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SINGULAR LIMIT SOLUTIONS FOR 4-DIMENSIONAL
STATIONARY KURAMOTO-SIVASHINSKY EQUATIONS WITH
EXPONENTIAL NONLINEARITY

SAMI BARAKET, MOUFIDA KHTAIFI, TAIEB OUNI

ABSTRACT. Let Q be a bounded domain in R* with smooth boundary, and let
T1,%2,...,Tm be points in Q. We are concerned with the singular stationary
non-homogenous Kuramoto-Sivashinsky equation
A2y — yAu — N\ Vu|? = ptf(u),

where f is a function that depends only the spatial variable. We use a nonlinear
domain decomposition method to give sufficient conditions for the existence
of a positive weak solution satisfying the Dirichlet-like boundary conditions
u = Au = 0, and being singular at each z; as the parameters A, and p tend
to 0. An analogous problem in two-dimensions was considered in [2] under
condition (A1) below. However we do not assume this condition.

1. INTRODUCTION AND STATEMENT OF RESULTS

First, we introduce a model arising in the growth of amorphous surfaces which
is a partial differential equation, called the non-homogenous Kuramoto-Sivashinsky
(KS) equation,

Opu + APu — yAu — N Vul? = f(u).

on R? with d > 1, where A and v are real parameters and f(u) is a nonlinear func-
tion. The Kuramoto-Sivashinsky equation was independently created by Kuramoto
and Tsuzuki [14], and by Sivashinsky [25] in the study of a reaction-diffusion sys-
tem and flame front propagation, respectively. This equation is also found in the
study of 2D Kolmogorov fluid flows [26]. This form of the Kuramoto-Sivashinsky
equation is sometimes called the integrated version of the Kuramoto-Sivashinsky
equations (KSE), which arises in several models for surface growth. Most math-
ematical results concern the case n < 3 and essentially for n = 1. Subject to
appropriate initial and boundary conditions has been introduced in [13] and some
reference therein in studying phase turbulence and the flame front propagation in
combustion theory. This type of version equation is suggested in [2I], 22] (and some
reference therein) as a phenomenological model for the growth of an amorphous
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surface (Zy¢5Al7,5, Cugr5). Winkler and Stein [28] used Rothe’s method to ver-
ify the existence of a global weak solution, this result has been recently extended
by Winkler [30] to the two-dimensional case of (KS) equation, using energy type
estimates for [ e“dx.

The non homogeneous Kuramoto-Sivashinsky equation with exponential nonlin-
earity is a generalization of the fourth-order one-dimensional semilinear parabolic
equation arises also in several other models for surface growth see for example [9]
for the equation

Ut + Ugzrz — 5[(um)3]x =e"
with a parameter 8 > 0, which is a model equation from explosion-convection
theory of which the fourth-order extension of the Frank-Kamenetskii equation,

Ut + Uggrr = e
(a solid fuel model) is a limiting case.
Recently Chen and McKenna [6] suggested to investigate the equation
Ugzrr + ClUzy = €, (1.1)

where they give some existence and nonexistence results. In a note on an expo-
nential semilinear equation of the fourth order, Mugnai [19] considered the related
problem to . More precisely he considered, without non linear gradient term,
the problem
A?u 4+ cAu=b(e* —1) in Q
u=Au=0 on 0f)

where Q is a bounded and smooth domain of R™, ¢ € R and b € R. The author
prove some existence and nonexistence results for via variational techniques.
Such equations may occur while studying traveling waves in suspension bridges.
For more general problem see [24], for the Navier boundary-value problem

A?u+ cAu = f(z,u) in Q
u=Au=0 on 0

(1.2)

(1.3)

in R", n > 4 and f is non linear growth function. In conformal dimensional i.e
n =4 and f has the subcritical (exponential) growth on Q, i.e.,

t—+oo exp(at)
uniformly on z €  for all @ > 0 and in some cases and hypothesis and using
Adams inequality, (see [I5]), for the fourth-order derivative, namely,

sup / 327 gy < C|9|,
{ueH>(Q)NH (Q),[ul <1} /Q

the authors show that the problem has at least two nontrivial solutions (for

more details see Theorem 1.3 in [15]) or infinitely many nontrivial solutions (for

more details see [I5, Theorem 1.4]).

A fundamental goal in the study of non-linear initial boundary value problems
involving partial differential equations is to determine whether solutions to a given
equation develop a singularity. Resolving the issue of blow-up is important, in part
because it can have bearing on the physical relevance and validity of the underlying
model. However, determining the answer to this question is notoriously difficult for
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a wide range of equations such fourth order equation like stationary non homoge-
nous Kuramoto-Sivashinsky equation with strong nonlinearity like exponential e®.
One route is to try to simplify or modify the boundary conditions in an attempt to
gain evidence for or against the occurrence of blow-up. A second route is to modify
the equations in some way, and to study the modified equations with the hope of
gaining insight into the blow-up of solutions to the original equations: see problems
— bellow and the effect of the presence of the second-order backward diffu-
sion term —yAwu and the nonlinear term —\|Vu|? in . The occurrence and type
of blow-up depends on the parameters A,y and the domain. Studding this type of
equations, we will answer for different basic questions. We concentrate next on the
analysis of the main questions raised in the study of blow-up for such equations.
This list can be suitably adapted to other singularity formation problems. We will
examine several case studies related to such approaches where basic list includes
the questions of, where and how. We propose here an expanded list of three items:
(i) Does blow-up occur? (ii) Where? (iii) How? For the first question, the blow-up
problem is properly formulated only when a suitable class of solutions is chosen for
all solutions in the given class or only for some solutions (which should be identi-
fied) or other kinds of generalized solutions can be more natural to a given problem
and which equations and problems do exhibit blow-up. The second question, is
concerned with where finite number of points, or regional blow-up, are localized:
The set of blow-up is defined by

S :={z € Q: 3z, — x such that u,(z,) — +oo}.

