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CAUCHY PROBLEMS FOR FIFTH-ORDER KDV EQUATIONS
IN WEIGHTED SOBOLEV SPACES

EDDYE BUSTAMANTE, JOSE JIMENEZ, JORGE MEJIA

ABSTRACT. In this work we study the initial-value problem for the fifth-order
Korteweg-de Vries equation

Oru+u—+uPd,u=0, z,teR, k=1,2,

in weighted Sobolev spaces H*(R) N L2({z)2"dx). We prove local and global
results. For the case k = 2 we point out the relationship between decay and
regularity of solutions of the initial-value problem.

1. INTRODUCTION

In this article we consider the initial-value problem (IVP)
Opu + Pu + wko,u=0, z,teR
u(0) = uyp,
with kK = 1,2. When k = 1 we refer to this problem as the IVP for the fifth-order
Korteweg-de Vries (KdV) equation. When k = 2 we refer to this problem as the
IVP for the modified fifth-order KdV equation.
For k = 1 the equation was proposed by Kakutani and Ono as a model for

magneto-acoustic waves in plasma physics (see [11]). The equations that we study
are included in the class

ou + 0%y + P(u,0pu, ..., 0%u) =0, ztcR, jecZ', (1.2)

(1.1)

where P : R%*1 — R (or P : C¥*! — C) is a polynomial having no constant or
linear terms, i.e.

5
P(z) = Z aez® withlp > 2 and z = (21,..., 22541).
la|=lo

The class in generalizes several models, arising in both mathematics and
physics, of higher-order nonlinear dispersive equations.

For many years the well-posedness of these IVP has been studied in the context
of the classical Sobolev spaces H*(R). In particular, fifth-order KdV equations
with more general non-linearities, than those we are considering, were studied in
[0} 13], 20] 2], 22] 27]. In 1983 Kato [12] studied the IVP for the generalized KdV
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equation in several spaces, besides the classical Sobolev spaces. Among them, Kato
considered weighted Sobolev spaces.

In this work we are concerned with the well-posedness of in weighted
Sobolev spaces. This type of spaces arises in a natural manner when we are inter-
ested in determining if the Schwartz space is preserved by the flow of the evolution
equation in (L.1)).

Kenig, Ponce and Vega [I7] studied the IVP associated with equation in
weighted Sobolev spaces H*(R) N L?(|z|™dz), with m positive integer. Pilod [26]
study the case of higher-order dispersive models in the context of weighted Besov
and Sobolev spaces.

Some relevant nonlinear evolution equations as the KdV equation, the non-linear
Schrédinger equation and the Benjamin-Ono equation, have also been studied in
the context of weighted Sobolev Spaces (see [1I, 2} 3, [, 5] [7, 8, 10} 23, 24} 25] and
references therein).

We study real valued solutions of in the weighted Sobolev spaces

Zy, = H*(R) N L*((2)* dx),

where (z) := (1 +2%)'/2, and s,r € R.

The relation between the indices s and r for can be found, after the following
considerations, contained in the work by Kato:

Suppose we have a solution u € C([0,00); H*(R)) to for some s > 2. We
want to estimate (pu,u), where p(x) := (x)?" and (-,-) is the inner product in
L?(R). Proceeding formally we multiply the equation in by up, integrate over
x € R and apply integration by parts to obtain

2
%(pw u) = 5(pMd2u, aiu)—5(p(3)8xu7&»U)Jr(p“)wu)+m(p“)u’“+27 1). (1.3)

To see that (pu,u) is finite and bounded in ¢, we must bound the right-hand side
in in terms of (pu,u) and |lu|%.. The most difficult term to control in the
right-hand side in is 5(pMd%u, d2u). Using the interpolation Lemma (see
section 2), for 0 € [0,1] and u € Z, , we have

1(2) = ul| oo < Ol () ull 12 || G+

The term 5(p™Md2u, 8%u) can be controlled when s = 2 if p(1)(z) ~ (2)20-0r,
Taking into account that p™) (z) ~ (x)2"~!, we must require that 2r —1 = 2(1—)r
and fs = 2, which leads to s = 4r. In this way the natural weighted Sobolev space
to study is Zay .

Now, we describe the main results of this work. With respect to with
k = 1 we establish local well-posedness (LWP) in Zy, , for 15—6 <r< % and global
well-posedness (GWP) in Zy,.,., for r > 1/2.

In the first case (1—56 <r< %), we use the known linear estimates for the group as-
sociated to the linear part of the equation, which were obtained by Kenig, Ponce and
Vega in [14] [15] [16], and a pointwise formula for the group, related with fractional
weights, which was deduced by Fonseca, Linares, and Ponce in [2]. These ingredients
allow us to use a contraction principle in an adequate subspace of C ([0, T]; Z4,.) to
the integral equation associated to our IVP, to prove local well-posedness in Zy4, .

In the second case (r > %) we use the local well-posedness of in the context
of the Sobolev spaces H*"(R), which can be obtained in a similar fashion, as it was
done by Kenig, Ponce and Vega in [I5] [16] for the KdV equation, to get a solution
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u € C([0,T]; H*"(R)). Then we perform a priori estimates on the the differential
equation in order to prove that if the initial data belongs to H*"(R) N L?({z)?"dx)
then necessarily u € L>([0,T]; L?({z)?"dx). In this step of the proof we apply the
interpolation inequality (Lemma [2.2), mentioned before, which was proved in [5].
Finally, we give the proof of the continuous dependence of the solution on the initial
data in Zy .

With respect to with k = 2, we establish local and global well-posedness
in Zy1/2. For the LWP, again, the idea of the proof is to apply the contraction
principle to the integral equation associated to the IVP, in a certain subspace of
C([0,T); H?>(R)), in which we consider additional mixed space-time norms, sug-
gested by the linear estimates of the group. This way, we obtain, firstly, a solution
in C([0,T]; H*(R)). Then, proceeding as in with k = 1, in the case r > 1/2,
we can affirm that v € C([0,T]; Z5,1/2) and that with k = 2 is local well-posed
in 2271/2.

