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SINGULAR LIMIT SOLUTIONS FOR 4-DIMENSIONAL
STATIONARY KURAMOTO-SIVASHINSKY EQUATIONS WITH

EXPONENTIAL NONLINEARITY

SAMI BARAKET, MOUFIDA KHTAIFI, TAIEB OUNI

Abstract. Let Ω be a bounded domain in R4 with smooth boundary, and let
x1, x2, . . . , xm be points in Ω. We are concerned with the singular stationary

non-homogenous Kuramoto-Sivashinsky equation

∆2u− γ∆u− λ|∇u|2 = ρ4f(u),

where f is a function that depends only the spatial variable. We use a nonlinear

domain decomposition method to give sufficient conditions for the existence
of a positive weak solution satisfying the Dirichlet-like boundary conditions

u = ∆u = 0, and being singular at each xi as the parameters λ, γ and ρ tend

to 0. An analogous problem in two-dimensions was considered in [2] under
condition (A1) below. However we do not assume this condition.

1. Introduction and statement of results

First, we introduce a model arising in the growth of amorphous surfaces which
is a partial differential equation, called the non-homogenous Kuramoto-Sivashinsky
(KS) equation,

∂tu+ ∆2u− γ∆u− λ|∇u|2 = f(u).

on Rd with d ≥ 1, where λ and γ are real parameters and f(u) is a nonlinear func-
tion. The Kuramoto-Sivashinsky equation was independently created by Kuramoto
and Tsuzuki [14], and by Sivashinsky [25] in the study of a reaction-diffusion sys-
tem and flame front propagation, respectively. This equation is also found in the
study of 2D Kolmogorov fluid flows [26]. This form of the Kuramoto-Sivashinsky
equation is sometimes called the integrated version of the Kuramoto-Sivashinsky
equations (KSE), which arises in several models for surface growth. Most math-
ematical results concern the case n ≤ 3 and essentially for n = 1. Subject to
appropriate initial and boundary conditions has been introduced in [13] and some
reference therein in studying phase turbulence and the flame front propagation in
combustion theory. This type of version equation is suggested in [21, 22] (and some
reference therein) as a phenomenological model for the growth of an amorphous
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surface (Zr65Al7,5, Cu27,5). Winkler and Stein [28] used Rothe’s method to ver-
ify the existence of a global weak solution, this result has been recently extended
by Winkler [30] to the two-dimensional case of (KS) equation, using energy type
estimates for

∫
eudx.

The non homogeneous Kuramoto-Sivashinsky equation with exponential nonlin-
earity is a generalization of the fourth-order one-dimensional semilinear parabolic
equation arises also in several other models for surface growth see for example [9]
for the equation

ut + uxxxx − β[(ux)3]x = eu

with a parameter β ≥ 0, which is a model equation from explosion-convection
theory of which the fourth-order extension of the Frank-Kamenetskii equation,

ut + uxxxx = eu

(a solid fuel model) is a limiting case.
Recently Chen and McKenna [6] suggested to investigate the equation

uxxxx + cuxx = eu, (1.1)

where they give some existence and nonexistence results. In a note on an expo-
nential semilinear equation of the fourth order, Mugnai [19] considered the related
problem to (1.1). More precisely he considered, without non linear gradient term,
the problem

∆2u+ c∆u = b(eu − 1) in Ω
u = ∆u = 0 on ∂Ω

(1.2)

where Ω is a bounded and smooth domain of Rn, c ∈ R and b ∈ R. The author
prove some existence and nonexistence results for (1.2) via variational techniques.
Such equations may occur while studying traveling waves in suspension bridges.
For more general problem see [24], for the Navier boundary-value problem

∆2u+ c∆u = f(x, u) in Ω
u = ∆u = 0 on ∂Ω

(1.3)

in Rn, n ≥ 4 and f is non linear growth function. In conformal dimensional i.e
n = 4 and f has the subcritical (exponential) growth on Ω, i.e.,

lim
t→+∞

|f(x, t)|
exp(αt)

= 0

uniformly on x ∈ Ω for all α > 0 and in some cases and hypothesis and using
Adams inequality, (see [15]), for the fourth-order derivative, namely,

sup
{u∈H2(Ω)∩H1

0 (Ω),‖u‖≤1}

∫
Ω

e32π2u2
dx ≤ C|Ω|,

the authors show that the problem (1.3) has at least two nontrivial solutions (for
more details see Theorem 1.3 in [15]) or infinitely many nontrivial solutions (for
more details see [15, Theorem 1.4]).

A fundamental goal in the study of non-linear initial boundary value problems
involving partial differential equations is to determine whether solutions to a given
equation develop a singularity. Resolving the issue of blow-up is important, in part
because it can have bearing on the physical relevance and validity of the underlying
model. However, determining the answer to this question is notoriously difficult for
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a wide range of equations such fourth order equation like stationary non homoge-
nous Kuramoto-Sivashinsky equation with strong nonlinearity like exponential eu.
One route is to try to simplify or modify the boundary conditions in an attempt to
gain evidence for or against the occurrence of blow-up. A second route is to modify
the equations in some way, and to study the modified equations with the hope of
gaining insight into the blow-up of solutions to the original equations: see problems
(1.4)-(1.5) bellow and the effect of the presence of the second-order backward diffu-
sion term −γ∆u and the nonlinear term −λ|∇u|2 in (1.4). The occurrence and type
of blow-up depends on the parameters λ, γ and the domain. Studding this type of
equations, we will answer for different basic questions. We concentrate next on the
analysis of the main questions raised in the study of blow-up for such equations.
This list can be suitably adapted to other singularity formation problems. We will
examine several case studies related to such approaches where basic list includes
the questions of, where and how. We propose here an expanded list of three items:
(i) Does blow-up occur? (ii) Where? (iii) How? For the first question, the blow-up
problem is properly formulated only when a suitable class of solutions is chosen for
all solutions in the given class or only for some solutions (which should be identi-
fied) or other kinds of generalized solutions can be more natural to a given problem
and which equations and problems do exhibit blow-up. The second question, is
concerned with where finite number of points, or regional blow-up, are localized:
The set of blow-up is defined by

S := {x ∈ Ω : ∃xn → x such that un(xn)→ +∞}.

For the third question, we are concerned just by calculate the rate at which solution
diverges as x approaches to the set S of blow-up point and to calculate the blow-up
profiles as limits of solution at the non-blowing points. A major aim of the present
work is to provide examples which demonstrate that one must be extremely cautious
in generalizing claims about the blow-up of problems studied in idealized settings
to claims about the blow-up of the original problem and to the nonlinearity of a
problem which can cause the formation of a singularity, where no such singularity is
present in the unaltered equation. However, many such studies have tried to search
for singularities of the solutions of the equations in the setting of different types
of boundary conditions like periodic boundary conditions related to the solution
of Kuramoto-Sivashinsky equation. The question of blow up of of solutions of
stationary Kuramoto-Sivashinsky equation is still an open question in dimensions
fourth and in higher cases.

For the stationary Kuramoto-Sivashinsky equation, the reader is referred to
[7] and some refrence therein, where the author give some explicit estimates for
the L∞-norm of the periodic solutions of the time-independent non homogeneous
Kuramoto-Sivashinsky equation

∆2u− γ∆u− λ|∇u|2 = f(u)

in Rn and its dependence on f(u). In particular, they give an estimate of the
Michelson’s upper bound of all periodic solutions on space x in R of the time-
independent homogeneous Kuramoto-Sivashinsky equation which is the case with
non linearity exponential i.e: a solutions of such equation under steady with f(u) =
eu is invariant under the group of translations a→ u(·+ a).

One of the purposes of this article is to present a rather efficient method to solve
such singularly perturbed problems of the time-independent Kuramoto-Sivashinsky
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equation called also the integrated version of the homogeneous steady state KSE.
This method has already been used successfully in geometric context (constant
mean curvature surfaces, constant scalar curvature metrics, extremal Kähler met-
rics, manifolds with special holonomy, . . . ) The techniques developed and used
here are inspired by the work of [1]. Motivated by the above discussion, we
felt that, given the interest in singular perturbation problems, it was worth il-
lustrating this on the non Homogenous stationary Kuramoto-Sivashinsky equation:
∆2u−γ∆u−λ|∇u|2 = ρ2f(u) in Ω ⊂ R4 under the physical Dirichlet-like boundary
conditions u = ∆u = 0 on ∂Ω, given by the following problem.

Let Ω ⊂ R4 be a regular bounded open domain in R4. We are interested in the
positive solution of

∆2u− γ∆u− λ|∇u|2 = ρ4eu in Ω
u = ∆u = 0 on ∂Ω

(1.4)

which is singular at each point xi as the parameters λ, γ and ρ tend to 0. This
problem in some way a generalization of a fourth order Liouville problem

∆2u = ρ4eu in Ω
u = ∆u = 0 on ∂Ω

(1.5)

in the case (γ, λ) = (0, 0), when the parameters ρ tends to 0. (See for example [1]).
Also problem (1.4) can be considered as a higher order counterpart of the problem

−∆u− λ|∇u|2 = ρ2eu in Ω ⊂ R2

u = 0 on ∂Ω
(1.6)

when the parameter ρ tends to 0 (ρ ∼ ε as ε tends to 0). This is a particular case
of non homogenous viscous Hamilton-Jacobian equation [27],

∂tu−∆u− λ|∇u|p = f(u) in Ω
u = 0 on ∂Ω

where Ω is a smooth bounded domain in Rp, p ≥ 1.
Problem (1.6) was studied by Baraket et al. in [2] for the existence of vε,λ a

sequence of solutions which converges to some singular function as the parameters
ε and λ tend to 0, under the assumption

(A1) If 0 < ε < λ, then λ1+δ/2ε−δ → 0 as λ→ 0, for any δ ∈ (0, 1).
In particular, if we take λ = O(ε2/3), then condition (A1) is satisfied. With as-
sumption (A1), problem (1.6), can be treated as a perturbation of the Liouville
equation

−∆u = ρ2eu in Ω ⊂ R2.