For the third question, we are concerned just by calculate the rate at which solution
diverges as x approaches to the set S of blow-up point and to calculate the blow-up
profiles as limits of solution at the non-blowing points. A major aim of the present
work is to provide examples which demonstrate that one must be extremely cautious
in generalizing claims about the blow-up of problems studied in idealized settings
to claims about the blow-up of the original problem and to the nonlinearity of a
problem which can cause the formation of a singularity, where no such singularity is
present in the unaltered equation. However, many such studies have tried to search
for singularities of the solutions of the equations in the setting of different types
of boundary conditions like periodic boundary conditions related to the solution
of Kuramoto-Sivashinsky equation. The question of blow up of of solutions of
stationary Kuramoto-Sivashinsky equation is still an open question in dimensions
fourth and in higher cases.

For the stationary Kuramoto-Sivashinsky equation, the reader is referred to
[7 and some refrence therein, where the author give some explicit estimates for
the L°°-norm of the periodic solutions of the time-independent non homogeneous
Kuramoto-Sivashinsky equation

Ay — yAu — \Vul? = f(u)

in R" and its dependence on f(u). In particular, they give an estimate of the
Michelson’s upper bound of all periodic solutions on space z in R of the time-
independent homogeneous Kuramoto-Sivashinsky equation which is the case with
non linearity exponential i.e: a solutions of such equation under steady with f(u) =
e" is invariant under the group of translations a — u(- + a).

One of the purposes of this article is to present a rather efficient method to solve
such singularly perturbed problems of the time-independent Kuramoto-Sivashinsky
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equation called also the integrated version of the homogeneous steady state KSE.
This method has already been used successfully in geometric context (constant
mean curvature surfaces, constant scalar curvature metrics, extremal Kéhler met-
rics, manifolds with special holonomy, ...) The techniques developed and used
here are inspired by the work of [I]. Motivated by the above discussion, we
felt that, given the interest in singular perturbation problems, it was worth il-
lustrating this on the non Homogenous stationary Kuramoto-Sivashinsky equation:
A%u—~yAu—\Vul? = p? f(u) in Q C R* under the physical Dirichlet-like boundary
conditions © = Au = 0 on 02, given by the following problem.

Let Q C R* be a regular bounded open domain in R*. We are interested in the
positive solution of

APy —yAu — \Vul? = p*e* in Q
u=Au=0 on 0f)
which is singular at each point z; as the parameters A, and p tend to 0. This
problem in some way a generalization of a fourth order Liouville problem
A%y = ple” in Q
u=Au=0 on 0f)

(1.4)

(1.5)

in the case (v, A\) = (0,0), when the parameters p tends to 0. (See for example [I]).
Also problem (1.4) can be considered as a higher order counterpart of the problem
—Au — AVul? = p*e* in Q C R?

1.
u=0 on 9dN (1.6)

when the parameter p tends to 0 (p ~ € as € tends to 0). This is a particular case
of non homogenous viscous Hamilton-Jacobian equation [27],
Oru — Au— A\|Vul? = f(u) inQ
u=0 on
where 2 is a smooth bounded domain in R?, p > 1.
Problem (1.6) was studied by Baraket et al. in [2] for the existence of v. ) a

sequence of solutions which converges to some singular function as the parameters
€ and A tend to 0, under the assumption
(A1) If0 < & < A, then A'+9/2279 — 0 as A — 0, for any 6 € (0,1).
In particular, if we take A = O(¢?/?), then condition (A1) is satisfied. With as-
sumption (A1), problem (1.6)), can be treated as a perturbation of the Liouville
equation
—Au = p*e" in Q CR%
This last equation was studied by Baraket and frank in [3] as p tends to 0. As
observed by Ren and Wei [23], problem (|1.6)), can be reduced to a problem without
gradient term. Indeed, if u is a solution of (|1.6)), then the function
w = ()\p2 eu))\’

satisfies ™

—Aw=w* in

w=(\p*) on 09,
since the exponent p = (A + 1)/ tends to infinity as A tends to 0, see also [§].

(1.7)
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Note that Ghergu and Radulescu [I0] studied a more general problem on a
domain ¥ C R", n > 2:

—Au—AVul|* = g(u) + pf(z,u) in3

u=0 on 0%, (1.8)

with 0 < @ < 2, A\, > 0 and some assumptions on f and g. Problems of the
type arise in the study of non-Newtonian fluids, boundary layer phenomena
for viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat
conduction in electrically conducting materials. See also [I1]. It includes also some
simple prototype models from boundary-layer theory of viscous fluids [31].

The question we would like to study is concerned with the existence of other
branches of solutions of as p, A and v tend to 0. To describe our result, let us
denote by G(z,-) the solution of

A%G(z,-) = 64726, in Q

G(z,") = AG(z,-) =0 on 9. (1.9)
It is easy to check that the function
R(z,y) := G(z,y) + 8log |z — y| (1.10)
is a smooth function.
We define
Wi(z',...,z™m) = iR(xﬂ‘,mﬂ'HZG(mi,xf). (1.11)
i=1 L

In dimension 4, Wei [29], studied the behavior of solutions to the nonlinear
eigenvalue problem for the biharmonic operator A2 in R?,

A?u =\ f(u) inQ

1.12
u=Au=0 on 9N ( )
and u* the solution of
A%u* = 6472 6, in Q
; ¢ (1.13)

u* =Au* =0 on 9.
The author proved the following result.