To deduce global well-posedness results from local well-posedness results we use
the following conservation laws for the solutions of (see [14]):

I(t) := /Ru2(t)d:c =1,(0), fork=1,2, (1.4)
@uy:%éwmwx+34@&mwmx=@my for k=1, and,  (L5)

@W:%AM@M+A@MWW:@@,EMZZ (1.6)

Isaza, Linares and Ponce [9] showed that there exists a relation between decay and

regularity for the solutions of the KAV equation in L?(R). More precisely, they
proved that if u € C'(R; L%(R)) is the global solution of the equation

Opu + O2u + udyu = 0,

obtained in the context of the Bourgain spaces (see [18]), and there exists o > 0
such that in two different times tg,t; € R

lz|%u(to), |z|%u(t,) € L*(R),

then u € C(R, H**(R)). To achieve this goal, they chose a functional setting, where
the norm ||9,u|| o (r;z2(j0,77)) of the solution u depends continuously on the initial
data in L*(R).

Following [9], and taking into account that the norm [|03ul| Lo (r;z2([0,17)) of the
solution u of with k = 2, depends continuously on the initial data in Z ; /o,
we prove that if u € C([0,T7]; Za,1/2) is a solution of with k& = 2 and, for some
a > 0, there exist two different times to,t; € [0,7T] such that |z|'/?2Tu(ty) and
2|1 /2T (t,) are in L?(R) then u € C([0, T]; H*+4*(R)).

Before stating in a precise manner the main results of this article, let us explain
the notation for mixed space-time norms. For f: R x [0,7] — R (or C) we have

[ fllzzre == (/ﬂg(/(]Tf(x’t”th)p/qu)l/p.

When p = oo or ¢ = oo we must do the obvious changes with the essential supre-
mum. When in the space-time norm appears t instead of T, the time interval is
[0, +00).

Our results read as follows:
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Theorem 1.1. Let r > % and ug € Zuy,. Then there exist T > 0 and a unique
u, solution of (L.1)) with k =1 such that

u € C([0,T; Zar,r), (1.7)
[0zu| L3 oo < 00, (1.8)
||Dirawu||L;cL; < oo, and (1.9)
[ullzz e < o0. (1.10)

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in Zay, such that
the data-solution map g — 4 from V into the class defined by — with T'
instead of T is Lipschitz.

When 5/16 < r < 1/2, T' depends on ||ugl|z,,.,, and when r > 1/2 the size of T
depends only on ||ugl| gar -

Let us recall that the operator D is defined through the Fourier transform by
the multiplier ||.

Remark 1.2. (a) From the proof of Theorem it is clear that if is

globally well-posed in H*"(R), r > %, then the IVP is also globally well-
posed in Zy,. .

(b) Using the regularity property in Theorem [2.1]it follows, from Theorem [I.1
that is globally well-posed in Z,, for s > 4r and r > 1.

(¢) Let us observe that applying the same method used in the proof of Theorem
it can be seen that is locally well-posed in Z,; with s > 4r, [ <r
and r > 1/2.

Theorem 1.3. Let r > 1/2 and ug € Zay,. Then (L.1) for the fifth-order KdV
equation (k =1) is globally well-posed in Zyy .

Theorem 1.4. Letug € Z3 1 /2. Then there exist T' = T'(||uo||g2) > 0 and a unique
u, solution of (1.1)) for the modified fifth-order KdV equation (k = 2), such that

u € C([0,T]; Z2,1/2) » (1.11)
103wl e 2. < 00, (1.12)
”’U‘HL}CWF’L%O <00, (113)

ullazse < oo. (1.14)

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in Zs 1,9 such
that the data-solution map U — @ from V into the class defined by (1.11))-(L.14])
with T instead of T is Lipschitz.

Theorem 1.5. The initial-value problem (L.1)) for the modified fifth-order KdV
equation (k = 2) is globally well-posed in Zy 1 5.

Theorem 1.6. For T' > 0 let u € C([0,T]; Z3,1/2) be the solution of the modified
fifth-order KdV equation (k = 2), obtained in Theorems and. Let us suppose
that for oo > 0 there exist two different times to,t1 € [0,T], with tg < t1, such that
|z /2Feu(ty) and |22 eu(ty) are in L2(R). Then u € C([0,T]; H*T4*(R)).

This article is organized as follows: in section 2 we recall some linear estimates of
the group associated to the linear part of the equation in (|1.1)), a pointwise estimate
for this group, related with fractional weights, and an interpolation inequality in
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weighted Sobolev spaces. In section 3 we study (1.1]) with & = 1 and prove Theorems

and In section 4 we consider with £ = 2 and establish Theorems
and In section 5 we give the proof of Theorem [1.6

Throughout the paper the letter C' will denote diverse constants, which may
change from line to line, and whose dependence on certain parameters is clearly
established in all cases.

2. PRELIMINARY RESULTS

In this section we recall some linear estimates for the group associated to the
linear part of the equation in , a pointwise estimate for “fractional weights”,
and an interpolation inequality in weighted Sobolev spaces. On the other hand, we
establish an standard estimate in weighted Sobolev spaces.

Let us consider the linear problem associated with :

du+du=0, zteR
(2.1)
u(0) = ug,
whose solution is given by the group {W(¢)}ser, i-e.
u(z,t) = [W(t)uo)(x) := (St * up)(x),

where S;(x) is defined by the oscillatory integral
Si(x) = C’/ em&e_itf)df.
R

Kenig, Ponce and Vega [14] [15] [16] established the following estimates for the group
{W(t) }rer:

(i) (Homogeneous smoothing effect) There exists a constant C' such that
1OZW ()uoll Lo 2 < Clluoll . (2.2)
(ii) (Dual version of estimate (2.2])) There exists a constant C such that

t
02 | Wit =01 () ez < 11y (23)
0
(iii) (Inhomogeneous smoothing effect) There exists a constant C' such that
t
o2 | Wit =) F (00 121z < Ol sz (24
iv) (Estimate of the maximal function) For any p > 2 and s > 2 there exists
1 1
C such that
[W(t)uollLzrge < C(1+T)"|Juol|are- (2.5)
(v) There exists a constant C' such that, for ug € H'/*(R) (see [19]),
W (t)uo || parge < C|IDY *ug]| 2. (2.6)
By interpolation it follows, from (2.5) and (2.6)), that for p > 2 and s > 3,
P> 1
HW(t)UOHL}ESML%O < C(l +T)p||UOHHs. (27)

(vi) There exists a constant C' such that

1D/ AW (tyuo | Larze < Clluoll - (2.8)
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Using (2.2), (2.5) and (2.6), and proceeding as in the proofs of [16, Theorem 2.1]
and [I4], Theorem 1.1], it can be established the following theorem.