This last equation was studied by Baraket and frank in [3] as ρ tends to 0. As
observed by Ren and Wei [23], problem (1.6), can be reduced to a problem without
gradient term. Indeed, if u is a solution of (1.6), then the function

w = (λρ2eu)λ,

satisfies
−∆w = w

λ+1
λ in Ω

w = (λρ2)λ on ∂Ω,
(1.7)

since the exponent p = (λ+ 1)/λ tends to infinity as λ tends to 0, see also [8].
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Note that Ghergu and Radulescu [10] studied a more general problem on a
domain Σ ⊂ Rn, n ≥ 2:

−∆u− λ|∇u|a = g(u) + µf(x, u) in Σ
u = 0 on ∂Σ,

(1.8)

with 0 < a ≤ 2, λ, µ > 0 and some assumptions on f and g. Problems of the
type (1.8) arise in the study of non-Newtonian fluids, boundary layer phenomena
for viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat
conduction in electrically conducting materials. See also [11]. It includes also some
simple prototype models from boundary-layer theory of viscous fluids [31].

The question we would like to study is concerned with the existence of other
branches of solutions of (1.4) as ρ, λ and γ tend to 0. To describe our result, let us
denote by G(x, ·) the solution of

∆2G(x, ·) = 64π2δx in Ω

G(x, ·) = ∆G(x, ·) = 0 on ∂Ω.
(1.9)

It is easy to check that the function

R(x, y) := G(x, y) + 8 log |x− y| (1.10)

is a smooth function.
We define

W (x1, . . . , xm) :=
m∑
j=1

R(xj , xj) +
∑
j 6=`

G(xj , x`). (1.11)

In dimension 4, Wei [29], studied the behavior of solutions to the nonlinear
eigenvalue problem for the biharmonic operator ∆2 in R4,

∆2u = λ f(u) in Ω
u = ∆u = 0 on ∂Ω

(1.12)

and u∗ the solution of

∆2u∗ = 64π2
m∑
i=1

δxi in Ω

u∗ = ∆u∗ = 0 on ∂Ω.

(1.13)

The author proved the following result.

Theorem 1.1 ([29]). Let Ω be a smooth bounded domain in R4 and f a smooth
nonnegative increasing function such that

e−uf(u) and e−u
∫ u

0

f(s)ds tend to 1, as u→ +∞. (1.14)

For uλ solution of (1.12), denote by Σλ = λ
∫

Ω
f(uλ)dx. Then many cases occur:

(i) Σλ → 0 therefore, ‖uλ‖L∞(Ω) → 0 as λ→ 0.
(ii) Σλ → +∞ then uλ → +∞ as λ→ 0.
(iii) Σλ → 64π2m, for some positive integer m. Then the limiting function

u∗ = limλ→0 uλ has m blow-up points, {x1, . . . , xm}, where uλ(xi) → +∞
as λ→ 0. Moreover, (x1, . . . , xm) is a critical point of W .

Our main result reads as follows.
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Theorem 1.2. Let α ∈ (0, 1) and Ω be an open smooth bounded domain of R4.
Assume that (x1, . . . , xm) ∈ Ωm is a nondegenerate critical point of W , then there
exist ρ0 > 0, λ0 > 0, γ0 > 0 and

{
uρ,λ,γ

}
with 0 < ρ < ρ0, 0 < λ < λ0, 0 < γ < γ0,

a one parameter family of solutions of (1.4), such that

lim
ρ→0, λ→0, γ→0

uρ,λ,γ =
m∑
j=1

G(xj , ·)

in C4,α
loc (Ω− {x1, . . . , xm}).

Our result reduces the study of nontrivial branches of solutions of (1.4) to the
search for critical points of the function W defined in (1.11). Observe that the
assumption on the nondegeneracy of the critical point is a rather mild assumption
since it is certainly fulfilled for generic choice of the open domain Ω.

Semilinear equations involving fourth-order elliptic operator and exponential
nonlinearity appear naturally in conformal geometry and in particular in the pre-
scription of the so called Q-curvature on 4-dimensional Riemannian manifolds [4],
[5]

Qg =
1
12
(
−∆gSg + S2

g − 3|Ricg |2
)

where Ricg denotes the Ricci tensor and Sg is the scalar curvature of the metric g.
Recall that the Q-curvature changes under a conformal change of metric

gw = e2wg,

according to
Pgw + 2Qg = 2Q̃gwe

4w (1.15)
where

Pg := ∆2
g + δ

(2
3
SgI − 2 Ricg

)
d (1.16)

is the Panietz operator, which is an elliptic 4-th order partial differential operator
[5] and which transforms according to

e4wPe2wg = Pg, (1.17)

under a conformal change of metric gw := e2wg. In the special case where the
manifold is the Euclidean space, the Panietz operator is simply given by

Pgeucl = ∆2

in which case (1.15) reduces to

∆2w = Q̃e4w

the solutions of which give rise to conformal metric gw = e2wgeucl whose Q-
curvature is given by Q̃. There is by now an extensive literature about this problem
and we refer to [5] and [16] for references and recent developments.

We briefly describe the plan of the paper : In Section 2 we discuss rotationally
symmetric solutions of (1.4). In Section 3 we study the linearized operator about
the radially symmetric solution defined in the previous section. In Section 4, we
recall some Known results about the analysis of the bi-Laplace operator in weighted
spaces. Both section strongly use the b-operator which has been developed by
Melrose [18] in the context of weighted Sobolev spaces and by Mazzeo [17] in the
context of weighted Hölder spaces (see also [20]).
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A first nonlinear problem is studied in Section 5 where the existence of an infinite
dimensional family of solutions of (1.4) which are defined on a large ball and which
are close to the rotationally symmetric solution is proven. In Section 6, we prove the
existence of an infinite dimensional family of solutions of (1.4) which are defined
on Ω with small ball removed. Finally, in Section 7, we show how elements of
these infinite dimensional families can be connected to produce solutions of (1.4)
described in Theorem 1.2. In Section 7, we patch these pieces, in the two last
sections, together via a nonlinear version of the Cauchy data matching. Throughout
the paper, the symbol cκ > 0 (which can depend only on κ) denotes always a positive
constant independent of ε, λ and γ which might change from one line to another.

2. Rotationally symmetric solutions

We first describe the rotationally symmetric approximate solutions of

∆2u− γ∆u− λ|∇u|2 = ρ4eu (2.1)

in R4 which will play a central role in our analysis. For this raison given ε > 0, we
define

uε(x) := 4 log(1 + ε2)− 4 log(ε2 + |x|2).
which is clearly a solution of

∆2u− ρ4eu = 0, (2.2)

when

ρ4 =
384ε4

(1 + ε2)4
. (2.3)

Let us notice that (2.2) is invariant under some dilation in the following sense:
If u is a solution of (2.2) and τ > 0, then u(τ ·) + 4 log τ is also a solution of (2.2).
With this observation in mind, we define, for all τ > 0

uε,τ (x) := 4 log(1 + ε2) + 4 log τ − 4 log(ε2 + τ2|x|2). (2.4)

3. A linear fourth-order elliptic operator on R4

We define the linear fourth-order elliptic operator

L := ∆2 − 384
(1 + |x|2)4

(3.1)

which corresponds to the linearization of (2.2) about the solution u1(= uε=1) which
has been defined in the previous section.

We are interested in the classification of bounded solutions of Lw = 0 in R4.
Some solutions are easy to find. For example, we can define

φ0(x) := r∂ru1(x) + 4 = 4
1− r2

1 + r2
,

where r = |x|. Clearly Lφ0 = 0 and this reflects the fact that (2.2) is invariant
under the group of dilations τ → u(τ ·) + 4 log τ . We also define, for i = 1, . . . , 4

φi(x) := −∂xiu1(x) =
8xi

1 + |x|2
,

which are also solutions of Lφj = 0 since these solutions correspond to the invariance
of the equation under the group of translations a→ u(·+ a).
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The following result classifies all bounded solutions of Lw = 0 which are defined
in R4.

Lemma 3.1 ([1]). Any bounded solution of Lw = 0 defined in R4 is a linear
combination of φi for i = 0, 1, . . . , 4.

Let Br denote the ball of radius r centered at the origin in R4.

Definition 3.2. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder
weighted spaces Ck,αµ (R4) as the space of functions w ∈ Ck,αloc (R4) for which the
norm

‖w‖Ck,αµ (R4) := ‖w‖Ck,α(B̄1) + sup
r≥1

(
(1 + r2)−µ/2‖w(r·)‖Ck,αµ (B̄1−B1/2)

)
,

is finite.

