT1 (v − w)3/4λT2 (v − w)1/4

+ CTλT1 (v + w)λT1 (v − w)λT1 (w)

+ CT 3/4λT3 (v + w)λT3 (v − w)λT1 (w)3/4λT2 (w)1/4

≤ C[(T + T 3/4)ΛT (v)2 + TΛT (v + w)ΛT (w)

+ T 3/4ΛT (v + w)ΛT (w)]ΛT (v − w)

≤ C(T + T 3/4)(ΛT (v)2 + ΛT (w)2)ΛT (v − w),

(4.17)

λT2 (Ψ(w)−Ψ(v))

≤ CT 3/4‖v‖2
L

16/5
x L∞T

‖v − w‖3/4L∞T L
2
x
‖∂4
x(v − w)‖1/4

L∞x L
2
T

+ CT 3/4‖v + w‖
L

16/5
x L∞T

‖v − w‖
L

16/5
x L∞T

‖w‖3/4L∞T L
2
x
‖∂4
xw‖

1/4

L∞x L
2
T

≤ CT 3/4ΛT (v)2ΛT (v − w) + CT 3/4ΛT (v + w)ΛT (v − w)ΛT (w)

≤ CT 3/4(ΛT (v)2 + ΛT (w)2)ΛT (v − w),

(4.18)

λT3 (Ψ(w)−Ψ(v))

≤ C(1 + T )ρTλT1 (v)2λT1 (v − w)

+ C(1 + T )ρT 1/2‖v2‖
L

16/7
x L8

T

‖∂3
x(v − w)‖

L16
x L

8/3
T

+ C(1 + T )ρTλT1 (v + w)λT1 (v − w)λT1 (w)

+ C(1 + T )ρT 1/2‖(v + w)(v − w)‖
L

16/7
x L8

T

‖∂3
xw‖L16

x L
8/3
T

≤ C(1 + T )ρTλT1 (v)2λT1 (v − w)

+ C(1 + T )ρT 1/2λT3 (v)T 1/8λT1 (v)λT4 (v − w)1/4λT2 (v − w)3/4

+ C(1 + T )ρTλT1 (v + w)λT1 (v − w)λT1 (w)

+ C(1 + T )ρT 1/2λT3 (v + w)T 1/8λT1 (v − w)λT4 (w)1/4λT2 (w)3/4

≤ CT 5/8(1 + T )ρ(1 + T 3/8)(ΛT (v)2 + ΛT (w)2)ΛT (v − w),

(4.19)

λT4 (Ψ(w)−Ψ(v))

≤ CTλT1 (v)2λT1 (v − w) + CTλT1 (v + w)λT1 (v − w)λT1 (w)

≤ CT (ΛT (v)2 + ΛT (w)2)ΛT (v − w).

(4.20)

From (4.17) to (4.20), it follows that

ΛT (Ψ(w)−Ψ(v))

≤ C(2T + 2T 3/4 + T 5/8(1 + T )ρ(1 + T 3/8))(ΛT (v)2 + ΛT (w)2)ΛT (v − w)

≤ C(2T + 2T 3/4 + T 5/8(1 + T )ρ(1 + T 3/8))2a2λT (v − w).
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If a := 2C(1 + T )ρ‖u0‖H2 and T are taken satisfying (4.16) and the additional
condition

C(2T + 2T 3/4 + T 5/8(1 + T )ρ(1 + T 3/8))2a2 < 1,

then Ψ : Y aT → Y aT is a contraction. Hence, there exists a unique u ∈ Y aT such that
Ψ(u) = u.

From this point, proceeding in a similar way as it was done in [22] we conclude
that, given u0 ∈ H2(R), there exist T = T (‖u0‖H2) > 0 and a unique u, solution
of (1.1) for the modified fifth-order KdV equation (k = 2), such that

u ∈ C([0, T ];H2(R)) (4.21)

and u satisfies the conditions (1.12), (1.13) and (1.14). Moreover, for any T ′ ∈ (0, T )
there exists a neighborhood V1 of u0 in H2(R), such that the data-solution map
ũ0 7→ u0 from V1 into the class defined by (4.21), (1.12), (1.13) and (1.14) with T ′

instead of T is Lipschitz. If additionally, we have that u0 ∈ Z2,1/2, then reasoning as
in the proof of Theorem 1.1 (case r ≥ 1/2) we obtain that u ∈ C([0, T ];L2(〈x〉)dx),
and that there exists a neighborhood V of u0 in Z2,1/2 such that the data-solution
map ũ0 7→ u0 from V into the class defined by (1.11) to (1.14) with T ′ instead of
T is Lipschitz. The proof is complete.