Theorem 2.1. Let s > 5/4. Then for any ug € H*(R) there exist a positive value
T =T(||luollm=) (with T(p) — oo as p — 0) and a unique solution u of (1.1)) with
k =1, satisfying

ue C([0,T]; H*(R)), (2.9)
[0zul| 3 Lo < 00, (2.10)
D30z ull ooz < 00, (2.11)
)

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in H*(R) such
that the data-solution map ug — @ from V into the class defined by - with
T’ instead of T is Lipschitz. Also, if ug € H® with s' > s then the above results
hold with s' instead of s in the same time interval [0, T| (regularity property).

Let us observe the gain of two derivatives in z in the linear estimate .
However, the condition only uses the gain of one derivative in x.

One of the main tools for establishing local well-posedness of with k =1
in weighted Sobolev spaces with low regularity is the following pointwise formula,
proved by Fonseca, Linares, and Ponce in [2]:

(vii) For r € (0,1) and ug € Z4r, we have for all ¢ € R and for almost every

z € R:
|z W (t)uo) (x) = W () (Jz|"uo) () + W (t){ e, (W0) } " (), (2.13)

where
[(®er (@0)(€))"[lz2 < Cr(1+ [t)(luol L2 + D5 uol|2)- (2.14)

With respect to the weight (z) := (1 4 22)%/2, for N € N, we will consider a
truncated weight wy of (x), such that wy € C*(R),

(x)y if |z] < N,
_ 2.15
wn () {QN if |z| > 3N, (2.15)

The function wy is non-decreasing in |z| and for j € N and x € R, the derivatives
wg\],) of order j of wy satisfy
‘ cs
iy (2)] < ———
wy ()
where the constant c¢; is independent from V.

Fonseca and Ponce [5] deduced the following interpolation inequality, related to
the weights (z) and wy.

Lemma 2.2. Let a,b > 0 and f € Z,, = H*(R) N L2({(x)?*dz). Then for any
0e€(0,1)

: (2.16)

17 ((@) A= )l 2 < Cll()* f 11 120 11T F11 2 (2.17)
where JOf := (1 —02)*/2f. Moreover, inequality [2.17) is still valid with wy () as
in (2.15) instead of (x) with a constant C' independent of N.

Finally, in our arguments we will use the following standard estimate, concerning
the weights (z) and wy.
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Lemma 2.3. Let b >0 and n € N. Suppose that J"({z)%ug) € L*(R). Then
[(2)* 05 ol < C(b,n)|[T™ ((2) uo) |l 2 - (2.18)

Moreover, the inequality (2.18)) is still valid with wy(x) as in (2.15) instead of (x)
with a constant C(b,n) independent of N.

The proof of the above lemma follows by induction on n and the Leibniz formula.

3. WELL-POSEDNESS OF (1.1) wITH k =1

3.1. Proof of Theorem [[.Il We consider two cases.
Case: 5/16 < r < 1/2. Proceeding as in [I5] [16], for u : R x [0,7] — R we define:

A (u) = e [u(®)l e (3.1)
)\g(u) = ||6wu||L4TL;°7 (3.2)
X (u) = | D3 Opull e p2 (3-3)

3
M) =1+ T) Pllullrzree, with p a fixed number such that p > 7 (3.4)

Additionally, we introduce

A (u) 1= [[[2]"ull s 12 (3.5)
Let us consider
T — T
A (u) = Jnax. Aj (), (3.6)
Xp = {u e C([0,T); H"(R)) : AT (u) < oo} (3.7)

Using the linear estimates (2.8)), (2.2 and (2.5)), Kenig, Ponce and Vega [16], showed
that for ug € H¥(R), T > 0 and 1 <1 < 4,

AL (W (t)ug) < Clluol| grar- (3.8)

On the other hand, from and , it follows that, for t € [0, T7,
A5 (W(thuo) < |llz]"uollz2 + Cr(1 + T)(luol L2 + [|D3 o] £2)- (3.9)

In consequence, for ug € Zy4,,, the estimates and imply that
AT (W (t)uo) < [l|lz["uollz2 + C(1 +T)|luo] grar- (3.10)

Let us denote by u := ®(v) = ®,,,(v) the solution of the linear inhomogeneous IVP

Owu + 32u +v0,v =0,

2(0) = (3.11)

where v € X% := {w € X7 : AT(w) < a}, for a > 0. By Duhamel’s formula:

D(v)(t) = ul(t) = W(t)ug — /O Wt —t') (vOv)(t)dt'.

Taking into account that

AT (w) < AT(W (t)uo) +/0 AT (W (t — 1) (vdo(t)))dt,
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from (3.10) it follows that
AT (u) < ||l o 2 + C (1 + T)lluoll rar + C(1 + T) (000 11 12 (3.12)
+ D3 (v05) |y 12) + 2] 00| 1 12 '

In [I5] (see proof of Lemma 4.1) it was proved that
[v0zv|[L1 2 + ||Dir(vaxv)||L1TL§
< CTY2(1 4 T)PAT ()AL (v) + CT3ANE (0)AT (v) + CT(\T (v))? (3.13)
<CTPA+T) + T + T)(A"(v))?,
and let us observe that
2l v8uvll s 2 < CT* |2 0000l 1412
< CT¥*|a]"0l| e 1211000 L4 e (3.14)
< CT3* N\ (0)AF (v) < CT3/ (AT ()2

From ((3.12)-(3.14) it follows that

AT (u) < |||z uol| L2 +CA+T)|Juo|| gor +CA+T)TY2(A+T)P + T34+ T)(AT (v))2.