We also define

Ck,αrad,µ(R4) = {f ∈ Ck,αµ (R4); f(x) = f(|x|),∀x ∈ R4}.

As a consequence of the result in Lemma 3.1, we have:

Proposition 3.3 ([1]). (i) Assume that µ > 1 and µ 6∈ N, then

Lµ : C4,α
µ (R4)→ C0,α

µ−4(R4)
w 7→ Lw

is surjective.
(ii) Assume that δ > 0 and δ 6∈ N then

Lδ : C4,α
rad,δ(R

4)→ C0,α
rad,δ−4(R4)

w 7→ Lw

is surjective.

We set B̄∗1 = B̄1 − {0}.

Definition 3.4. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder
weighted space Ck,αµ (B̄∗1) as the space of functions in Ck,αloc (B̄∗1) for which the norm

‖u‖Ck,αµ (B̄∗1 ) = sup
r≤1/2

(
r−µ‖u(r·)‖Ck,α(B̄2−B1)

)
is finite.

Then we define the subspace of radial functions in Ck,αrad,δ(B̄
∗
1) by

Ck,αrad,δ(B̄
∗
1) = {f ∈ Ck,αδ (R4); f(x) = f(|x|),∀x ∈ B̄∗1}.

For ε, τ, λ > 0, we define
Rε,λ,γ := τrε,λ,γ/ε

where
rε,λ,γ := max(

√
ε,
√
λ,
√
γ) (3.2)

We would like to find a solution u of

∆2u− γ∆u− λ|∇u|2 − ρ4eu = 0 (3.3)
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in B̄rε,λ,γ . Recall that in the polar coordinates if we assume that ϕ is a radially
symmetric function, we get the usual formulas |∇ϕ| = (∇ϕ,∇ϕ)1/2 where (·, ·) is
the usual Euclidian dot product in Rn. Then

|∇ϕ|2 = (
∂ϕ

∂r
)2,

∆ϕ =
∂2ϕ

∂r2
+
n− 1
r

∂ϕ

∂r
,

∆2ϕ =
∂4ϕ

∂r4
+

2(n− 1)
r

∂3ϕ

∂r3
+

(n− 1)(n− 3)
r2

∂2ϕ

∂r2
− (n− 1)(n− 3)

r3

∂ϕ

∂r
.

Using the transformation

v(x) = u
( ε
τ
x
)

+ 8 log ε− 4 log
(
τ(1 + ε2)/2

)
,

then (3.3) is equivalent to

∆2v −
( ε
τ

)2 (
γ∆v + λ|∇v|2

)
− 24ev = 0 (3.4)

in B̄Rε,λ,γ . Now we look for a solution of (3.4) of the form

v(x) = u1(x) + h(x),

this amounts to solving

Lh =
384

(1 + |x|2)4
(eh − h− 1) +

( ε
τ

)2 (
γ∆(u1 + h) + λ|∇(u1 + h)|2

)
(3.5)

in B̄Rε,λ,γ .

Definition 3.5. Given r̄ ≥ 1, k ∈ N, α ∈ (0, 1) and µ ∈ R, the weighted space
Ck,αµ (Br̄) is defined to be the space of functions w ∈ Ck,α(Br̄) endowed with the
norm

‖w‖Ck,αµ (B̄r̄) := ‖w‖Ck,α(B1) + sup
1≤r≤r̄

(
r−µ‖w(r·)‖Ck,α(B̄1−B1/2)

)
.

For σ ≥ 1, we denote Eσ : C0,α
µ (B̄σ) → C0,α

µ (R4) the extension operator defined
by

Eσ(f)(x) =

{
f(x) for |x| ≤ σ
χ
(
|x|
σ

)
f
(
σ x
|x|

)
for |x| ≥ σ,

(3.6)

where t 7→ χ(t) is a smooth nonnegative cutoff function identically equal to 1 for
t ≤ 1 and identically equal to 0 for t ≥ 2. It is easy to check that there exists a
constant c = c(µ) > 0, independent of σ ≥ 1, such that

‖Eσ(w)‖C0,α
µ (R4) ≤ c‖w‖C0,α

µ (B̄σ). (3.7)

We fix δ ∈ (0, 1) and denote by Gδ to be a right inverse of Lδ provided by Proposi-
tion 3.3. To find a solution of (3.5) it is enough to find a fixed point h, in a small
ball of C4,α

rad,δ(R4), solution of
h = ℵ(h) (3.8)

where

ℵ(h) := Gδ ◦ Eδ ◦R(h),

R(h) =
384

(1 + |x|2)4
(eh − h− 1) +

( ε
τ

)2 (
γ∆(u1 + h) + λ|∇(u1 + h)|2

)
.
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We have
|R(0)| =

( ε
τ

)2 (
γ∆u1 + λ|∇u1|2

)
.

For |x| = r, we have

sup
r≤Rε,λ,γ

r4−δ |R(0)| ≤
( ε
τ

)2

sup
r≤Rε,λ,γ

r4−δ
(
γ∆u1 + λ|∇u1|2

)
.

Using

γ∆u1 + λ|∇u1|2 = −16γ
2 + r2

(1 + r2)2
+ 64λ

r2

(1 + r2)2

=
−32γ

(1 + r2)2
+ 16 (4λ− γ)

r2

(1 + r2)2
,

this implies that for each κ > 0, there exist cκ > 0 (which can depend only on κ),
such that for δ ∈ (0, 1), we have

sup
r≤Rε,λ,γ

r4−δ |R(0)| ≤ cκγε2 + cκ(4λ+ γ)ε2R2−δ
ε,λ,γ

≤ cκγε2 + cκ(4λ+ γ)εδr2−δ
ε,λ,γ

≤ cκεδr2
ε,λ,γ .

Then there exist c̄κ > 0 (which can depend only on κ), such that

‖ℵ(0)‖C4,α
rad,δ(R4) ≤ c̄κε

δr2
ε,λ,γ

Using Proposition 3.3 and (3.7), we conclude that

‖h‖C4,α
rad,δ(R4) ≤ 2c̄κεδr2

ε,λ,γ . (3.9)

Now, let h1, h2 be in B(0, 2cκεδr2
ε,λ,γ) of C4,α

rad,δ(R4). Then for each κ > 0, there
exist cκ > 0 (which can depend only on κ), such that for δ ∈ (0, 1), we have

sup
r≤Rε,λ,γ

r4−δ |R(h2)−R(h1)|

≤ cκ sup
r≤Rε,λ,γ

r4−δ(1 + |x|2)−4
∣∣eh2 − eh1 + h1 − h2

∣∣
+ cκλε

2 sup
r≤Rε,λ,γ

r4−δ(|∇(u1 + h2)|2 − |∇(u1 + h1)|2)

+ cκγε
2 sup
r≤Rε,λ,γ

r4−δ
∣∣∣∆(u1 + h2)−∆(u1 + h1)

∣∣∣
≤ cκ sup

r≤Rε,λ,γ
r−4−δ|h2 − h1||h2 + h1|

+ cκλε
2 sup
r≤Rε,λ,γ

r4−δ
(
|∇(h2 − h1)| (|∇(h2 + h1)|+ 2|∇u1|)

)
+ cκγε

2 sup
r≤Rε,λ,γ

r4−δ
∣∣∣∆(h2 − h1)

∣∣∣
≤ cκ

2∑
i=1

‖hi‖C4,α
rad,δ(R4)‖h2 − h1‖C4,α

rad,δ(R4) + cκγε
2R4

ε,λ,γ‖h2 − h1‖C4,α
rad,δ(R4)

+ cκλε
2R4

ε,λ,γ

(
Rδε,λ,γ

2∑
i=1

‖hi‖C4,α
rad,δ(R4) + 1

)
‖h2 − h1‖C4,α

rad,δ(R4).
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Provided hi ∈ C4,α
rad,δ(R4) satisfies ‖hi‖C4,α

rad,δ(R4) ≤ 2cκεδr2
ε,λ,γ , then the last estimate,

is given by

sup
r≤Rε,λ,γ

r4−δ|R(h2)−R(h1)|

≤ cκεδr2
ε,λ,γ‖h2 − h1‖C4,α

rad,δ(R4) + cκr
2
ε,λ,γ‖h2 − h1‖C4,α

rad,δ(R4)

+ cκr
2
ε,λ,γ‖h2 − h1‖C4,α

rad,δ(R4).

Similarly, using Proposition 3.3 and (5.4), we conclude that for each κ > 0, there
exist εκ, λκ, γκ and c̄κ > 0 (only depend on κ) such that

‖ℵ(h2)− ℵ(h1)‖C4,α
rad,δ(R4) ≤ c̄κr

2
ε,λ,γ‖h2 − h1‖C4,α

rad,δ(R4). (3.10)

Reducing εκ, λκ and γκ if necessary, we can assume that

c̄κr
2
ε,λ,γ ≤

1
2

for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ). Then, (3.9) and (3.10) are enough to
show that h 7→ ℵ(h) is a contraction from the ball

{h ∈ C4,α
rad,δ(R

4) : ‖h‖C4,α
rad,δ(R4) ≤ 2cκεδr2

ε,λ,γ}

into itself and hence has a unique fixed point h in this set. This fixed point is a
solution of (3.8) in B̄Rε,λ,γ . We summarize this in the following proposition.