Theorem 1.1 ([29]). Let Q be a smooth bounded domain in R* and f a smooth
nonnegative increasing function such that

e “f(u) and e_“/ f(s)ds tend to 1, as u — +oo. (1.14)
0

For uy solution of (L.12)), denote by Xx = X [, f(ux)dz. Then many cases occur:

(i) X — 0 therefore, ||ur||fooy — 0 as A — 0.
(ii) ¥y — +oo then uy — 400 as A — 0.
(iii) ¥y — 6472m, for some positive integer m. Then the limiting function
u* = limy_guy has m blow-up points, {x',... ,x™}, where uy(z*) — +o0
as X — 0. Moreover, (x',...,2™) is a critical point of W.

Our main result reads as follows.
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Theorem 1.2. Let o € (0,1) and Q be an open smooth bounded domain of R*.
Assume that (z1,...,2™) € Q™ is a nondegenerate critical point of W, then there
exist po >0, Ao > 0, 79 > 0 and {up .~} with0 < p < po, 0 <A < Ao, 0 <y < 0,
a one parameter family of solutions of , such that

m

lim Up A~y = g G(x;,-

p—0, A\—0,v—0 o 1 ( 7 )
]:

in Coo(Q —{z!, ..., a™}).

loc

Our result reduces the study of nontrivial branches of solutions of ([1.4]) to the
search for critical points of the function W defined in (1.11). Observe that the
assumption on the nondegeneracy of the critical point is a rather mild assumption
since it is certainly fulfilled for generic choice of the open domain €.

Semilinear equations involving fourth-order elliptic operator and exponential
nonlinearity appear naturally in conformal geometry and in particular in the pre-
scription of the so called Q-curvature on 4-dimensional Riemannian manifolds [4],
5] '

2 c2
Qq = E(—AQSQ—&—Sg — 3| Ricy |?)
where Ric, denotes the Ricci tensor and Sy is the scalar curvature of the metric g.
Recall that the Q-curvature changes under a conformal change of metric

guw =€""g,
according to
Pyw +2Q, = 2Q,, ¢ (1.15)
where
P, = A§+5(§Sg1—2mcg)d (1.16)

is the Panietz operator, which is an elliptic 4-th order partial differential operator
[5] and which transforms according to

M Py = Py, (1.17)
under a conformal change of metric g, := e?*g¢. In the special case where the
manifold is the Euclidean space, the Panietz operator is simply given by

2
Pyer = A
in which case (1.15]) reduces to
AQw — Qe4w
the solutions of which give rise to conformal metric g, = €?“¢eues Whose Q-

curvature is given by Q. There is by now an extensive literature about this problem
and we refer to [5] and [16] for references and recent developments.

We briefly describe the plan of the paper : In Section 2 we discuss rotationally
symmetric solutions of . In Section 3 we study the linearized operator about
the radially symmetric solution defined in the previous section. In Section 4, we
recall some Known results about the analysis of the bi-Laplace operator in weighted
spaces. Both section strongly use the b-operator which has been developed by
Melrose [18] in the context of weighted Sobolev spaces and by Mazzeo [I7] in the
context of weighted Holder spaces (see also [20]).
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A first nonlinear problem is studied in Section 5 where the existence of an infinite
dimensional family of solutions of which are defined on a large ball and which
are close to the rotationally symmetric solution is proven. In Section 6, we prove the
existence of an infinite dimensional family of solutions of which are defined
on 2 with small ball removed. Finally, in Section 7, we show how elements of
these infinite dimensional families can be connected to produce solutions of
described in Theorem [I.2] In Section 7, we patch these pieces, in the two last
sections, together via a nonlinear version of the Cauchy data matching. Throughout
the paper, the symbol ¢, > 0 (which can depend only on x) denotes always a positive
constant independent of €, A and « which might change from one line to another.

2. ROTATIONALLY SYMMETRIC SOLUTIONS
We first describe the rotationally symmetric approximate solutions of
A2y — yAu — N Vul? = pte® (2.1)

in R* which will play a central role in our analysis. For this raison given £ > 0, we
define
ue () := 4log(1 +&?) — 4log(e? + |z|?).

which is clearly a solution of

A%y —pte" =0, (2.2)
when A
384e
4 _

Let us notice that (2.2)) is invariant under some dilation in the following sense:
If u is a solution of (2.2) and 7 > 0, then u(7-) 4+ 4log T is also a solution of (2.2)).
With this observation in mind, we define, for all 7 > 0

U - (x) := 4log(1 + ) + 4log T — 4log(e? + 72|z|?). (2.4)

3. A LINEAR FOURTH-ORDER ELLIPTIC OPERATOR ON R*

We define the linear fourth-order elliptic operator
384
(1+ |z[*)*
which corresponds to the linearization of about the solution u; (= u.=1) which

has been defined in the previous section.

We are interested in the classification of bounded solutions of Lw = 0 in R*.
Some solutions are easy to find. For example, we can define

¢o(x) :=10ru (x)+4—41_7702
0 = rtl - 1+7’27
where r = |z|. Clearly Loy = 0 and this reflects the fact that (2.2)) is invariant

under the group of dilations 7 — u(7-) + 4log 7. We also define, for i =1,...,4

¢i(x) = =0z, ()

L:=A% - (3.1)

o 81‘,’

L fa

which are also solutions of L¢; = 0 since these solutions correspond to the invariance
of the equation under the group of translations a — u(- + a).
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The following result classifies all bounded solutions of Lw = 0 which are defined
in R*.
Lemma 3.1 ([1]). Any bounded solution of Lw = 0 defined in R* is a linear
combination of ¢; fori=0,1,...,4.
Let B, denote the ball of radius r centered at the origin in R*.