Taking a := 2(|||z|"uo||z2 + C(1 + T')||ug||g+-) and T sufficiently small in order to

have 1
CA+TYTY*(1+T)P +T3* 4 T)a < oL

it can be seen that ® : X% — X%. Reasoning as in [I6] (proof of Theorem 2.1), for
T > 0 small enough, ® : X7 — X7 is a contraction. In consequence, there exists a
unique u € X% such that ®(u) = u. In other words, for ¢t € [0,T]:

u(t) = W(t)ug — /0 Wt —t')(udyu)(t')dt'.

To conclude the proof of this case we reason in the same manner as it was done at
the end of the proof of |16, Theorem 2.1].

Case: r > 1/2. By Theorem there exist T' = T(||uo|| ga») and a unique u in
the class defined by the conditions - with s = 4r, which is a solution of
with k& = 1. Let {uom}men be a sequence in C§°(R) such that wug,, — ug
in H*(R) and let u,, € C([0,7]; H*(R)) be a solution of the equation in
corresponding to the initial data wug,,. (Without loss of generality we can suppose
that wu,, is defined in the same interval [0, 7] (see regularity property in Theorem
2.1)). By Theorem [2.1] u,, — w in C([0, T]; H*"(R)). We multiply the equation

Oty + 02Uy, + U gy, = 0 (3.15)

by umwir, where wy is the truncated weight defined in (2.15), and for a fixed
t € [0,T], we integrate in R with respect to = and use integration by parts to
obtain

@ (1), 0 (B)03F)

i
= 5(0Rm (6 02 ()W) ) = 5ot (1) Daem (O(F)P)  (3.16)
+ (0w () + 2 (0w (1) @3,

where (-,-) denotes the inner product in L?(R).
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Integrating the above equation with respect to the time variable in the interval
[0,t], we have

(tm (t), tm ()W)

t
(wmnmmwN»+;/<%umav¢ﬁmmﬂxw%VUMf
0

. t 3.17
—wAwwmmwmmwmmwwéwawwwmﬁwwﬂ( :
+§/O (1, U ()3 (w3 D at.

Since u;, — u in C([0,T); H*"(R)), with 4r > 2, and the weight w3’ and its
derivatives are bounded functions, it follows from equality (3.17)), after passing to
the limit when m — oo, that

(u(t), u(t)wy’)

=@muw&)+5A(%UW%ﬁUWXw%WUﬁ’
-5 / t(amu(t’),axu(t’)(w%)@))dt' (3.18)
0

[ uwyin e + 2 [ oo
EI+OII+III+IV+V. ’
Let us estimate the terms on the right-hand side of . First of all
I < luoll72(ay2da)- (3.19)
With respect to the term I7, using Lemmas [2.3] and we have

t
1] < 10r /0 (Q2u(t'), B2u(t w2 | (wx) D]t (3.20)
t t 1
/XW<>82wm%*Mﬂsc/nﬂw5%mwMMf (3.21)
<c/nﬂ7 I k)"0 < [ a3l 322

< 0/0 (1+ [whu(t)||2)dt’ < C’t+0/0 (w(t'), u(t w2 )t (3.23)

Using inequality (2.16) for the derivatives of wy it can be seen that
(w3 P < Cwk ™ and |(wi)®)| < Cw . (3.24)

In this manner we can bound the term III as follows:
t
117 < c/ (Duu(t'), Byu(t w2 2)dt . (3.25)
0

If 2r — 3 <0, since u € C([0,T]; H*"(R)) with 4r > 2, it is clear that
1| < Ct. (3.26)
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If 2r — 3 > 0, we apply Lemmas [2.3] and 2.2] to conclude that
¢ _3
|I11] < C/ [J(wy >u(t))||32dt’

4r 7(<r7 13//42) / % /
<C IIJ )| Bl () 5 dt
(3.27)

r(r—3/2)
<C/ o 87 w(@)|n " dt <0/ leoku(®)|%s * dt

< C/O (1 + lwyu()||3)dt’ < Ct+ C/O (u(t'), u(t)wir)dt’'.

In any case the estimate (3.27)) holds. In a similar manner it can be shown the
following estimate for the term IV:

v < c/ w2t (3.28)
With respect to the term V we have:
V] < C/Ot (@) oe (u(t'), u(t' )iy ~)dt!
<c| ) e e, ey (3.20)
<c /O () ()3
From equality and the estimates — it follows that, for t € [0, T],

t
(u(8): u090R) < ol ey + O+ C [ ) )
Gronwall’s inequality enables us to conclude that, for ¢ € [0,T7,

(u(t), u(t)wy’)

2 ! 2 N L,C(t—t") 41 (3'3())
S ||U’OHL2(<$)2wa) + Ct + C o (HUOHLQ((:E)ZTda:) + Ct )6 dt .
Passing to the limit in (3.30) when N — oo we obtain, for ¢t € [0, T,
||u(t>||%2((:r)2““dz)
(3.31)

t
< HUOH%,z((z)?"'dx) + Ct + C/O (||UQ||2L2(<I>2rdm) + Ct/)ec(tit )dt/ < C(T),

which implies that u € L>([0, T]; L?({z)?"dz)).

Now let us see that u € C([0,7]; L?({z)?"dx)). For that we follow an argument
contained in [I] and [§]. From it is clear that there is a positive constant M
such that, for all ¢ € [0, 7],

la(t)|22 < lluolZ + Mt, (3.32)

where the notation L2 := L?({z)?"dz) was used.
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Taking into account that v € C'([0,T]; L?) and using (3.32)), it can be seen that,
for ¢ € L2, the function ¢ — (¢, u(t))r2 is continuous from [0, 7] to C. From this

w?

fact and (3.32) it follows that

lu(t) = w(0)[I7s = llu(®)ll72 + [u(O)lZ2 — 2Re(u(0), u(t))rs,
< N[u(O)lIZz, + Mt + [Ju(0)[[72 — 2Re(u(0),u(t))zz — 0

as t — 0T, which proves that u : [0,T] — L?({(z)?"dz) is continuous at ¢ = 0.