Proposition 3.6. For each κ > 0, there exist εκ > 0, λκ > 0, γκ > 0 and cκ > 0
(which can depend only on κ) such that for all for all ε ∈ (0, εκ), λ ∈ (0, λκ) and
γ ∈ (0, γκ) and for δ ∈ (0, 1), there exists a unique solution h ∈ C4,α

rad,δ(R4) of (3.8)
such that

v(x) = u1(x) + h(x)
solves (3.4) in B̄Rε,λ,γ . In addition

‖h‖C4,α
rad,δ(R4) ≤ 2cκεδr2

ε,λ,γ .

4. Known results [1]

4.1. Analysis of the bi-Laplace operator in weighted spaces.
Given x1, . . . , xm ∈ Ω we define X := (x1, . . . , xm) and

Ω̄∗(X) := Ω̄− {x1, . . . , xm},
and we choose r0 > 0 so that the balls Br0(xi) of center xi and radius r0 are
mutually disjoint and included in Ω. For all r ∈ (0, r0) we define

Ω̄r(X) := Ω̄− ∪mj=1Br(x
j)

With these notation, we have the following definition.

Definition 4.1. Given k ∈ R, α ∈ (0, 1) and ν ∈ R, we introduce the Hölder
weighted space Ck,αν (Ω̄∗(X)) as the space of functions w ∈ Ck,αloc (Ω̄∗(X)) which is
endowed with the norm

‖w‖Ck,αν (Ω̄∗(X)) := ‖w‖Ck,α(Ω̄r0/2(X)) +
m∑
j=1

sup
r∈(0,r0/2)

(
r−ν‖w(xj + r·)‖Ck,α(B̄2−B1)

)
,

is finite.
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When k ≥ 2, we denote by [Ck,αν (Ω̄∗(X))]0 be the subspace of functions w ∈
Ck,αν (Ω̄∗(X)) satisfying w = ∆w = 0.

Proposition 4.2 ([1]). Assume that ν < 0 and ν 6∈ Z, then

Lν : [C4,α
ν (Ω̄∗(X))]0 → C0,α

ν−4(Ω̄∗(X))

w 7→ ∆2w

is surjective.

4.2. Bi-harmonic extensions. Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) we define
Hi(= Hi(ϕ,ψ; ·)) as the solution of

∆2Hi = 0 in B1

Hi = ϕ on ∂B1

∆Hi = ψ on ∂B1,

(4.1)

where, as already mentioned, B1 denotes the unit ball in R4.
We set B∗1 = B1 − {0}. As in the previous section, we have a definition.

Definition 4.3. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder
weighted spaces Ck,αµ (B̄∗1) as the space of function in Ck,αloc (B̄∗1) for which the norm

‖u‖Ck,αµ (B̄∗1 ) = sup
r≤1/2

(
r−µ‖u(r·)‖Ck,α(B̄2−B1)

)
,

is finite.

This corresponds to the space and norm already defined in the previous section
when Ω = B1, m = 1 and x1 = 0.

Let e1, . . . , e4 be the coordinate functions on S3.

Lemma 4.4. [1] Assume that∫
S3

(8ϕ− ψ)dvS3 = 0 and
∫
S3

(12ϕ− ψ)e`dvS3 = 0 (4.2)

for ` = 1, . . . , 4. Then there exists c > 0 such that

‖Hi(ϕ,ψ; ·)‖C4,α
2 (B̄∗1 ) ≤ c(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)).

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3), we define (when it exsits) He (=
He(ϕ,ψ; ·)) to be the solution of

∆2He = 0 in R4 −B1

He = ϕ on ∂B1

∆He = ψ on ∂B1

which decays at infinity.

Definition 4.5. Given k ∈ N, α ∈ (0, 1) and ν ∈ R, we define the space Ck,αν (R4−
B1) as the space of functions w ∈ Ck,αloc (R4 −B1) for which the norm

‖w‖Ck,αν (R4−B1) = sup
r≥1

(
r−ν‖w(r·)‖Ck,αν (B̄2−B1)

)
,

is finite.
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Lemma 4.6 ([1]). Assume that ∫
S3
ψdvS3 = 0. (4.3)

Then there exists c > 0 such that

‖He(ϕ,ψ; ·)‖C4,α
−1 (R4−B1) ≤ c(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)).

Lemma 4.7 ([1]). The mapping

P : C4,α(S3)⊥ × C2,α(S3)⊥ → C3,α(S3)⊥ × C1,α(S3)⊥

(ϕ,ψ) 7→ (∂rHi − ∂rHe, ∂r∆Hi − ∂r∆He)

where Hi = Hi(ϕ,ψ; ·) and He = He(ϕ,ψ; ·), is an isomorphism.

5. First nonlinear Dirichlet problem

Recall for ε, τ, λ, γ > 0, we define Rε,λ,γ := τrε,λ,γ/ε, where

rε,λ,γ := max(
√
ε,
√
λ,
√
γ). (5.1)

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) satisfying (4.2), we define

u := u1 + h+Hi(ϕ,ψ; (·/Rε,λ,γ)).

We would like to find a solution u of

∆2u− γ
( ε
τ

)2∆u− λ
( ε
τ

)2|∇u|2 − 24eu = 0 (5.2)

which is defined in BRε,λ,γ and which is a perturbation of u. Writing u = u + v,
this amounts to solve the equation

Lv =
384

(1 + r2)4
eh(eH

i(ϕ,ψ;(·/Rε,λ,γ))+v − 1− v) +
384

(1 + r2)4
(eh − 1)v

+ γ
( ε
τ

)2∆
(
u1 + h+Hi(ϕ,ψ; (·/Rε,λ,γ)) + v

)
− γ
( ε
τ

)2∆(u1 + h)

+ λ
( ε
τ

)2∣∣∣∇(u1 + h+Hi(ϕ,ψ; (·/Rε,λ,γ)) + v
)∣∣∣2 − λ( ε

τ

)2|∇(u1 + h)|2,
(5.3)

since Hi is bi-harmonic. In the following, we will denote by K(v) the right hand
side of (5.3).

Definition 5.1. Given r̄ ≥ 1, k ∈ N, α ∈ (0, 1) and µ ∈ R, the weighted space
Ck,αµ (Br̄) is defined to be the space of functions w ∈ Ck,α(Br̄) endowed with the
norm

‖w‖Ck,αµ (B̄r̄) := ‖w‖Ck,α(B1) + sup
1≤r≤r̄

(
r−µ‖w(r·)‖Ck,α(B̄1−B1/2)

)
.

For σ ≥ 1, we denote by Eσ : C0,α
µ (B̄σ)→ C0,α

µ (R4) the extension operator defined
by

Eσ(f)(x) = χ
( |x|
σ

)
f
(
σ
x

|x|

)
,

where t 7→ χ(t) is a smooth nonnegative cutoff function identically equal to 1 for
t ≥ 2 and identically equal to 0 for t ≤ 1. It is easy to check that there exists a
constant c = c(µ) > 0, independent of σ ≥ 1, such that

‖Eσ(w)‖C0,α
µ (R4) ≤ c‖w‖C0,α

µ (B̄σ). (5.4)
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We fix µ ∈ (1, 2) and denote by Gµ a right inverse provided by Proposition 3.3. To
find a solution of (5.3), it is enough to find v ∈ C4,α

µ (R4) solution of

v = N(ε, λ, γ, τ, ϕ, ψ; v) (5.5)

where we have defined

N(ε, λ, γ, τ, ϕ, ψ; v) := Gµ ◦ ERε,λ,γ (K(v))

Given κ > 1 (whose value will be fixed later on), we now further assume that the
functions ϕ ∈ C4,α(S3), ψ ∈ C2,α(S3) and the constant τ > 0 satisfy

1
log 1/r2

ε,λ,γ

| log(τ/τ∗)| ≤ κr2
ε,λ,γ , ‖ϕ‖C4,α(S3) ≤ κr2

ε,λ,γ ,

‖ψ‖C2,α(S3) ≤ κr2
ε,λ,γ ,

(5.6)

where τ∗ > 0 is fixed later.

Lemma 5.2. For each κ > 0, µ ∈ (1, 2) and δ ∈ (0, 1), there exist εκ > 0, λκ > 0,
γκ > 0, cκ > 0 and c̄κ > 0 such that, for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ),

‖N(ε, λ, γ, τ, ϕ, ψ; 0)‖C4,α
µ (R4) ≤ cκε

µr2
ε,λ,γ . (5.7)

Moreover,

‖N(ε, λ, γ, τ, ϕ, ψ; v2)−N(ε, λ, γ, τ, ϕ, ψ; v1)‖C4,α
µ (R4) ≤ c̄κr

2
ε,λ,γ‖v2 − v1‖C4,α

µ (R4)

(5.8)
provided ṽ = v1, v2 ∈ C4,α

µ (R4), ϕ ∈ C4,α(S3), ψ ∈ C2,α(S3) satisfy

‖ṽ‖C4,α
µ (R4) ≤ 2cκεµr2

ε,λ,γ , ‖ϕ‖C4,α(S3) ≤ κr2
ε,λ,γ ,

‖ψ‖C2,α(S3) ≤ κr2
ε,λ,γ , | log(τ/τ∗)| ≤ κr2

ε,λ,γ log 1/r2
ε,λ,γ .