4.2. Proof of Theorem 1.5. From Theorem 1.4 to prove that (1.1) (with k = 2)
is globally well-posed in Z2,1/2, it is sufficient to establish that this IVP is globally
well-posed in H2(R). Reasoning as in the proof of Theorem 1.3 it is enough to
show that if u ∈ C([0, T ];H2(R)) is a solution of (1.1) with k = 2, then for every
t ∈ [0, T ]

‖u(t)‖2H2 ≤ K ≡ K(‖u0‖H2), (4.22)

where K only depends on ‖u0‖H2(R).
From (3.34) and the conservation law (1.4) it is clear that (4.22) holds if we

prove that, for every t ∈ [0, T ],

‖∂2
xu(t)‖2L2 ≤ K ≡ K(‖u0‖H2).

By the conservation law (1.6) we have that

‖∂2
xu(t)‖2L2 =

1
12

∫
R
u4

0dx+
∫

R
(∂2
xu0)2dx− 1

12

∫
R
u4(t)dx,

and, since the last term in the right-hand side of the above equality is non-positive,
we obtain that

‖∂2
xu(t)‖2L2 ≤

1
12

∫
R
u4

0dx+
∫

R
(∂2
xu0)2dx ≤ 1

12
‖u0‖2L∞

∫
R
u2

0dx+
∫

R
(∂2
xu0)2dx.

Taking into account that ‖u0‖2L∞ ≤ C‖u0‖2H2 , we have

‖∂2
xu(t)‖2L2 ≤ C‖u0‖2H2

∫
R
u2

0dx+
∫

R
(∂2
xu0)2dx

≤ C‖u0‖2H2‖u0‖2H2 + ‖u0‖2H2 ≡ K(‖u0‖H2).

The proof is complete.
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5. Relation between decay and regularity the solutions of (1.1) with
k = 2 (Proof of Theorem 1.6)

First we assume that α ∈ (0, 1/8]. The general case follows by an iterative
argument as it was done by Isaza, Linares and Ponce in [9]. Let us suppose that
t0 = 0 and let u0 = u(0). For x ≥ 0 and N ∈ N let us define ϕN,α ∈ C5([0,∞))
such that

ϕN,α(x) =

{
(1 + x2)α+1/2 − 1 if x ∈ [0, N ],
(2N2)α+1/2 if x ≥ 10N,

ϕ
(1)
N,α(x) ≥ 0 and |ϕ(j)

N,α(x)| ≤ C for j = 2, 3, 4, 5, with C independent of N .
Let φN ≡ φN,α be the odd extension of ϕN,α to R. Since C∞0 (R) is dense in

Z2,1/2, there exist a sequence {u0m}m∈N in C∞0 (R) such that

‖u0 − u0m‖Z2,1/2 → 0 (5.1)

as m→∞.
Let um be the solution of the modified fifth-order KdV equation such that

um(0) = u0m. By Theorems 1.4 and 1.5 we have that

‖um − u‖C([0,T ];Z2,1/2) → 0, (5.2)

‖∂4
xum − ∂4

xu‖L∞x L2
T
→ 0, (5.3)

as m→∞. Since u0m ∈ Hs(R) for each s ∈ R, it can be seen (regularity property),
that um(t) ∈ Hs(R) for each s ∈ R and each t ∈ [0, T ].

Now we multiply the equation ∂tum + ∂5
xum + u2

m∂xum = 0 by umφN , integrate
in x over R and apply integration by parts to obtain

d

dt

∫
R
u2
mφNdx− 5

∫
R

(∂2
xum)2φ

(1)
N dx+ 5

∫
R

(∂xum)2φ
(3)
N dx

−
∫

R
u2
mφ

(5)
N dx− 1

2

∫
R
u4
mφ

(1)
N dx = 0.

(5.4)

(In the above equation we use the notation um ≡ um(t)).
From convergence in (5.2), since α ≤ 1/2, it is clear that, for t ∈ [0, T ],∣∣− 1

2

∫
R
u4
m(t)φ(1)

N dx
∣∣ ≤ C‖um(t)‖2L∞

∫
R
u2
m(t)〈x〉2αdx

≤ C‖um(t)‖2H2

∫
R
u2
m(t)〈x〉2αdx

≤ C sup
t∈[0,T ]

‖um(t)‖2H2‖um(t)‖2L2(〈x〉dx) ≤ C.