The continuity of u at a point tg € (0,7] is a consequence from the continuity
of w at t = 0 and from the fact that the functions vi(x,t) := wu(z,to + t) and
va(x,t) := u(—x,ty — t) are also solutions of the fifth-order KdV equation. In this
manner, we had proved that if ug € Zy,.,. (r > 3) there exist 7' = T'(||jug| gar) > 0
and a unique u € C([0,T]; Z4rr), solution of , with & = 1, belonging to the
class defined by the conditions - with s = 4r.

Finally, let us prove that if %, € C([0,T]; Zar,) is the solution of the fifth-order
KdV equation, corresponding to the initial data @0, where Upo — o in Zyy ,
when m — oo, then @, — u in C([0,T); Z4r). By Theorem we have that
Um — u in C([0,T); H*"). In consequence we only must prove that a,, — u in
C([0,T); L?({x)*"dx)). Let vy, := Uy — v and Vo := Umo — Ug. Proceeding in a
similar manner as it was done when we established that u € L>°([0, T; L?({x)*"dz))
and taking into account that v,, — 0 in C([0,T]; H*") it can be seen that, for
t e 0,17,

t
HUm(t)H%Q(w}"{dm)) < ||’Um0||%2(<m>2rd1) + Ot + O/o va(t/)”QL?(wf\fdx))dt/V

where lim,;, .o C;,, = 0. Hence, by Gronwall’s inequality, we have for ¢ € [0, 7] and
N € N that

va(t)H%Z(wlz\fdr)) < (HUWOH%Q((:E)?’"dw) + CmT)eCT .
From this inequality it follows, after passing to the limit when N — oo, that
U — 0 in O([0, T); L*({x)*"dx)) .

The proof of Theorem [I.1] is complete.

3.2. Proof of Theorem Taking into account Remarks [1.2|(a) and [L.2|(b) it is
sufficient to show that (1.1]) for the fifth-order KdV equation is globally well-posed

in H2(R).
To see this, first of all, we prove that if u € C([0,T]; H*(R)) is a solution of (1.1))
then, for all ¢ € [0,T],

lu(®) 12 < K = K(Jluollz2), (3.33)

where K depends only on |ug| g2(r). Let us observe that

/R (D)2 (t)dz < %[ /R (92u)2(t)dz + /R uz(t)dx] (3.34)
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Using the definition of the H2-norm, inequality (3.34) and the conservation laws
(1.4) and (1.5) it follows that

lu()||%: = / uz(t)da:+/(8xu)2(t)dm+/(8§u)2(t)da:
R R R
3 2 3 2.\2
< = | w(t)dr + = [ (Ozu)*(t)dx
2 Jr 2 Jr
3 1 1 3
—L(t)+3L,(t) — = [ u(t)de
2 2 Jp
3 1 1 1
= Sl + 3502wl + 5 [ wdaa] - 5 [ worte
Now, from the Sobolev lemma, we have
/ugdx < uo| 1 / 2de < Clluo|le. (3.36)
R R

On the other hand, the Sobolev lemma, the conservation law (1.4) and Young’s
inequality imply that

| [ wtds] < u®) o)

< Cllu(®) | [lu() |22 = Cllu()]m |uollz=
< I + -l

(3.35)

2

1 C
< SOl + S lluol e

< o
Therefore, from (3.35)—(3.37)), we have

3 C? 1
@)1= < SllwollEe + Clluoll + = lluollbz + w5,

and from the above inequality
lu®)lF= < CllluollFz + [luollFre + uollz=) = X, (3.38)

which proves (3.33).

Now we show how to extend the local solution u to any time interval. From the
proof of Theorem it can be seen that the size of the time interval of the solution
u € C([0,T]; H*(R)) of (1.1)) is such that

1
Clluoll» )

Reasoning as in the proof of Theorem we obtain a solution v € C([T,T +
to]; H2(R)) of the IVP

T> min{l,

6ﬂ}+6§v+v6‘xv =0, z,teR
o(T) = u(T),

such that
1
to Z min 1, BT
U e
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In this manner we obtam a solution u € C([0,T + to]; H*(R)) of (1.1). By the a
priori estimate we have that

[lu()[13 )H
for t € [0,T + to], and therefore
1
to > 1
0 > min {1, Ok }.
We repeat this argument n + 1 times to obtain a solution u € C([0,T + o + -+ - +
tn]; H2(R)) with

t; > min {1, j=0,...,n.

1
oR )
Since Z?:O t; — 0o as n — oo then we can extend the solution to any time interval.
The proof is complete.

4. WELL-POSEDNESS OF (|1.1)) WITH k = 2
4.1. Proof of Theorem For T > 0, let us define the space

Yr:={u € C((0,T}; H*(R)) : |0pull poe 13, < 00, [Jull pro/s o < 00, JJullparge < oo},

(4.1)
and, for v € Yp, let us consider the norms

M (u) = max [fu(®) ]| u2, (4.2)
Az (u) = [|0zull oo 2., (4.3)
N () = ] e (4.4)
N5 () = Jullparg, (4.5)
AT (u) i= max AT (u). (4.6)

For a > 0, let Y be the closed ball in Y7 defined by
Vi ={uecYr:AT(u) <a}. (4.7

We shall prove that there exist 77 > 0 and a > 0 such that the operator ¥ :
Y; — Y7 defined by

U(o) = W(Huo — / Wt~ ¢)(u20,0)(¢))dt

is a contraction.

Also the linear estimates in section [2| we will need some nonlinear estimates in
order to prove that ¥ is a contraction.