Proof. The estimates follow from Lemma 4.4 together with the assumption on the
norms of ϕ and ψ. Let c(i)κ denote constants which only depend on κ (provided ε,
λ and γ are chosen small enough).

It follows from Lemma 4.4 and the estimates given by (5.6) that

‖Hi(ϕ,ψ; ·/Rε,λ,γ)‖C4,α
2 (B̄Rε,λ,γ )

≤ cκR−2
ε,λ,γ(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3))

≤ cκε2

(5.9)

Therefore, using the fact that for each x ∈ B̄Rε,λ,γ , we have |h(x)| ≤ cκ r2+δ
ε,λ,γ ,

which tends to 0 as ε, λ and γ tend to 0, we obtain

‖(1 + | · |2)−4eh
(
eH

i(ϕ,ψ;·/Rε,λ,γ) − 1
)
‖C0,α

µ−4(B̄Rε,λ,γ ) ≤ cκε
2,

for µ ∈ (1, 2), we have∥∥ε2
[
|∇
(
u1 + h+Hi(ϕ,ψ; ·/Rε,λ,γ)

)
|2 − |∇(u1 + h)|2

]∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤
∥∥ε2|∇

(
Hi(ϕ,ψ; ·/Rε,λ,γ)

)
|
[
2|∇(u1 + h)|

+ |∇
(
Hi(ϕ,ψ; ·/Rε,λ,γ)

)
|
]∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤ cκεµr4−µ
ε,λ,γ

[
1 + rδε,λ,γε

−δ‖h‖C4,α
rad,δ(R4) + r2

ε,λ,γε
−2‖Hi(ϕ,ψ; ·/Rε,λ,γ)‖C4,α

2 (B̄Rε,λ,γ )

]
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Provided h ∈ C4,α
rad,δ(R4) satisfy ‖h‖C4,α

rad,δ(R4) ≤ 2cκεδr2
ε,λ,γ , and from the asymp-

totic behavior of Hi given by the estimate (5.9) and µ ∈ (1, 2), we deduce that∥∥∥ε2
[
|∇
(
u1 + h+Hi(ϕ,ψ; ·/Rε,λ,γ)

)
|2 − |∇(u1 + h)|2

]∥∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤ cκεµr2
ε,λ,γ

and ∥∥ε2∆
(
Hi(ϕ,ψ; ·/Rε,λ,γ)

)∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤ cκεµr4−µ
ε,λ,γ ≤ cκε

µr2
ε,λ,γ .

Using Proposition 3.3 and (5.4), we conclude that

‖N(ε, λ, γ, τ, ϕ, ψ; 0)‖C4,α
µ (R4) ≤ cκε

µr2
ε,λ,γ .

To derive the second estimate, we use the fact that for each x ∈ B̄Rε,λ,γ , we have
|h(x)| ≤ cκr

2+δ
ε,λ,γ , which tends to 0 as ε, λ and γ tend to 0. For each κ > 0, there

exists cκ > 0 such that∥∥(1 + | · |2)−4eH
i(ϕ,ψ;·/Rε,λ,γ)+h (ev2 − ev1 − v2 + v1)

∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤ cκεµr2
ε,λ,γ‖v2 − v1‖C4,α

µ (R4)

and ∥∥(1 + | · |2)−4eh
(
eH

i(ϕ,ψ;·/Rε,λ,γ) − 1
)

(v2 − v1)
∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤ cκε2‖v2 − v1‖C4,α
µ (R4),

and for µ ∈ (1, 2), we obtain

‖ε2∆(v2 − v1)‖C0,α
µ−4(B̄Rε,λ,γ ) ≤ cκr

2
ε,λ,γ‖v2 − v1‖C4,α

µ (R4).

Provided h ∈ C4,α
rad,δ(R4) satisfy ‖h‖C4,α

rad,δ(R4) ≤ 2cκεδr2
ε,λ,γ , we deduce that∥∥(1 + | · |2)−4(eh − 1) (v2 − v1)

∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤ cκ‖h‖C4,α
δ (R4)‖v2 − v1‖C4,α

µ (R4)

≤ cκεδr2
ε,λ,γ‖v2 − v1‖C4,α

µ (R4),

and∥∥∥|ε2
(∣∣∣∇(u1 + h+Hi(ϕ,ψ; ·/Rε,λ,γ) + v2)

∣∣∣2
−
∣∣∣∇(u1 + h+Hi(ϕ,ψ; ·/Rε,λ,γ) + v1)

∣∣∣2)∥∥∥
C0,α
µ−4(B̄Rε,λ,γ )

≤ ‖ε2|∇(v2 − v1)|
(
|∇(v2 + v1)|+ 2|∇(u1 + h+Hi(ϕ,ψ; ·/Rε,λ,γ))|

)
‖C0,α

µ−4(B̄Rε,λ,γ )

≤ cκε2R2
ε,λ,γ

(
Rµε,λ,γ

2∑
i=1

‖vi‖C4,α
µ (R4) + 1

+R2
ε,λ,γ‖Hi(ϕ,ψ; ·/Rε,λ,γ)‖C4,α

2 (B̄Rε,λ,γ )

)
‖v2 − v1‖C4,α

µ (R4)

≤ cκr2
ε,λ,γ

(
rµε,λ,γε

−µ
2∑
i=1

‖vi‖C4,α
µ (R4) + 1

+ r2
ε,λ,γε

−2‖Hi(ϕ,ψ; ·/Rε,λ,γ)‖C4,α
2 (B̄Rε,λ,γ )

)
‖v2 − v1‖C4,α

µ (R4).
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Provided v1, v2 ∈ C4,α
µ (R4) satisfy ‖vi‖C4,α

µ (R4) ≤ 2cκεµr2
ε,λ,γ and from the asymp-

totic behavior of Hi given by the estimate (5.9), we derive the desired estimate,
using Proposition 3.3 and (5.4). �

Reducing εκ, λκ and γκ if necessary, we can assume that

c̄κr
2
ε,λ,γ ≤

1
2
. (5.10)

Then there exist εκ > 0, λκ > 0, γκ > 0, cκ > 0 and c̄κ > 0 such that, for all
ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ). Then, (5.7) and (5.8) in Lemma 5.2 are
sufficient to show that

v 7→ N(ε, λ, γ, τ, ϕ, ψ; v)
is a contraction from {v ∈ C4,α

µ (R4) : ‖v‖C4,α
µ (R4) ≤ 2cκεµr2

ε,λ,γ} into itself and hence
has a unique fixed point v(ε, λ, γ, τ, ϕ, ψ; ·) in this set. This fixed point is a solution
of (5.5) in BRε,λ,γ . We summarize this as follows.

Proposition 5.3. For each κ > 1, there exist εκ > 0, λκ > 0, γκ > 0 and cκ > 0
(only depending on κ) such that given ϕ ∈ C4,α(S3), ψ ∈ C2,α(S3) satisfying (4.2)
and τ > 0 satisfying

| log(τ/τ∗)| ≤ κr2
ε,λ,γ log 1/r2

ε,λ,γ , ‖ϕ‖C4,α(S3) ≤ κr2
ε,λ,γ , ‖ψ‖C2,α(S3) ≤ κr2

ε,λ,γ ,

the function

u(ε, λ, γ, τ, ϕ, ψ; ·) := u1 + h+Hi(ϕ,ψ; ·/Rε,λ,γ) + v(ε, λ, γ, τ, ϕ, ψ; ·),
solves (5.2) in BRε,λ,γ . In addition

‖v(ε, λ, γ, τ, ϕ, ψ; ·)‖C4,α
µ (R4) ≤ 2cκεµr2

ε,λ,γ . (5.11)

Observe that the function v(ε, λ, γ, τ, ϕ, ψ; ·) being obtained as a fixed point for
contraction mapping, it depends continuously on the parameter τ .

6. Second nonlinear Dirichlet problem

For (ε, λ, γ) ∈ (0, r2
0)3, we recall that

rε,λ,γ := max(
√
ε,
√
λ,
√
γ).

Recall that G(x, ·) denotes the unique solution of

∆2G(x, ·) = 64π2δx

in Ω, with G(x, ·) = ∆G(x, ·) = 0 on ∂Ω. In addition, the following decomposition
holds

G(x, y) = −8 log |x− y|+R(x, y)
where y 7→ R(x, y) is a smooth function.

We recall in this section a result which concerns the properties of the Greens
function in the following lemma.

Lemma 6.1. There exists C > 0 such that for all x, y ∈ Ω, x 6= y, we have

|∇iG(x, y)| ≤ C|x− y|−i, i ≥ 1.

The estimate in the above lemma is originally due to Krasovskǐi [12].
Given x1, . . . , xm ∈ Ω. We need the following data:

(i) Points Y := (y1, . . . , ym) ∈ Ωm close enough to X := (x1, . . . , xm).
(ii) Parameters η̃ := (η̃1, . . . , η̃m) ∈ Rm close to 0.
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(iii) Boundary data Φ := (ϕ1, . . . , ϕm) ∈ (C4,α(S3))m and Ψ := (ψ1, . . . , ψm) ∈
(C2,α(S3))m each of which satisfies (4.3).

With all these data, we define

ũ :=
m∑
j=1

(1 + η̃j)G(yj , ·) +
m∑
j=1

χr0(· − yj)He(ϕj , ψj ; (· − yj)/rε,λ,γ) (6.1)

where χr0 is a cutoff function identically equal to 1 in Br0/2 and identically equal
to 0 outside Br0 .