Definition 3.2. Given k € N, a € (0,1) and pr € R, we introduce the Holder
weighted spaces Cl»*(R*) as the space of functions w € Cl¥(RY) for which the
norm

oy = Illern ) +sup (L4722 0l cgo 5,5, )
is finite.
We also define
Chi J(RY) = {f € CP(RY); f(x) = f(|al), Vo € R*}.

As a consequence of the result in Lemma [3.1] we have:
Proposition 3.3 ([1]). (i) Assume that ;1 > 1 and p € N, then

Ly : CL2(RY) — €2y (RY)

w — Lw

18 surjective.
(i1) Assume that § >0 and § € N then

Ls : Crag s(RY) = Cruf 54 (RY)
w +— Lw
18 surjective.
We set By = By — {0}.

Definition 3.4. Given &k € N, a € (0,1) and p € R, we introduce the Holder

weighted space C}y®(Bj) as the space of functions in (Cﬁ)’? (B7) for which the norm

= —H . -
Iullcgag) = P (= (s 5,5,

is finite.
Then we define the subspace of radial functions in Cfa’('i s(Bt) by
Ciais(B) = {f € C5*(RY): f(x) = f(ja]). ¥ € By}.
For g,7, A > 0, we define
Ry i=Trenn~/€
where

Te Ay *= max(\ﬁv \/Xa ﬁ) (32)

We would like to find a solution u of

A2y — yAu — \Vu|?> — plev =0 (3.3)
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in B,_, . Recall that in the polar coordinates if we assume that ¢ is a radially
symmetric function, we get the usual formulas |Vo| = (Ve, V)'/2 where (-, ) is
the usual Euclidian dot product in R™. Then

e
2 _ (9¥\2
‘VQO| _(67')’

0% n—109d¢

W—’_ r Or’
A _647<p+2(n—1)8374p (n—l)(n—3)627<,0_(n—1)(n—3)87<p
Y= ort r or3 r2 Oor? r3 or’

Using the transformation
v(x) = U(E{E) + 8loge —4log (1(1+¢%)/2),
T
then (3.3)) is equivalent to

Ap =

2
A%y — (E) (vAv 4+ A|V|?) — 24e” =0 (3.4)
T
in B R. .- Now we look for a solution of (13.4) of the form

v(z) = ui(x) + h(x),

this amounts to solving

Lh=—25% _(h 1y (5)2 (VA(ur + h) + AV (uy +B)[?)  (3.5)

(1+ [=[*)* T

in BRM,W.
Definition 3.5. Given 7 > 1, k € N, o € (0,1) and p € R, the weighted space
Ck*(Bg) is defined to be the space of functions w € C**(B;) endowed with the
norm

. = . K . 5
[wllegen ) = llleray + s (rlwllenes,-5,,.)

For o > 1, we denote &, : C0*(B,) — Cp*(R?) the extension operator defined
by
f(x) for |z| <o

Eof)le) = {X (%‘) f (Uﬁ) for |x| > o, (3:6)

where t — x(t) is a smooth nonnegative cutoff function identically equal to 1 for
t < 1 and identically equal to 0 for ¢ > 2. It is easy to check that there exists a
constant ¢ = ¢(p) > 0, independent of o > 1, such that

1o (@) lege oy < cllwlleg s, (3.7)

We fix ¢ € (0,1) and denote by Gs to be a right inverse of s provided by Proposi-
tion To find a solution of (3.5)) it is enough to find a fixed point h, in a small
ball of Ciﬁ, s(R*), solution of

h = R(h) (3.8)
where
R(h) := Gs 0 E o R(h),
384 €\ 2
R = (@ h oD+ (5)" (Gu +B) + AV (s + B)2).
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‘We have )
RO = (2) (vAur+ AV ).

For |z| = r, we have

sup  747° |R(0)] < (£>2 sup 7470 ('yAul + )\\Vu1|2).

T<Re x~ T/ r<Rex~
Using
Auy + NV > = —16 2+ + 64AL
Y 1 1 - ,}/(14_712)2 (1+T2)2
—32y r2
=—— 4+ 164N\ —7) ———
(1+12)2 +16( 7) 1+r2)2’

this implies that for each x > 0, there exist ¢, > 0 (which can depend only on k),
such that for 6 € (0, 1), we have

sup 70 |R(0)] < cove? + (4N 4 7)e2R%°

WA,
r<Re ., o
2—
< Cm782 + ¢k (4A =+ 7)66715,)\?7
< c,ge‘sr?’/\ﬂ.

Then there exist ¢, > 0 (which can depend only on k), such that
ROl oy < 272

Using Proposition and , we conclude that
”hHCfASJs(R“) < 26,@557"5,,\77. (3.9)

Now, let hy, ho be in B(0,2CH€§T§7>\77> of Cf;fi&(R‘l). Then for each k > 0, there
exist ¢,; > 0 (which can depend only on k), such that for § € (0,1), we have

sup 7% [R(h2) — R(h)|

TSRE,)\,’Y
<c. sup 014 |z)?) "t |e" — €M + hy — hyf
TSRE,A,'Y
+ee? sup OV (ug + ho)? — | V(ur + h)]?)