First of all we establish these nonlinear estimates. Let u € Y

(i) Using interpolation we have
w20l s < 2l oo N0l s

3/4 Ha4 ”1/4

< ”u”iiG/SL%’”u”LiL§ U L;OL% (4.8)
3/4 1/4
< CT M ull} o5 o Nl 12 1020l 2 s -
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(ii) By (2.4) and (4.8) it follows that
t
o2 [ Wit #)w0,0)(¢)dt 115
0
S C”UZaxU”L;L; (4.9)
3/4 1/4
< CT Ml o o Il 2 1000l -
(iii) By (2.3) and (4.8) it follows that
t
02 | Wit~ )(20,u)(¢ ) 1z 12
0
< Cllu?0pull 11 13, (4.10)
3/4 1/4
< CT Ml o o il 2 1000l e -

Now we prove that there exist 7 > 0 and a > 0 such that U(Y}) C Y. Let

v € Y{. Then by (4.10),
AL (B (v))

T o T ! o v2 .U ! /
< AT (W (t)ug) + A (/0 W(t —t')(020 )(t)dt)

t
< uo|| gz + C(E)u%)] ||/O Wit — t’)(anzU)(t’)dt’||L2

) (4.11)
wsup 02 [ Wit = )02 0,0)(¢)at 12
[0,7] 0
< [luollaz + CT sup (&)} + CT 40l s, N0l 22 2 0202,
0,7 ® T T T z 7T
< Jluoll = + CT¥H (T4 4+ 1) (A (v))°.
From (2.2) and (4.9) it follows that
t
A (W () < 92W (ol e 12 + 0 / W (t — ) (v20,0) ()t | o 2.
3/4 1/4 4.12
< Cll02uoll 2 + CT* vl /s, ol 10301 1 (4.12)

< Ollug| g2 + CT** (A" (v))*.
Using ([2.7)), the Leibniz rule and interpolation, we obtain
A3 (T (v))

t
< HW(t)uO”Lie/sL? + ||/0 W(t — t/)(UZaxv)dt/HLi"/SL%?
T
< 1+ T)|fuo 4= + C(1 +T)p/ 0200 (t')| o’
0
T
< C+T)|uollgz +C(A+ T)p/ 0200t p2dt’
0

T
+C(1+T)p/ 102 (v20,0) ()| 2’
0
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< C(1+T)°||luol|g2 + C(A+T)PT(AT (v)* + C(1 + T)”(/OT (0z0)3 ()| L2dt’
T T
+ [ loooo et + [ 1620200 et
< C(1+T)|lug 2 + C(1+T)PT(AT (v))* + C(1+ T) T2 |v*03v|| 12 12
< O +T)°|Ju| 2 + C(1 4+ T)PT (AT (v))?
+C(1+ T)pT1/2||v2”L§6/7L8T ||83UHL;6L§/3
< C(1+T1)?|lugl gz + C(1 + T)PT (AT (v))?
+ O+ DT ol roso pec ol s [0 2 10201155
< C(AL+T)|luollmz + C(1+ T)*T (AT (v))?
+ C(1+T)PTY2AT ()T ENT ()AL (0)V/ANE (0)3/4
< CA+T)°||uollgz + C(A+T)PT(AT ()2 + C(1 +T)PT>/3(AT(v))%.  (4.13)
Applying we have that

A (W (0))
T

< [W(thuolzazs + / IW (¢ — ) (0200 (') | s v
0

T
< CIDY s +C [ DY 0,0tz (4.14)
0
T T
< DY unlla + € [ (20012t +C [ 10:020,0)(®)] o
0 0

< Clluol| = + CT(AT (v))°.

From (4.11)—(4.14) we obtain
AT(B(v)) < C(1+T)||ug|| 72 + CTY/S[TH(TY* +1)

4.15
+ A+ T)P(1+T%8) + T33)(AT (v))?. (419
Let us take a := 2C(1 + T)?||ug||g2 and T in such a way that
1
CTSB[TY3(TY4 1) + (1 +T)P(1 4+ T%8) + T3/8]a% < 5 (4.16)

Since AT (v) < a, from (4.15) and (4.16)), we have that

a 1

AT(W() < 5+ (AT W) < 5+

a
2 ="

ie. U(YH) C Y4 Now we find an additional condition on the size of T in order to
guarantee that the operator ¥ : Y — Y is a contraction. Let v,w € Y7. Then

W(w) — (o) = /0 W (t— ) (0200 (v — w))(t')dt

+ / Wt —t)((v+w)(v—w)dw)(t)dt
0
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Therefore, proceeding as before,
M (¥ (w) = ¥(v))

< /W (0?0, (v — w)()d')

([ W=+ W - wpd)ar)
< OT(OT ()T (0 — w) + T (T )P (0 — )/ (0 — )+

(4.17)
+CTA] (v+w)AT (v — w)AT (w)
+ CT3/4)\§(U +w)AE (v — w))\lT(w)3/4)\2T(w)1/4
< C(T +T**)AT (v)? + TAT (v + w)AT (w)
+ T34AT (v + w) AT (w)]AT (v — w)
< C(T + T¥*) (AT ()2 + AT (w)2)AT (v — w),
A3 (¥ (w) = ¥(v))
< CT Mol 0 o 0 = wll e 12 1020 — w1
+ CT vt wl] pross |0 = wll o o [0l 7 o [OF 0l ol s (4418)
< T3 AT (0)2AT (v — w) + CT3*AT (v + w)AT (v — w)AT (w)
< CT3 (AT ()2 + AT (w))AT (v — w),
A3 (¥(w) = ¥(v))
< CA+T)TA (v)2A] (v — w)
+C(1+ T)pT1/2||”2||L;6/7LBT 102 (v — w)HL;GL{sT/a
+ C(1+T)PTA (v + w)AT (v — w)A] (w)
+C(1+ T)PT1/2||(U +w)(v— w)”Lglf”LST ||8§’w\|L;6LgT/3 (4.19)

< CA+T)PTAT (v)*A (v — w)
+ CA+T)TY2AT ()TN (0)AT (0 — w) VAN (0 — w)3/4
+ C(1+T)PTA (v + w)A (v — w)AT (w)
+ CA+T)TY2 AT (v 4 w)TYENF (v — w)AT (w) VAN (w)3/4
< CT3(14T)P(1 +T38) (AT (v)? + AT (w))AT (v — w),
A (¥(w) = ¥(v))
< CTAT (0)°AT (v — w) + CTAT (v 4+ w)AT (v — w)AT (w) (4.20)
< CT(AT( 12+ AT (w)?)AT (v — w).
From - ) to , it follows that
AT (W (w) — \If(v>)
< C2T + 2T%* + T5/3(1 + T)P (1 + T3/%)) (AT (v)% + AT (0)?)AT (v — w)
< CQRT +273* + T3 + T)P(1 + T%#))2a*\T (v — w).
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If @ :== 2C(1 + T)?||uo||g2 and T are taken satisfying (4.16) and the additional
condition