We define ρ > 0 by

ρ4 =
384ε4

(1 + ε2)4
.

We would like to find a solution of the equation

∆2u− γ∆u− λ|∇u|2 − ρ4eu = 0, (6.2)

which is defined in Ω̄rε,λ,γ (Y ) and which is a perturbation of ũ. Writing u = ũ + ṽ,
this amounts to solve

∆2ṽ = ρ4eũ+ṽ −∆2ũ + γ∆(ũ + ṽ) + λ|∇(ũ + ṽ)|2. (6.3)

We need to define an auxiliary weighed space.

Definition 6.2. Given r̄ ∈ (0, r0/2), k ∈ R, α ∈ (0, 1) and ν ∈ R, we define
the Hölder weighted space Ck,αν (Ω̄r̄(X)) as the space of functions w ∈ Ck,α(Ω̄r̄(X))
which is endowed with the norm

‖w‖Ck,αν (Ω̄r̄(X)) := ‖w‖Ck,α(Ω̄r0/2(X)) +
m∑
j=1

sup
r∈[r̄,r0/2)

(
r−ν‖w(xj + r·)‖Ck,α(B̄2−B1)

)
.

For all σ ∈ (0, r0/2) and all Y ∈ Ωm such that ‖X − Y ‖ ≤ r0/2, we denote by

Ẽσ,Y : C0,α
ν (Ω̄σ(Y ))→ C0,α

ν (Ω̄∗(Y )),

the extension operator defined by Ẽσ,Y (f) = f in Ω̄σ(Y )

Ẽσ,Y (f)(yi + x) = χ̃

(
|x|
σ

)
f

(
yi + σ

x

|x|

)
for each j = 1, . . . ,m and Ẽσ,Y (f) = 0 in each Bσ/2(yj), where t 7→ χ̃(t) is a cutoff
function identically equal to 1 for t ≥ 1 and identically equal to 0 for t ≤ 1/2. It is
easy to check that there exists a constant c = c(ν) > 0 only depending on ν such
that

‖Ẽσ,Y (w)‖C0,α
ν (Ω̄∗(X)) ≤ c‖w‖C0,α

ν (Ω̄σ(X)). (6.4)

We fix ν ∈ (−1, 0), and denote by G̃ν,Y the right inverse provided by Proposition
4.2. Clearly, it is enough to find ṽ ∈ C4,α

ν (Ω∗(Y )) solution of

ṽ = Ñ(ε, λ, γ, η̃, Y,Φ,Ψ; ṽ) (6.5)

where we have defined

Ñ(ṽ) := Ñ(ε, λ, γ, η̃, Y,Φ,Ψ; ṽ)

:= G̃ ◦ Ẽrε,λ,γ ,Y
(
ρ4eũ+ṽ −∆2ũ + γ∆(ũ + ṽ) + λ|∇(ũ + ṽ)|2

)
:= G̃ν,Y ◦ Ẽrε,λ,γ ,Y

(
S̃(v)

)
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Given κ > 0 (whose value will be fixed later on), we further assume that Φ and
Ψ satisfy

‖Φ‖(C4,α(S3))m ≤ κr2
ε,λ,γ , and ‖Ψ‖(C2,α(S3))m ≤ κr2

ε,λ,γ . (6.6)

Moreover, we assume that the parameters η̃ and the points Y are chosen to satisfy

|η̃| ≤ κr2
ε,λ,γ , and ‖Y −X‖ ≤ κrε,λ,γ . (6.7)

Then, the following result holds.

Lemma 6.3. For each κ > 1, there exist εκ > 0, λκ > 0, γκ > 0, cκ > 0 and
c̄κ > 0 such that, for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ), we have

‖Ñ(ε, λ, γ, η̃, Y,Φ,Ψ; 0)‖C4,α
ν (Ω̄∗(Y )) ≤ cκr

2
ε,λ,γ . (6.8)

Moreover,

‖Ñ(ε, λ, γ, η̃, Y,Φ,Ψ; ṽ2)− Ñ(ε, λ, γ, η̃, Y,Φ,Ψ; ṽ1)‖C4,α
ν (Ω̄∗(Y ))

≤ c̄κr2
ε,λ,γ‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗(Y ))

(6.9)

provided ṽ = v1, v2 ∈ C4,α
ν (Ω̄∗(Y )), Φ̃ = Φ1,Φ2 ∈ (C4,α(S3))m, Ψ̃ = Ψ1,Ψ2 ∈

(C2,α(S3))m satisfy

‖ṽ‖C4,α
ν (Ω̄∗(Y )) ≤ 2cκr2

ε,λ,γ , ‖Φ̃‖(C4,α(S3))m ≤ κr2
ε,λ,γ ,

‖Ψ̃‖(C2,α(S3))m ≤ κr2
ε,λ,γ , |η̃| ≤ κr2

ε,λ,γ , ‖Y −X‖ ≤ κrε,λ,γ .

Proof. The first estimate follows from the asymptotic behavior of He together with
the assumption on the norm of boundary data ϕ̃i given by (6.6). Indeed, let cκ be
a constant depending only on κ (provided ε, λ and γ are chosen small enough) it
follows from the estimate of He, given by lemma 4.6, that

|He
ϕ̃j ,ψ̃j

((x− yj)/rε,λ,γ)| ≤ cκr3
ε,λ,γr

−1. (6.10)

Recall that Ñ(ṽ) = G̃ν ◦ ξ̃rε,λ,γ ◦ S̃(ṽ), we will estimate Ñ(0) in different subregions
of Ω̄∗.
• In Br0/2(yj) for 1 ≤ j ≤ m, we have χr0(x− yj) = 1 and ∆2ũ = 0 so that

|S̃(0)| ≤ cκε4
m∏
j=1

[
e

(1+η̃j)Gyj (x)+He
ϕ̃j ,ψ̃j

((x−yj)/rε,λ,γ) + γ|∆ũ|+ λ|∇ũ|2

≤ cκε4
m∏
j=1

|x− yj |−8(1+η̃j) + γ|∆(ũ)|+ λ|∇(ũ)|2

≤ cκε4|x− yj |−8(1+η̃j)
m∏

`=1, 6̀=j

|x− y`|−8(1+η̃j)

+ cκγ(1 + η̃j)
m∑
j=1

∆R(x, yj) + cκγ(1 + η̃j)|x− yj |−2
m∑

`=1, 6̀=j

|x− y`|−2

+ cκγr
3
ε,λ,γ |x− yj |−3

m∑
`=1, 6̀=j

|x− y`|−3

+ cκλ(1 + η̃j)
m∑
j=1

|∇R(x, yj)|2 + cκλ(1 + η̃j)|x− yj |−2
m∑

`=1, 6̀=j

|x− y`|−2
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+ cκλr
3
ε,λ,γ |x− yj |−4

m∑
`=1, 6̀=j

|x− y`|−4.

Hence, for ν ∈ (−1, 0) and η̃j small enough, we get

‖Ñ(0)‖C4,α
ν (

Sm
j=1 B(yj ,r0/2)) ≤ sup

rε,λ,γ≤r≤r0/2
r4−ν |Ñ(0)|

≤ cκε4r−4
ε,λ,γ + 2cκγ + cκγr

3
ε,λ,γ + cκλ+ cκγr

3
ε,λ,γ .

• In Ωr0,x̃ (recall that Ωr0,x̃ = Ω \ ∪jBr0(x̃j)), we have χr0(x − yj) = 0 and
∆2ũ = 0, then

|S̃(0)| ≤ cκε4|x− yj |−8(1+η̃j)
m∏

`=1, 6̀=j

|x− y`|−8(1+η̃j)

+ cκγ(1 + η̃j)
m∑
j=1

∆R(x, yj) + cκγ(1 + η̃j)|x− yj |−2
m∑

`=1, 6̀=j

|x− y`|−2

+ cκλ(1 + η̃j)
m∑
j=1

|∇R(x, yj)|2 + cκλ(1 + η̃j)|x− yj |−2
m∑

`=1, 6̀=j

|x− y`|−2.

Thus
‖Ñ(0)‖C4,α

ν (Ωr0,x̃) ≤ cκ sup
r≥r0

r4−ν |S̃(0)| ≤ cκε4 + cκγ + cκλ.

• In Br0(yj)−Br0/2(yj), for j = 1, . . . ,m, we have

|S̃(0)| ≤ cκε4
∣∣∣ m∏
j=1

e(1+η̃j)Gyj e
χr0 (x−yj)He

ϕ̃j ,ψ̃j
((x−yj)/rε,λ,γ) + ∆2ũ + ∆ũ + |∇ũ|2

∣∣∣
≤ cκε4|x− yj |−8(1+η̃j)

m∏
`=1, 6̀=1

|x− y`|−8(1+η̃`)

+ cκε
4
m∑
j=1

|[∆2, χr0(x− yj)]||Hext
ϕ̃j ,ψ̃j

((x− yj)/rε,λ,γ)|

+ cκγ

m∑
j=1

|[∆, χr0(x− yj)]||Hext
ϕ̃j ,ψ̃j

((x− yj)/rε,λ,γ)|

+ cκγ(1 + η̃j)
m∑
j=1

|∆R(x, yj)|

+ cκλ

m∑
j=1

∣∣∣[∇, χr0(x− yj)]
∣∣∣2|Hext

ϕ̃j ,ψ̃j
((x− yj)/rε,λ,γ)|

+ cκλ(1 + η̃j)
m∑
j=1

|∇R(x, yj)|2

+ cκγ(1 + η̃j)|x− y`|−2
m∑

`=1, 6̀=j

|x− yj |−2

+ cκλ(1 + η̃j)|x− y`|−2
m∑

`=1, 6̀=j

|x− yj |−2.
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Here

[∇, χr0 ]w

= ∇χr0 · w + χr0 · ∇w[∆2, χr0 ]w

= 2∆χr0∆w + w∆2χr0 + 4∇χr0 · ∇(∆w) + 4∇w · ∇(∆χr0) + 4∇2χr0 · ∇2w.