TSRE,/\,'Y

+ coye? sup 7"475’A(u1 +ha) — Auy + hl)‘

T<Re .y
<c. sup 740y — hyllha + by
TSRE,X,W
A sup 1 (|9(he = h)| (|9 (hz + )| + 2/ V) )
TSRE,A,W

+cye® sup 7"475’A(h2 - hl)‘
r<Re x,~

2

<ew ) lhilleng @mollhe = Prllgng @) + 1€ REnllh2 = Pallere sy
i=1 '

2
5
+egAe® R (RE,/\W Z Hhi”Cﬁ,J(R“) + 1) Ih2 = b Hciﬁ,a(R“)'
i=1
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Provided h; € C;léi s(RY) satisfies || h; | cha (rY) < 20,;5%?7 A then the last estimate,
is given by
sup 479 |R(ha) — R(hy)|
TSRE,A,'Y

< Cngérg,A,thQ - hlllcj;gys(nw) + C,J?’,\ﬁ”hz - hl”c;‘;j’é(Rﬁ

+ CHT?,,\,WH% - hl”c:g)é(R‘*)'

Similarly, using Proposition and (5.4), we conclude that for each k > 0, there
exist €4, Ax, 7% and &, > 0 (only depend on k) such that

IRh2) = Rty < EwrZaslln = Billgrs . (3.10)
Reducing ¢, A\, and 7, if necessary, we can assume that
1

_ 9
Chleany = )

for all € € (0,e,), A € (0, ;) and v € (0,7,). Then, (3.9) and (3.10) are enough to
show that h — R(h) is a contraction from the ball

4, .
{h € Crad,é(R4) : Hh”Cig"é(RfL) < 205567“§,>\,w}

into itself and hence has a unique fixed point % in this set. This fixed point is a
solution of (3.8)) in Bg,_ , . We summarize this in the following proposition.

Proposition 3.6. For each k > 0, there exist €, > 0, Ay > 0, 72 > 0 and ¢, > 0
(which can depend only on k) such that for all for all e € (0,e.), A € (0, ;) and
v € (0,74) and for § € (0,1), there exists a unique solution h € Cf£75(R4) of
such that

v(x) = u () + h(z)
solves in Bg. . In addition

allgss | oy < 268872 55

4. KNOwN RESULTS [I]

4.1. Analysis of the bi-Laplace operator in weighted spaces.
Given z1,...,2™ € Q we define X := (z!,...,2™) and
Q(X):=Q—{z',..., 2™},
and we choose rg > 0 so that the balls B, (x%) of center z° and radius ro are
mutually disjoint and included in Q. For all r € (0,79) we define

Qp(X) == Q- UL, B, (a7)
With these notation, we have the following definition.

Definition 4.1. Given k € R, a € (0,1) and v € R, we introduce the Holder
weighted space C%*(Q2*(X)) as the space of functions w € C{ZCQ(Q*(X)) which is
endowed with the norm

[@lgp iy = lekn,, wioy + S S0 (0@ +r)lleso(Bapn)
J=1 re(0,r0/2)

is finite.
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When k > 2, we denote by [C5(Q*(X))]o be the subspace of functions w €
Cke(Q* (X)) satisfying w = Aw = 0.
Proposition 4.2 ([1]). Assume that v < 0 and v ¢ Z, then
L, = [T (2 (X))o — €24 (Q7(X)
wi— Aw
18 surjective.

4.2. Bi-harmonic extensions. Given ¢ € ([24’6'(53) and ¢ € (C2,a(53) we define
Hi(= H'(p,;-)) as the solution of

A’H'=0 in B,
H'=¢p ondB (4.1)
AH" =19 on 0B,

where, as already mentioned, B; denotes the unit ball in R%.
We set Bf = B; — {0}. As in the previous section, we have a definition.

Definition 4.3. Given &k € N, « € (0,1) and g € R, we introduce the Holder
weighted spaces (Cﬁ’o‘(Bf) as the space of function in (Clko’ca (B7) for which the norm

|| ~krapmey = sup (rH||u(r)||cre(m, — ,
ey sy = s (7 0 lenos,- )

is finite.

This corresponds to the space and norm already defined in the previous section
when Q = By, m =1 and 2! = 0.
Let e, ..., es be the coordinate functions on S°.

Lemma 4.4. [I] Assume that

/ (8¢ —¥)dvgs =0 and / (12 — )epdvgs =0 (4.2)
S3 S3
for 0 =1,...,4. Then there exists ¢ > 0 such that
IH (0,95 )l gto sy < clllellesass) + [[¥llcza(ss))-
2 " (BY)

Given ¢ € CH*(S3) and ¢ € C?%(S3), we define (when it exsits) H® (=
He(p,1;)) to be the solution of
A’H*=0 inR'- B
H¢=¢ ondB
AH®=1 ondB
which decays at infinity.

Definition 4.5. Given k € N, a € (0,1) and v € R, we define the space Ck*(R* —
Bi) as the space of functions w € CF%(R* — By) for which the norm

loc
leolleg e me g,y = 0 (7wt lege s, 5 ) -
r>1

is finite.
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Lemma 4.6 ([1]). Assume that
Wdvgs = 0. (4.3)
g3
Then there exists ¢ > 0 such that
1H (¢, ¥; ')HC‘i’f(W_BI) < c(llelleaa(ssy + [¥llcza(ss))-
Lemma 4.7 ([I]). The mapping
P - C4,a(53)J_ % CQ,a(sB)J_ N CB,a(s?))J_ % CLa(sB)J_
(o, 0) > (0,H" — 0,H®,0,AH" — 9,AH®)
where H' = H'(p, ;) and H® = H¢(p,1);+), is an isomorphism.