C(2T 4 2T%* + T53(1 + T)P(1 4+ T3/8))2a* < 1,
then ¥ : Y7 — Y7 is a contraction. Hence, there exists a unique v € Y such that
U(u) = u.
From this point, proceeding in a similar way as it was done in [22] we conclude

that, given uy € H2(R), there exist 7' = T'(||ug||z2) > 0 and a unique u, solution
of ([1.1) for the modified fifth-order KdV equation (k = 2), such that

u € C([0,T]; H*(R)) (4.21)

and wu satisfies the conditions ((1.12)), (1.13) and ((1.14]). Moreover, for any 7" € (0,T)
there exists a neighborhood V; of ug in H?(R), such that the data-solution map
Uo — ug from V; into the class defined by (4.21)), (1.12), (1.13)) and (1.14) with 7"
instead of T is Lipschitz. If additionally, we have that ug € Z3 1 /2, then reasoning as
in the proof of Theorem (case r > 1/2) we obtain that u € C([0,T]; L*((z))dx),
and that there exists a neighborhood V' of ug in Zj ;2 such that the data-solution
map g — ug from V into the class defined by to with 7" instead of
T is Lipschitz. The proof is complete.

4.2. Proof of Theorem [1.5} From Theorem [1.4] to prove that (with k = 2)
is globally well-posed in Z, /9, it is sufficient to establish that this IVP is globally
well-posed in H2(R). Reasoning as in the proof of Theorem it is enough to
show that if u € C([0,T]; H*(R)) is a solution of with k& = 2, then for every
tel0,T]

lu(®)llF> < K = K([luol| =), (4.22)

where K only depends on |lug || g2 (w)-

From (3.34) and the conservation law (|1.4) it is clear that (4.22]) holds if we
prove that, for every ¢ € [0, 7],

107 u®)]Z> < K = K(|[uol r2)-

By the conservation law (|1.6) we have that

1 1
jQ2u(t)3 = 5 [ wbda+ [ @Ruode - 5 [ wtyaa,
R R R

and, since the last term in the right-hand side of the above equality is non-positive,
we obtain that

1 1
||03u(t)\|%z < f/uéd:c—k/(azuo)de < —||uo||2Loo/u%d:r—k/(@guo)de.

Taking into account that |[ug||% - < Cllug||%, we have
Q2O < Clluallys [ whde+ [ (@2u)ds
R i
< Clluollz2lluoll7> + lluoll7r = K (lluollzr2).

The proof is complete.
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5. RELATION BETWEEN DECAY AND REGULARITY THE SOLUTIONS OF (|1.1)) WITH
k =2 (PROOF OF THEOREM [1.6))

First we assume that a € (0,1/8]. The general case follows by an iterative
argument as it was done by Isaza, Linares and Ponce in [9]. Let us suppose that
to = 0 and let ug = u(0). For > 0 and N € N let us define oy, € C?([0,0))
such that

(z) = (1+x2)2*tY/2 1 ifx € [0, N],
PNl = (an2yet1/2 if 2 > 10N,

oW (@) > 0 and [p) (2)] < C for j = 2,3,4,5, with C independent of N.
Let ¢n = ¢n,o be the odd extension of ¢y, to R. Since C§°(R) is dense in
Zy,1)2, there exist a sequence {uom }men in Cg°(R) such that

|uo — vomll z,.,,, — 0 (5.1)

as m — oo.
Let u,, be the solution of the modified fifth-order KdV equation such that
U (0) = ugm. By Theorems and |1.5| we have that
[um = ullco,1): 201 ,2) — 0 (5.2)
103w — Opull Loz — O, (5.3)
as m — o00. Since ug, € H*(R) for each s € R, it can be seen (regularity property),
that u,,(t) € H*(R) for each s € R and each ¢ € [0, 7.

Now we multiply the equation 9y, + 93, + u2,0xum = 0 by u,¢nN, integrate
in x over R and apply integration by parts to obtain

;t/u ¢>Nd3c—5/(8§um)2¢5\1,)dx+5/(8mum)2¢>§3)dx
R

1
—/u,2n¢53)d:v—f/uil¢%)dm:0.
R 2 Jr

(In the above equation we use the notation ., = u.,(t)).
From convergence in (5.2)), since ae < 1/2, it is clear that, for ¢ € [0, T7,

-1 / (16 dz| < Cllum(t)]2 / O
< Cllum (8)[12 / W, (1) ()2 (5.5)

< C sup ] 1t (&) g2 et ()2 2y < C-

(5.4)

)

On the other hand, it is also clear that
/ 260 de| <C  and |5/ (D)2 de| < C. (5.6)

Integratln -D in ¢ over the interval [0, ¢1] and taking into account the inequalities
i and (5.6) we can conclude that

ty
5/ /aﬁ U )dxdt<Hu (t)on]| o + |[u2,(0)on || + Cty.
0

R
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Hence

h 1 1
limsup/ /(agum)%g;) dwdt < Zllu(t)én |+ 2 la*(O)dn ] + Oty < M,
m— 00 0 R
(5.7)
where M = M (||(z) > **u(0)|| 2 + [[() > u(t1)] £2).
Taking into account that qbg\l,) is a bounded function, the convergence in (5.2))

implies that
/ /82um )d:cdt—>/ / )26\ dz dt,

as m — oo. Therefore, from ([5.7]), we obtain that
ty
/ / (0%u)2¢Y) dw dt < M. (5.8)
o JR

Since QSS\}) is an even function, ¢§\1,) (z) > 0 and, for z > 1,
(@) = (2ot DL +2%)" Tz ~ (2)*

as N — oo, applying Fatou’s Lemma in (5.8), we have that

// (02u)?(x)?* dx dt < CM,
|z|>1

and taking into account that

/ / (02u)*(z)** dx dt < C,
|z|<1

t1
/ / (02u)?(x)?* dzdt < C 4+ CM < . (5.9)

we obtain that

From (5.9) it follows that
O2u(t) € L*((x)**dx), a.e. t € [to,t1]. (5.10)
Let us define, for ¢ € [to, 1], w(t) := G%u(t) and wy,(t) := Ou,(t). Then we have
that
s + Wy + U2, 0p Wy + 6Upy Op Wiy, + 2(Dpth)® = 0. (5.11)
For z > 0 and N € N let us define @y o € C°([0,00)) such that
. (1+2%)> -1 ifze[0,N],
¥YN a( ) = Na .
(2N?) if z > 10N,
cﬁg\})a(x) >0 and \@%)a(xﬂ < (Cfor j=1,...,5, with C independent of N.
Let o5 = éNﬂ be the odd extension of ¢n o to R. Multiplying equation ([5.11)

by w.,,¢n, integrating in x over R, using integration by parts, and then integrating
in ¢ over an interval [t§, ;] C [to,t1] such that 02u(t), 02u(t}) € L2 ((x)**dx), we
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obtain

%

/ / 2wy ) 20\ da dt
+/t /Rawm t)é )d dt — /t /wan(tf
(5.12)

+§/*1/R(8xum)3(t)wm(t)<51v du dt.