So,
‖Ñ(0)‖C4,α

ν (B(yj ,r0)−B(yj ,r0/2)) ≤ cκ sup
r0/2≤r≤r0

r4−ν |Ñ(0)| ≤ cκr2
ε,λ,γ .

Finally
‖Ñ(0)‖C4,α

ν (Ω−
Sm
j=1 B(yj ,rε,λ,γ)) ≤ cκ(ε4 + r3

ε,λ,γ + γ + λ).

To derive the second estimate, we use the fact that for ṽ1 and ṽ2 ∈ B̃r2
ε,λ,γ

of
C4,α
ν (Ω̄∗), we obtain

‖Ñ(ṽ1)− Ñ(ṽ2)‖C4,α
ν (Ωrε,λ,γ ,yj

) ≤
∥∥∥G̃ν,Y ◦ ξ̃rε,λ,γ(S̃(ṽ1)− S̃(ṽ2)

)∥∥∥
C4,α
ν (Ωrε,λ,γ ,yj

)
.

Using(6.4) and Proposition 4.2, we conclude that

‖Ñ(ṽ1)− Ñ(ṽ2)‖C4,α
ν (Ωrε,λ,γ ,yj

) ≤ cκr
2
ε,λ,γ‖ṽ1 − ṽ2‖C4,α

ν (Ω̄∗).

�

Reducing εκ, λκ and γκ if necessary, we can assume that

c̄κr
2
ε,λ,γ ≤

1
2

for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ). Then, (6.8) and (6.9) are sufficient
to show that ṽ 7→ Ñ(ε, λ, γ, η̃, Y,Φ,Ψṽ) is a contraction from

{ṽ ∈ C4,α
ν (Ω̄∗(Y )) : ‖ṽ‖C4,α

ν (Ω̄∗(Y )) ≤ 2cκr2
ε,λ,γ}

into itself and hence has a unique fixed point ṽ(ε, λ, γ, η̃, Y,Φ,Ψ; ·) in this set. This
fixed point is a solution of (6.3).

We summarize these resutls as follows.

Proposition 6.4. For each κ > 0, there exists εκ > 0, λκ > 0, γκ > 0, and cκ > 0
(only depending on κ) such that for all ε ∈ (0, εκ), λ ∈ (0, λκ), γ ∈ (0, γκ) and for
all set of parameters η̃, points Y satisfying

|η̃| ≤ κr2
ε,λ,γ , and ‖Y −X‖ ≤ κrε,λ,γ

and boundary functions Φ and Ψ satisfying (4.3) and

‖Φ‖(C4,α(S3))m ≤ κr2
ε,λ,γ , ‖Ψ‖(C2,α(S3))m ≤ κr2

ε,λ,γ .

The function

ũ(ε, λ, γ, η̃, Y,Φ,Ψ; ·) :=
m∑
j=1

(1 + η̃j)Gyj +
m∑
j=1

χr0(· − yj)He(ϕj , ψj ; (· − yj)/rε,λ,γ)

+ ṽ(ε, λ, γ, η̃, Y,Φ,Ψ; ·),

is a solution to (6.2) in Ω̄rε,λ,γ (Y ). In addition

‖ṽ(ε, λ, γ, η̃, Y,Φ,Ψ; ·)‖C4,α
ν (Ω̄∗) ≤ 2cκr2

ε,λ,γ . (6.11)



EJDE-2015/187 SINGULAR LIMIT SOLUTIONS 21

Observe that the function ṽ(ε, λ, γ, η̃, Y,Φ,Ψ) being obtained as a fixed point for
contraction mapping, it depends continuously on the parameters η̃ and the points
Y .

7. Nonlinear Cauchy-data matching

Keeping the notations of the previous sections, we gather the results of the
Proposition 5.3 and Proposition 6.4. From now let κ > 1 is fixed large enough (we
will shortly see how) and assume that ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ).

Assume that X = (x1, . . . , xm) ∈ Ωm is a nondegenerate critical point of the
function W defined in the introduction. For all j = 1, . . . ,m, we define τ j∗ > 0 by

− 4 log τ j∗ = R(xj , xj) +
∑
` 6=j

G(x`, xj). (7.1)

We assume that we are given:
(i) points Y := (y1, . . . , ym) ∈ Ωm close to X := (x1, . . . , xm) satisfying (6.7).
(ii) parameters η̃ := (η̃1, . . . , η̃m) ∈ Rm satisfying (6.7).

(iii) parameters T := (τ1, . . . , τm) ∈ (0,∞)m satisfying (5.6) (where, for each
j = 1, . . . ,m, τ∗ is replaced by τ j∗ ).

We set
Rjε,λ,γ := τ j/rε,λ,γ

First, we consider the boundary data

Φ := (ϕ1, . . . , ϕm) ∈ (C4,α(S3))m and Ψ := (ψ1, . . . , ψm) ∈ (C2,α(S3))m

satisfying (4.2) and (5.6).
Thanks to the result in Proposition 5.3, we can find uint a solution of

∆2u− λ∆u− λ|∇u|2 − ρ4eu = 0

in each Brε,λ,γ (yj), which can be decomposed as

uint(ε, λ, γ, T, Y,Φ,Ψ;x)

:= uε,τj (x− yj) + h(Rjε,λ,γ(x− yj)/rε,λ,γ) +Hi(ϕj , ψj ; (x− yj)/rε,λ,γ)

+ v(ε, λ, γ, τ j , ϕj , ψj ;Rjε,λ,γ(x− yj)/rε,λ,γ)

in Brε,λ,γ (yj). Similarly, given the boundary data

Φ̃ := (ϕ̃1, . . . , ϕ̃m) ∈ (C4,α(S3))m and Ψ̃ := (ψ̃1, . . . , ψ̃m) ∈ (C2,α(S3))m

satisfying (4.3) and (6.6), we use the result of Proposition 6.4, to find uext a solution
of

∆2 − λ∆u− λ|∇u|2 − ρ4eu = 0
in Ω̄rε,λ,γ (Y ), which can be decomposed as

uext(ε, λ, γ, η̃, Φ̃, Ψ̃;x)

=
m∑
j=1

(1 + η̃j)G(yj , x) +
m∑
j=1

χr0(x− yj)He(ϕ̃j , ψ̃j ; (x− yj)/rε,λ,γ)

+ ṽ(ε, λ, γ, η̃, Y, Φ̃, Ψ̃;x).

It remains to determine the parameters and the boundary functions in such a way
that the function which is equal to uint in ∪jBrε,λ,γ (yj) and which is equal to uext
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in Ω̄rε,λ,γ (Y ) is a smooth function. This amounts to find the boundary data and
the parameters so that, for each j = 1, . . . ,m

uint = uext, ∂ruint = ∂ruext, ∆uint = ∆uext, ∂r∆uint = ∂r∆uext, (7.2)

on ∂Brε,λ,γ (yj). Assuming we have already done so, this provides for each ε, λ and
γ are small enough a function wε,λ,γ ∈ C4,α(Ω̄) (which is obtained by patching
together the function uint and the function uext) solution of ∆2u−λ∆u−λ|∇u|2−
ρ4eu = 0 and elliptic regularity theory implies that this solution is in fact smooth.
This will complete the proof of our result since, as ε, λ and γ tend to 0, the sequence
of solutions we have obtained satisfies the required properties, namely, away from
the points xj the sequence wε,λ,γ converges to

∑
j G(xj , ·).

Before, we proceed, some remarks are due. First it will be convenient to observe
that the functions uε,τj can be expanded as

uε,τj (x) = −8 log |x| − 4 log τ j +O(r2
ε,λ,γ) (7.3)

near ∂Brε,λ,γ . Also, the function

m∑
j=1

(1 + η̃j)G(yj , x)

which appears in the expression of uext can be expanded as
m∑
`=1

(1+ η̃`)G(y`, yj +x) = −8(1+ η̃j) log |x|+Ej(Y ; yj)+∇Ej(Y ; yj) ·x+O(r2
ε,λ,γ)

(7.4)
near ∂Brε,λ,γ (yj). Here, we have defined

Ej(Y ; ·) := R(yj , ·) +
∑
` 6=j

G(y`, ·).