5. FIRST NONLINEAR DIRICHLET PROBLEM

Recall for €, 7, A,y > 0, we define R. » , := 7rc x /€, where

Te nr i= max(ve, VA, /7). (5.1)
Given ¢ € C+%(S3) and ¢ € C>%(S?) satisfying (4.2), we define
u:=u; +h+ Hi(‘ﬁv P, ('/Ra,)\,'y))'
We would like to find a solution u of

A2U—7(£)2Au—)\(£)2|vu|2 —24e" =0 (5.2)
T T
which is defined in Bg, , , and which is a perturbation of u. Writing u = u + v,

this amounts to solve the equation
384 i 384

Ly = — " ch(eH (@d(/Rex ) 4o _ 1 _ 7

v (1+T2)4e (e v)+(1+r2)4

+7(2)*A(w + b+ H (0,3 (Ben) +0) = 7(5) Al + 1)

(eh —1)w

€\2 ; 2 €9 )
(5.3)
since H® is bi-harmonic. In the following, we will denote by K(v) the right hand

side of ([5.3).

Definition 5.1. Given 7 > 1, k € N, o € (0,1) and p € R, the weighted space
Cl’j’o‘(Bf) is defined to be the space of functions w € C*®(B;) endowed with the
norm

_ — . K . _
Jlcg sy = Iwllenaqeny + s (r (e les s, )

For 0 > 1, we denote by &, : C)*(B,) — C1*(R*) the extension operator defined

by
&)@ =x() (o2,

o /7 \a]
where ¢t — x(t) is a smooth nonnegative cutoff function identically equal to 1 for
t > 2 and identically equal to 0 for ¢ < 1. It is easy to check that there exists a
constant ¢ = ¢(p) > 0, independent of o > 1, such that

€0 (@)l gsy < ellewllgnags, ). (5.4)
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We fix p € (1,2) and denote by G, a right inverse provided by Proposition To
find a solution of (5.3)), it is enough to find v € Cv*(R*) solution of
v=N(e,\vy,T,0,0;v) (5.5)
where we have defined
N(e, A, 70,00) :=Guo&r_, , (K(v))

Given x > 1 (whose value will be fixed later on), we now further assume that the
functions ¢ € C+*(S3), ¢ € C>*(S®) and the constant 7 > 0 satisfy

1
g —log(r/T)l S w4, llellcnessy < w12y,
log 1/72 5 o 9= Hean (5.6)

[¥llc2.a sy < K12y,

where 7, > 0 is fixed later.

Lemma 5.2. For each x>0, u € (1,2) and 6 € (0,1), there exist £, > 0, Ax > 0,
Y >0, ¢ > 0 and ¢, > 0 such that, for alle € (0,e,), X € (0,\) and v € (0,7,),

||N(€7 >‘7 VTP, 1/}5 0) ||Cﬁ’“(]R4) < Cﬁgﬂrg,)\,'y' (57)
Moreover,

||N(€a )‘7 YT, P, ,(/17 U2) - N(Ea )‘7 YT, P, 11}7 Ul) ||Cﬁ’a(R4) S Enri)\ﬁHUQ — U1 ||Cﬁ’a(R4)
(5.8)
provided U = vy, vy € CH¥(RY), ¢ € C(S?), ¢ € C2(S?) satisfy
”w
[9leggusy < 26672 lglleroqs < wr2 s
[@llceia(sey < Krlyq,  [log(r/m)l <kl log1/r2 5

Proof. The estimates follow from Lemma [ 44 together with the assumption on the
norms of ¢ and . Let c,(f) denote constants which only depend on k (provided ¢,

A and 7 are chosen small enough).
It follows from Lemma and the estimates given by (5.6]) that

HHi(Qp’ ¥; ./RE’AW)”CS'Q(BRE,/\,—H
< CNR;?\,W(”<P||C41"‘(SS) + ||w||c2a(ss)) (59)
< cpe?

244

Therefore, using the fact that for each € Bg_, _, we have |h(z)| < ¢, T N

which tends to 0 as €, A and  tend to 0, we obtain
0 1A (e Ren) 1) e, < en®
for 1 € (1,2), we have
H52 [|V (u1 +h+ H(p,9; -/R&,\W)) 1> — |V (u1 + h)|2] HCBL‘Z(BR
< |21V (H (.93 Rexy)) 1[21V (g + )|
+ |V (H’(‘Pa"/}; -/Rs,)\ﬁ)) |] Hcgi(BR&AW)

4— ) -5 — )
< C,{SMT’EA%/ |:]. + Tea~€ Hh||cig,5(R4) + TS,A,ﬁ 2||Hl((p7 l/% '/Rs,)\,’Y)“C;L’O‘(B’RE N 7)]

E,A,'y)



EJDE-2015/187 SINGULAR LIMIT SOLUTIONS 15

Provided h € Cf,(;g,é(R‘l) satisfy |hflcao ey < 2¢,.07 and from the asymp-

2
9 = ;A7)
totic behavior of H® given by the estimate (5.9) and p € (1,2), we deduce that

[e2[17 (1 + ot 0,05/ Ren)) 12 = 9 G+ )|

w2
0, (7 < Cr€ TE,)\,'Y
cu—4(BRs,x,w)

and
H€2A (HZ(@, (U8 '/Ra,/\ﬁ)) HCS’ﬂ;(BRE,A,w)