From (55.12)) we shall prove that

/ /R<8§w>2<t><x>2a*1 d di < oo,

Let us observe that

121 -
/ / (o) 2032 der it
tr JR
¢ 3 |
—/ /wm(t)ﬁiwm(t)qbgs) dxdt—&—*/ /w
tz JR 2 Jes Jr

2 ()6 du dt.

Let K be a constant independent of N such that |¢(3)| < K¢§\l,). Then

/ / (02 wm ‘3) dx dt
tO

_2/ /Kw
+2/t6/R 2665 dau dt (5.13)

K (4 (3 1[4 -1
/ L0160 dede+ 5 [ [ @203 do
tr JR

< =
/ / ()% da dt.
.

-2
Taking into account that the fifth term on the right-hand side of is not

positive, from (5.12)) and (5.13) it follows that
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/ /82wm g\} dx dt

< g/ (t1)¢Nd$ - %/ "L(to)(;;Ndl‘

// \dxdt+—// )6 da dt

(t) Oyt (D)2, () da dt

(5.14)
+2

)
.
5 Ji;

1
/wm(t’{)d:c—g/wfn(té)¢Nd;v+I+II+III+IV.
R R

)
) ()i (t) P da dt

g
R

/a
= 1
=5
Since (1353) and ¢~>§3) are bounded functions, the convergence in ([5.2]) implies that

I+11<C. (5.15)

We now estimate 171 + IV. Using the convergence (5.2)), and the boundedness of
the function (Z)E\}), we obtain, for « € (0,1/4], that

ty 5
I+ 1V <C [ o (0) s [ ()] =
2

t] B
+C [ lun®lfs [ wn(O)10,0 (06| dads
t5

21

t; ~
<C ||um(t)¢N|\H1dt+C/ [wm (D) 2| Oz tin () v [| L2t
t t5

< C/ ()l a2+ 1t (1) | 2}t (5.16)

t5

¢ N - -
< C/ (lwm (B)Sn |2 + 100t () Dn (12 + [ (B)SS | 12 )t
£
t]
<C | (lum(®)llL2(@yseds) + [02um ()]l L2 ()10 az) )dt + C
5
t]
< C + C ||axum(t)HL2((z)4‘*dr)dt
£
Using Lemmas and and the convergence in (5.2), for @ € (0,1/8] and
t € [t5,t7] C [0,TY, it follows that

||8zum(t)”L2((x)4ﬂdx) = | <x>2aarum(t)”L2
< ) D (B[22 < CIT(@) Y @)z (5.17)
< Ol (@) Pum (O]} TP um ()]} < C.
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From (55.14)-(5.17) we conclude that, if o € (0,1/8] then

t - - -
3 [@unr@a) dede< s [wheioy -5 [ @iy v (58)
2 ty JR 5 Jr 5 Jr

where C' = C(T) is a constant indepent of N and m.
Let us observe that from the convergence in (5.3)) we can conclude that

T
sup/ |8§wm(33,t) — 8§w(337t)|2dt = Hﬁium — 6§u||2LE,QL% — 0,
zeR Jo v

as m — oo. Hence, denoting by |A| the measure of a set A C R, we have
2t
[ (@0 - @20 016 dode
s JR
t
< C/ / |02 W, — 0%w||0%w,, + 0%w|dtdr
supp q;( ) 129

<O o 10m(e) = Bula Ny O, + Ot sy do
supp

7(1
< C02wm — 02w e 12 [10%wn, + 02| e 12 | supp 6|
< C||2w — 02w g3 — 0,

as m — oo. Therefore, passing to the limit in (5.18]), as m — oo, we obtain

/ / (02w)2(1)o da dt

<3 [ Wiy [ @iy +o (5.19)
< C/RwQ(t’;)@ﬁadx + C’/sz(t;)@:)z“ LO= M.

Since (55\}) is an even function, q[N)S\l,) >0 and, for z > 1,

o (@) = 20(0)* 7 Ha) ~ (@),
as N — oo, applying Fatou’s Lemma in ([5.19) we can conclude that

t
/ / (02w)?(t)(z)?* t da dt < CM.
t5 Jlzl>1

On the other hand, since 2o — 1 < 0,

t
// (02w)?(t)( 2a1d:z:dt<// (02w)*(t) d dt
tg |z|<1 [ |z|<1

< 20wz = 2”8;1“”%;%% < 0.

In consequence

¢
/ /(a§w>2(t)<x>2a—1 do dt < 0o, (5.20)
ty JR
From (/5.20) it follows that
PPw(t)(x)* V2 e L*(R), ae. t e [th t1].
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This fact and (5.10) imply that

(z)%w(t) € L? and J?((x)*"Y?w(t)) € L?,  ae. t € [t} 11].

Let us define f := (2)*~/2w(t). Then

(2)Y2f € L? and J?(f) € L%

Using Lemma[2.2) with a = 2 and b = 1/2 we conclude that, for 6 € [0, 1],

1720 (@) =72 )| 2 < Cl1 )2 11O T2 ()16 2.

Taking § = 2a, we have that || J*®w(t)| 2 < oo, a.e. t € [t§, 7], ie., w(t) € H,

a.e.

t € [ty, 7], i.e., u(t) € H2>T1,

The rest of the proof is as in [9], in consequence we omit the details.
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