In (7.2), all functions are defined on ∂Brε,λ,γ (yj), nevertheless, it will be conve-
nient to solve, instead of (7.2) the following set of equations

(uint − uext)(yj + rε,λ,γ ·) = 0, (∂ruint − ∂ruext)(yj + rε,λ,γ ·) = 0,

(∆uint −∆uext)(yj + rε,λ,γ ·) = 0, (∂r∆uint − ∂r∆uext)(yj + rε,λ,γ ·) = 0,
(7.5)

on S3. Here all functions are considered as functions of z ∈ S3 and we have simply
used the change of variables x = yj + rε,λ,γz to parameterize ∂Brε,λ,γ (yj).

Since the boundary data satisfy (4.2) and (4.3), we decompose

Φ = Φ0 + Φ1 + Φ⊥, Ψ = 8Φ0 + 12Φ1 + Ψ⊥,

Φ̃ = Φ̃0 + Φ̃1 + Φ̃⊥, Ψ̃ = Ψ̃1 + Ψ̃⊥

where the components of Φ0, Φ̃0 are constant functions on S3, the components of
Φ1, Φ̃1, Ψ̃1 belong to ker(∆S3 + 3) = span{e1, . . . , e4} and where the components
of Φ⊥,Ψ⊥, Φ̃⊥, Ψ̃⊥ are L2(S3) orthogonal to the constant function and the func-
tions e1, . . . , e4. Observe that the components of Ψ over the constant functions or
functions in ker(∆S3 + 3) are determined by the corresponding components of Φ.
Moreover, Ψ̃ has no component over constant functions.
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We first consider the L2(S3)-orthogonal projection of (7.5) onto the space of
functions which are orthogonal to the constant function and the functions e1, . . . , e4.
This yields the system

ϕj,⊥ − ϕ̃j,⊥ = M
(j)
0 (ε, λ, γ, η̃, T, Y,Φ, Φ̃,Ψ, Ψ̃)

∂rH
i(ϕj,⊥, ψj,⊥; ·)− ∂rHe(ϕ̃j,⊥, ψ̃j,⊥; ·) = M

(j)
1 (ε, λ, γ, η̃, T, Y,Φ, Φ̃,Ψ, Ψ̃)

ψj,⊥ − ψ̃j,⊥ = M
(j)
2 (ε, λ, γ, η̃, T, Y,Φ, Φ̃,Ψ, Ψ̃)

∂r∆Hi(ϕj,⊥, ψj,⊥; ·)− ∂r∆He(ϕ̃j,⊥, ψ̃j,⊥; ·))

= M
(j)
3 (ε, λ, γ, η̃, T, Y,Φ, Φ̃,Ψ, Ψ̃)

(7.6)

where the functions M (j)
k are nonlinear functions of the parameters ε, η̃, Y , T and

the boundary data Φ, Φ̃, Ψ and Ψ̃. Moreover, using (7.3) and (7.4) and also (5.11)
(keeping in mind that µ ∈ (1, 2)) and (6.11) (keeping in mind that ν ∈ (−1, 0)), we
conclude that, for each j = 1, . . . ,m and k = 0, 1, 2, 3

‖M (j)
k ‖C4−k,α(S3) ≤ cr2

ε,λ,γ (7.7)

for some constant c > 0 independent of κ (provided ε ∈ (0, εκ), λ ∈ (0, λκ) and
γ ∈ (0, γκ)).

Thanks to the result of Lemma 4.7 and (7.7), this last system can be re-written
as

(Φ⊥, Φ̃⊥,Ψ⊥, Ψ̃⊥) = M(ε, λ, γ, η̃, T, Y,Φ, Φ̃,Ψ, Ψ̃)
where

‖M‖(C4,α(S3))2m×(C2,α(S3))2m ≤ cr2
ε,λ,γ

for some constant c > 0 independent of κ (provided (εκ, λκ, γκ) ∈ (0, εκ)3). More-
over, (5.8) and (6.9) imply (reducing εκ, λκ and γκ if necessary) that, the mapping
M is a contraction from the ball of radius κr2

ε,λ,γ in (C4,α(S3))2m × (C2,α(S3))2m

into itself and as such has a unique fixed point in this set. Observe that this fixed
point depends continuously on ε, λ, γ, η̃, T , Y and also on Φ0, Φ̃0, Φ1, Φ̃1 and Ψ̃1.

We insert this fixed point in (7.5) and now project the corresponding system
over the set of functions spanned by e1, . . . , e4 and finally over the set of constant
functions.

The first projection yields the system of equations

Φ1 = M̄1(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1)

Φ̃1 = M̄2(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1)

Ψ1 = M̄3(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1)

rε,λ,γ∇Ej(Y ; yj) = M̄
(j)
4 (ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1)

(7.8)

where the functions M̄k (and also M̄ (j)
4 ) are nonlinear functions depending contin-

uously on the parameters ε, λ, γ, η̃, T , Y and the components of the boundary data
Φ0, Φ̃0, Φ1, Φ̃1 and Ψ̃1. Moreover,

|M̄k| ≤ cr2
ε,λ,γ

for some constant c > 0 independent of κ (provided provided ε ∈ (0, εκ), λ ∈ (0, λκ)
and γ ∈ (0, γκ)).

Let us comment briefly on how these equations are obtained. These equations
simply come from (7.2) when expansions (7.3) and (7.4) are taken into account,
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together with the expression of Hi(ϕj , ψj ; ·) and He(ϕ̃j , ψ̃j ; ·) given in Lemma 4.4
and Lemma 4.6, and also the estimates (5.11) and (6.11). Observe that the projec-
tion of the term x→ ∇Ej(Y ; yj) · x which arises in (7.4), as well as the projection
of its partial derivative with respect to r, over the set of constant function is equal
to 0. Moreover, this term projects identically over the set of functions spanned by
e1, . . . , e4 as well as its derivative with respect to r. Finally, its Laplacian vanishes
identically.

Recall that we have define in the introduction the function

W (Y ) :=
m∑
j=1

R(yj , yj) +
∑
j1 6=j2

G(yj1 , yj2)

Using the symmetries of the functions G and R, namely the fact that

G(x, y) = G(y, x) and R(x, y) = R(y, x)

we obtain
∇W |Y = 2(∇E1(Y ; y1), . . . ,∇Em(Y, ym)).

Now, we have assumed that the point X = (x1, . . . , xm) is a nondegenerate critical
point of the functional W and hence ∇W |X = 0, and

(R4)m 3 Z 7→ D(∇W )|X(Z) ∈ (R4)m

is invertible. Therefore, the last equation can be rewritten as

rε,λ,γ(Y −X) = M̄5(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1)

The projection of (7.5) over the constant function, leads to the system

(log 1/r2
ε,λ,γ)−1 log(τ j/τ j∗ ) = M̄6(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1,Ψ1, Ψ̃1)

Φ̃0 = M̄7(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1,Ψ1, Ψ̃1)

Φ0 = M̄8(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1,Ψ1, Ψ̃1)

η̃ = M̄9(ε, λ, γ, η̃, T, Y,Φ0, Φ̃0,Φ1, Φ̃1,Ψ1, Ψ̃1)

(7.9)

where the function M̄k satisfy the usual properties. We are now in a position to
define τ− and τ+ since, according to the above, as ε, λ and γ tend to 0 we expect
that yi will converge to xi and that τi will converge to τ∗i satisfying (7.1) and hence
it is enough to choose τ− and τ+ in such a way that

4 log(τ−) < − sup
i
Ei(Y, xi) ≤ − inf

i
Ei(Y, xi) < 4 log(τ+).

So, if we define the parameters U := (u1, . . . , um) where

uj =
1

log 1/r2
ε,λ,γ

log(τ j/τ j∗ ), Z = rε,λ,γ(Y −X)

so that the system we have to solve reads

(ε, λ, γ, U, η̃, Z,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1) = M̄(ε, λ, γ, U, η̃, Z,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1). (7.10)

where as usual, the nonlinear function M̄ depends continuously on the parameters
T, η̃, Z and the functions Φ0, Φ̃0,Φ1, Ψ̃1 and is bounded (in the appropriate norm) by
a constant (independent of ε, λ, γ and κ) time r2

ε,λ,γ , provided ε ∈ (0, εκ), λ ∈ (0, λκ)
and γ ∈ (0, γκ). Observe that

U, η̃ ∈ Rm, Z ∈ (R4)m, Φ0, Φ̃0 ∈ Rm
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Φ1, Φ̃1, Ψ̃1 ∈ (ker(∆S3 + 3))m.

In addition, reducing εκ, λκ and γκ if necessary, this nonlinear mapping sends the
ball of radius κr2

ε,λ,γ (for the natural product norm) into itself, provided κ is fixed
large enough, ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ). Applying Schauder’s fixed
point Theorem in the ball of radius κr2

ε,λ,γ in the product space where the entries
live yields the existence of a solution of (7.10) and this completes the proof of
Theorem 1.2.
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Département de Mathématiques, Faculté des Sciences de Tunis Campus Universitaire,
Université Tunis Elmanar, 2092 Tunis, Tunisia

E-mail address: Taieb.Ouni@fst.rnu.tn


	1. Introduction and statement of results
	2. Rotationally symmetric solutions
	3. A linear fourth-order elliptic operator on R4
	4. Known results Bdpo
	4.1. Analysis of the bi-Laplace operator in weighted spaces
	4.2. Bi-harmonic extensions

	5. First nonlinear Dirichlet problem
	6. Second nonlinear Dirichlet problem
	7. Nonlinear Cauchy-data matching
	Acknowledgments

	References