Using Proposition and (5.4]), we conclude that

B d—p M2
< cie Te xry < cpe TZ Ay

||N(57 )‘, VTP 1/15 0) ”Cﬁ’a(Rfi) < cKE#T?,A,’y'

To derive the second estimate, we use the fact that for each z € Bg_, , we have

|h(z)| < C,J?t\‘;,y, which tends to 0 as €, A and  tend to 0. For each £ > 0, there

exists ¢, > 0 such that

2\—4 H'(p,;-/Re x o) +h

[(L 4] P)~ e o/ Rena)th (gv2 — ¥t — vy +0y) ||Cﬁ‘f4(BRE,A,w)
S CHEHTE,)\,WHUQ — UlHCﬁ‘a(Rﬂ

and

—4_h ( H' i/ Re
[0+ 1 7t (s o) < 1) (02 =) [l g
< cue?|lvg — 1 let e (rays
and for u € (1,2), we obtain
H&QA(UQ - vl)chﬂl(BRs,x,v) < Cn7”§7)\,—yHU2 — Uch,‘i,a(sz).

g,%v’ we deduce that

Provided h € Ciﬁ’&(R‘l) satisfy ”hHCi;gY&(R‘l) < 2¢.e%r
2y—4/ h
P74 = 1) (o = 00l g, < gy I~ il
S CK€5T§7A,7||U2 — U1||Cﬁ,a(R4),

and

12 (|9 + o 105/ Re ) )|

_ ‘V(ul +h+ H'(p, 95/ Repy) + “1)‘2)‘

o, _
cuf4(BRE,>\,’Y)

< [1€3|V (vy — v1)] <|V(v2 +v1)| + 2|V (us +h+ H' (¢, 9; ~/R5,>\,v))|) ||c2f4(§RE )

2
< e B20 0 (R, D Iodlegoasy +1

=1

+ R H (0 Beno) e a2 = villeges)
2

< awr? o (s ™ D Ioilgn ey + 1
i=1

+ T?,A,yg_QHHi(% Y '/Ra,/\m)Hc;‘va(BRm 7)) v — Ul”aﬁﬂ(u@)-
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Provided vy, vy € Cjp®(R?) satisfy [villgs.omay < 2¢xetr? y ., and from the asymp-

totic behavior of H® given by the estimate (5.9)), we derive the desired estimate,

using Proposition [3.3] and (5.4)). O

Reducing €,, A\ and 7y, if necessary, we can assume that

ChrZyy < 3 (5.10)

Then there exist €, > 0,Ax > 0, 7 > 0, ¢, > 0 and ¢, > 0 such that, for all
e € (0,e4), A € (0,\;) and vy € (0,7,). Then, and in Lemma [5.2] are
sufficient to show that

vi—= N(g, A\, 7,7, p,1¥;v)
is a contraction from {v € C,y*(R*) : ||'U||Cﬁ,o¢(R4) < 2c.etr? , } into itself and hence
has a unique fixed point v(e, A, v, 7, ¢, ¥; ) in this set. This fixed point is a solution
of in B, , . We summarize this as follows.

Proposition 5.3. For each k > 1, there exist €, > 0, Ay > 0, 72 > 0 and ¢, > 0
(only depending on k) such that given o € C**(S3), 1 € C>%(S?) satisfying (4.2)
and T > 0 satisfying
[log(7/7)| < K12y, og1/r2 s 10 llellctacssy S wriyy [Pllceacss) < K125,
the function
u(e, Ny 7,5 ) 1= un + b H (0,95 Rexg) +0(e, X7, 700,95 ),
solves (5.2) in Br, , . In addition
HU(Ea )‘7 YTy P W ) ||(Cﬁ""(]R4) < 26,;6”7’?7)\77. (511)
Observe that the function v(e, A, v, T, ¢, 1; ) being obtained as a fixed point for

contraction mapping, it depends continuously on the parameter 7.

6. SECOND NONLINEAR DIRICHLET PROBLEM
For (g,,7) € (0,73)3, we recall that

ey i= max(v/e, VA, V)-
Recall that G(z,-) denotes the unique solution of
A?G(x,-) = 64720,
in Q, with G(z,-) = AG(z,-) = 0 on 99Q. In addition, the following decomposition
holds
G(CL‘, y) = _SIOg |.’IJ - y| + R(Z‘,y)
where y — R(z,y) is a smooth function.

We recall in this section a result which concerns the properties of the Greens
function in the following lemma.

Lemma 6.1. There exists C > 0 such that for all z,y € Q,x # y, we have
VG(a,y)| < Clz —y| ™ i > 1.
The estimate in the above lemma is originally due to Krasovskii [12].
Given z',...,2™ € Q. We need the following data:

(i) Points Y := (y!,...,y™) € Q™ close enough to X := (x!,... 2™).
(ii) Parameters 7j := (7',...,7™) € R™ close to 0.
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(iii) Boundary data ® := (o1, ..., ™) € (C**(S®))™ and ¥ := (y!,... ™) €
(C%2(S3))™ each of which satisfies ([4.3)).
With all these data, we define
o= (L+7)GW )+ D xno (- =y H () 075 (= ¢7) freny)  (6.1)
j=1 j=1

where X, is a cutoff function identically equal to 1 in B, /, and identically equal
to 0 outside B,,.

We define p > 0 by

4 3844
P (1+e2)%
We would like to find a solution of the equation
APy — yAu — \Vul* — pte" =0, (6.2)

which is defined in ©,_, _ (Y)) and which is a perturbation of &. Writing v = u+ 7,
this amounts to solve

A% = p*e™T? — AU+ yA(T+9) + A V(a + 9)[2 (6.3)
We need to define an auxiliary weighed space.