(5.5)

On the other hand, it is also clear that∣∣− ∫
R
u2
mφ

(5)
N dx

∣∣ ≤ C and
∣∣5 ∫

R
(∂xum)2φ

(3)
N dx

∣∣ ≤ C. (5.6)

Integrating (5.4) in t over the interval [0, t1] and taking into account the inequalities
(5.5) and (5.6) we can conclude that

5
∫ t1

0

∫
R

(∂2
xum)2φ

(1)
N dx dt ≤ ‖u2

m(t1)φN‖L1 + ‖u2
m(0)φN‖L1 + Ct1.
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Hence

lim sup
m→∞

∫ t1

0

∫
R
(∂2
xum)2φ

(1)
N dx dt ≤ 1

5
‖u2(t1)φN‖L1 +

1
5
‖u2(0)φN‖L1 + Ct1 ≤M,

(5.7)
where M = M(‖〈x〉 12 +αu(0)‖L2 + ‖〈x〉 12 +αu(t1)‖L2).

Taking into account that φ(1)
N is a bounded function, the convergence in (5.2)

implies that ∫ t1

0

∫
R

(∂2
xum)2φ

(1)
N dx dt→

∫ t1

0

∫
R
(∂2
xu)2φ

(1)
N dx dt,

as m→∞. Therefore, from (5.7), we obtain that∫ t1

0

∫
R

(∂2
xu)2φ

(1)
N dx dt ≤M. (5.8)

Since φ(1)
N is an even function, φ(1)

N (x) ≥ 0 and, for x > 1,

φ
(1)
N (x)→ (2α+ 1)(1 + x2)α−

1
2x ∼ 〈x〉2α,

as N →∞, applying Fatou’s Lemma in (5.8), we have that∫ t1

0

∫
|x|≥1

(∂2
xu)2〈x〉2α dx dt ≤ CM,

and taking into account that∫ t1

0

∫
|x|≤1

(∂2
xu)2〈x〉2α dx dt ≤ C,

we obtain that ∫ t1

0

∫
R

(∂2
xu)2〈x〉2α dx dt ≤ C + CM <∞. (5.9)

From (5.9) it follows that

∂2
xu(t) ∈ L2(〈x〉2αdx), a.e. t ∈ [t0, t1]. (5.10)

Let us define, for t ∈ [t0, t1], w(t) := ∂2
xu(t) and wm(t) := ∂2

xum(t). Then we have
that

∂twm + ∂5
xwm + u2

m∂xwm + 6um∂xumwm + 2(∂xum)3 = 0. (5.11)

For x ≥ 0 and N ∈ N let us define ϕ̃N,α ∈ C5([0,∞)) such that

ϕ̃N,α(x) =

{
(1 + x2)α − 1 if x ∈ [0, N ],
(2N2)α if x ≥ 10N,

ϕ̃
(1)
N,α(x) ≥ 0 and |ϕ̃(j)

N,α(x)| ≤ C for j = 1, . . . , 5, with C independent of N .
Let φ̃N ≡ φ̃N,a be the odd extension of ϕ̃N,α to R. Multiplying equation (5.11)

by wmφ̃N , integrating in x over R, using integration by parts, and then integrating
in t over an interval [t∗0, t

∗
1] ⊂ [t0, t1] such that ∂2

xu(t∗0), ∂2
xu(t∗1) ∈ L2(〈x〉2αdx), we
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obtain ∫ t∗1

t∗0

∫
R

(∂2
xwm)2φ̃

(1)
N dx dt

=
1
5

∫
R
w2
m(t∗1)φ̃Ndx−

1
5

∫
R
w2
m(t∗0)φ̃Ndx

+
∫ t∗1

t∗0

∫
R
(∂xwm)2(t)φ̃(3)

N dx dt− 1
5

∫ t∗1

t∗0

∫
R
w2
m(t)φ̃(5)

N dx dt

− 1
5

∫ t∗1

t∗0

∫
R
u2
m(t)w2

m(t)φ̃(1)
N dx dt

+ 2
∫ t∗1

t∗0

∫
R
um(t)∂xum(t)w2

m(t)φ̃N dx dt

+
4
5

∫ t∗1

t∗0

∫
R

(∂xum)3(t)wm(t)φ̃N dx dt.

(5.12)

From (5.12) we shall prove that∫ t∗1

t∗0

∫
R

(∂2
xw)2(t)〈x〉2α−1 dx dt <∞.

Let us observe that∫ t∗1

t∗0

∫
R

(∂xwm)2(t)φ̃(3)
N dx dt

= −
∫ t∗1

t∗0

∫
R
wm(t)∂2

xwm(t)φ̃(3)
N dx dt+

1
2

∫ t∗1

t∗0

∫
R
w2
m(t)φ̃(5)

N dx dt.

Let K be a constant independent of N such that |φ̃(3)
N | ≤ Kφ̃

(1)
N . Then∫ t∗1

t∗0

∫
R

(∂xwm)2(t)φ̃(3)
N dx dt

≤ 1
2

∫ t∗1

t∗0

∫
R

(Kw2
m(t) +

(∂2
xwm)2(t)
K

)|φ̃(3)
N | dx dt

+
1
2

∫ t∗1

t∗0

∫
R
w2
m(t)φ̃(5)

N dx dt

≤ K

2

∫ t∗1

t∗0

∫
R
w2
m(t)|φ̃(3)

N | dx dt+
1
2

∫ t∗1

t∗0

∫
R

(∂2
xwm)2(t)φ̃(1)

N dx dt

+
1
2

∫ t∗1

t∗0

∫
R
w2
m(t)φ̃(5)

N dx dt.

(5.13)

Taking into account that the fifth term on the right-hand side of (5.12) is not
positive, from (5.12) and (5.13) it follows that
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1
2

∫ t∗1

t∗0

∫
R

(∂2
xwm)2(t)φ̃(1)

N dx dt

≤ 1
5

∫
R
w2
m(t∗1)φ̃Ndx−

1
5

∫
R
w2
m(t∗0)φ̃Ndx

+
K

2

∫ t∗1

t∗0

∫
R
w2
m(t)|φ̃(3)

N | dx dt+
3
10

∫ t∗1

t∗0

∫
R
w2
m(t)φ̃(5)

N dx dt

+ 2
∫ t∗1

t∗0

∫
R
um(t)∂xum(t)w2

m(t)φ̃N dx dt

+
4
5

∫ t∗1

t∗0

∫
R

(∂xum)3(t)wm(t)φ̃N dx dt

≡ 1
5

∫
R
w2
m(t∗1)dx− 1

5

∫
R
w2
m(t∗0)φ̃Ndx+ I + II + III + IV.

(5.14)

Since φ̃(3)
N and φ̃

(5)
N are bounded functions, the convergence in (5.2) implies that

I + II ≤ C. (5.15)

We now estimate III + IV . Using the convergence (5.2), and the boundedness of
the function φ̃

(1)
N , we obtain, for α ∈ (0, 1/4], that

III + IV ≤ C
∫ t∗1

t∗0

‖um(t)‖3H2‖um(t)φ̃N‖L∞dt

+ C

∫ t∗1

t∗0

‖um(t)‖2H2

∫
R
|wm(t)||∂xum(t)||φ̃N | dx dt

≤ C
∫ t∗1

t∗0

‖um(t)φ̃N‖H1dt+ C

∫ t∗1

t∗0

‖wm(t)‖L2‖∂xum(t)φ̃N‖L2dt

≤ C
∫ t∗1

t∗0

(‖um(t)φ̃N‖H1 + ‖∂xum(t)φ̃N‖L2)dt

≤ C
∫ t∗1

t∗0

(‖um(t)φ̃N‖L2 + ‖∂xum(t)φ̃N‖L2 + ‖um(t)φ̃(1)
N ‖L2)dt

≤ C
∫ t∗1

t∗0

(‖um(t)‖L2(〈x〉4αdx) + ‖∂xum(t)‖L2(〈x〉4αdx))dt+ C

≤ C + C

∫ t∗1

t∗0

‖∂xum(t)‖L2(〈x〉4αdx)dt.

(5.16)

Using Lemmas 2.3 and 2.2 and the convergence in (5.2), for α ∈ (0, 1/8] and
t ∈ [t∗0, t

∗
1] ⊂ [0, T ], it follows that

‖∂xum(t)‖L2(〈x〉4αdx) = ‖〈x〉2α∂xum(t)‖L2

≤ ‖〈x〉1/4∂xum(t)‖L2 ≤ C‖J(〈x〉1/4um(t))‖L2

≤ C‖〈x〉1/2um(t)‖1/2L2 ‖J2um(t)‖1/2L2 ≤ C.

(5.17)
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From (5.14)-(5.17) we conclude that, if α ∈ (0, 1/8] then

1
2

∫ t∗1

t∗0

∫
R
(∂2
xwm)2(t)φ̃(1)

N dx dt ≤ 1
5

∫
R
w2
m(t∗1)φ̃N −

1
5

∫
R
w2
m(t∗0)φ̃N + C, (5.18)

where C = C(T ) is a constant indepent of N and m.
Let us observe that from the convergence in (5.3) we can conclude that

sup
x∈R

∫ T

0

|∂2
xwm(x, t)− ∂2

xw(x, t)|2dt = ‖∂4
xum − ∂4

xu‖2L∞x L2
T
→ 0,

as m→∞. Hence, denoting by |A| the measure of a set A ⊂ R, we have∣∣∣ ∫ t∗1

t∗0

∫
R
[(∂2

xwm)2(x, t)− (∂2
xw)2(x, t)]φ̃(1)

N dx dt
∣∣∣

≤ C
∫
supp φ̃

(1)
N

∫ t∗1

t∗0

|∂2
xwm − ∂2

xw||∂2
xwm + ∂2

xw|dtdx

≤ C
∫
supp φ̃

(1)
N

‖∂2
xwm(x, ·)− ∂2

xw(x, ·)‖L2
T
‖∂2
xwm(x, ·) + ∂2

xw(x, ·)‖L2
T
dx

≤ C‖∂2
xwm − ∂2

xw‖L∞x L2
T
‖∂2
xwm + ∂2

xw‖L∞x L2
T
| supp φ̃(1)

N |

≤ C‖∂2
xwm − ∂2

xw‖L∞x L2
T
→ 0,

as m→∞. Therefore, passing to the limit in (5.18), as m→∞, we obtain

1
2

∫ t∗1

t∗0

∫
R
(∂2
xw)2(t)φ̃(1)

N dx dt

≤ 1
5

∫
R
w2(t∗1)φ̃N −

1
5

∫
R
w2(t∗0)φ̃N + C

≤ C
∫

R
w2(t∗1)〈x〉2αdx+ C

∫
R
w2(t∗0)〈x〉2α + C ≡M.

(5.19)

Since φ̃(1)
N is an even function, φ̃(1)

N ≥ 0 and, for x ≥ 1,

φ̃
(1)
N (x)→ 2α〈x〉2α−1〈x〉′ ∼ 〈x〉2α−1,

as N →∞, applying Fatou’s Lemma in (5.19) we can conclude that∫ t∗1

t∗0

∫
|x|≥1

(∂2
xw)2(t)〈x〉2α−1 dx dt ≤ CM.

On the other hand, since 2α− 1 ≤ 0,∫ t∗1

t∗0

∫
|x|≤1

(∂2
xw)2(t)〈x〉2α−1 dx dt ≤

∫ t∗1

t∗0

∫
|x|≤1

(∂2
xw)2(t) dx dt

≤ 2‖∂2
xw‖2L∞x L2

T
= 2‖∂4

xu‖2L∞x L2
T
<∞.

In consequence ∫ t∗1

t∗0

∫
R
(∂2
xw)2(t)〈x〉2α−1 dx dt <∞. (5.20)

From (5.20) it follows that

∂2
xw(t)〈x〉α−1/2 ∈ L2(R), a.e. t ∈ [t∗0, t

∗
1].
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This fact and (5.10) imply that

〈x〉αw(t) ∈ L2 and J2(〈x〉α−1/2w(t)) ∈ L2, a.e. t ∈ [t∗0, t
∗
1].

Let us define f := 〈x〉α−1/2w(t). Then

〈x〉1/2f ∈ L2 and J2(f) ∈ L2.

Using Lemma 2.2 with a = 2 and b = 1/2 we conclude that, for θ ∈ [0, 1],

‖J2θ(〈x〉(1−θ)/2f)‖L2 ≤ C‖〈x〉1/2f‖(1−θ)L2 ‖J2(f)‖θL2 .

Taking θ = 2α, we have that ‖J4αw(t)‖L2 < ∞, a.e. t ∈ [t∗0, t
∗
1], i.e., w(t) ∈ H4α,

a.e. t ∈ [t∗0, t
∗
1], i.e., u(t) ∈ H2+4α.

The rest of the proof is as in [9], in consequence we omit the details.
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