Definition 6.2. Given 7 € (0,70/2), k € R, a € (0,1) and v € R, we define
the Holder weighted space CX@(Q:(X)) as the space of functions w € Ck*(Q:(X))
which is endowed with the norm

||ch’;va(Qf(x)) = ||w||ck,a(§zm/2(x)) + Z sup (7‘_”||w(l‘j + 7“')”0'6&(32731)) .
=1 rel[r,ro/2)
For all o € (0,79/2) and all Y € ™ such that || X — Y| < ro/2, we denote by
oy : CP(Q(Y)) — CP(Q(Y),
the extension operator defined by &,y (f) = f in Q,(Y)

E v (N +2) =X <|§|) f (y " UI:CII>

for each j =1,...,m and E}y(f) = 0 in each BU/Q(yj), where ¢ — X(t) is a cutoff
function identically equal to 1 for ¢ > 1 and identically equal to 0 for ¢t < 1/2. It is
easy to check that there exists a constant ¢ = ¢(v) > 0 only depending on v such
that

||go,Y(w)||cg’ﬂ(Q*(x)) < C”chBva(Qﬂ(x))- (6.4)

We fix v € (—1,0), and denote by g}y the right inverse provided by Proposition
Clearly, it is enough to find ¥ € C*(Q*(Y')) solution of

= N(e, A\, 7,Y,®, ;) (6.5)
where we have defined
N() := N(g, A, 7,7, Y, ®, ¥; 0)
=Go& v (pe™ — A%a 4 yA(@+7) + V(@ + 7))

= gu,Y © grg,)\,,y,y (S('U))
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Given k > 0 (whose value will be fixed later on), we further assume that ® and
U satisfy

||(I)||((C4 Ja(§3))m < Iﬁ”s Ay and H\IIH(C? a(s3))ym < I<;T"S Ay (66)
Moreover, we assume that the parameters 77 and the points Y are chosen to satisfy
7] < m“g Ay and Y = X[ < rre s (6.7)

Then, the following result holds.

Lemma 6.3. For each k > 1, there exist €, > 0, Ay > 0, 7. > 0, ¢, > 0 and
¢ > 0 such that, for all e € (0,e.), A € (0, ) and v € (O,’y,i), we have

IN(e, A\, 7,7, Y, ®, $0)ll et (e (vy) < a7 8’)\’7. (6.8)
Moreover,

HN(E7 >‘777ﬁa K (I)7 \I’v 172) - N(E7 A777ﬁa K (1)7 \I’v ﬁl)Hcﬁ’(’(Q*(Y)) (6 9)

< _RTS,,\,WH@ - ﬁchﬁ’a(Q*(y))
provided © = vi,vy € CH(Q*(Y)), ® = 1, Py € (CH*(S3))™, U = U, U, €
(CZ(S3))™ satisfy

||1~J||C4 e Q*(Y)) < 20,&“3 Ay ||(I)|| C4,a(53))m S KTS’)\W,

1Wllc2asoym < wr25q [0l S ks 1Y = XI < wress.

Proof. The first estimate follows from the asymptotic behavior of H¢ together with
the assumption on the norm of boundary data @' given by . Indeed, let ¢, be
a constant depending only on x (provided e, A and ~ are chosen small enough) it
follows from the estimate of H€, given by lemma that

[HE, 50 (@ =) freny)| < ewrd s rh (6.10)
Recall that N (9) = G, o frmq 0 5(#), we will estimate N(0) in different subregions
of Q.
e In B, /5(y7) for 1 < j < m, we have x,,(z —y’) =1 and A%l = 0 so that

m
‘S(ON < e H [ (147G 5 ()+HZ; 55 (x—y 7Y /Texy) +~|AT] + /\|Vu|2

<cwe! [T o= o/ 75047 4 4| A@)] + N[V ()

j=1
. m .
<atfo—y [0 [T oy 0+
(=1,04]
m m
+exy(1+77) Y AR, y) + eoy(L+ i)z — /|72 Y o=y
s iy
m
terdayle =y 17 Y ey
(=104

+ e A1 +77) Y VR, ¢ )P + e 1+ 7 )[e =y |72 Y e -yt
J=1 £=1,0#]
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m
+ Cﬁ/\rg,)\,'y‘m - yj|74 Z |$ - y£|74'
0=104]
Hence, for v € (—1,0) and 7/ small enough, we get
N(O)|| rtse g ym , < sup r=YIN(0
IV (O)le: Uiz Bly?.ro/2)) e <T<r0/2 IN(O)]

< C,Q54r€ Ay T 2¢c,y + c,gw'g)\ﬁ + e\ + c,ﬁ’yrg”)w.

e In Q, 5 (recall that Q,,; = Q\ U;B,,(2%)), we have x,,(z —y’) = 0 and
A%0 =0, then

m

15(0)] < exetle — o |5 ] o —yf 720
0=1,04§
+ey(1+77) Y AR, y) + eoy(L+ i)z =772 Y o=y
j=1 0=1,0#]
e 1+7)) VR, )P+ ed@+ i)z — g/ |72 ) o —yf 72
j=1 0=1,0#]

Thus R
INO)llcae a0y < Cx Sup A7V [S(0)] < cxe + oy + co.

’I”TO

o In B, (y/) — B,y /2(y?), for j =1,...,m, we have

|g(0)| < 6554‘ H (171G eX'ro(w*yj)H;j,,;j((wfyj)/Ts,A,w) + A%0 + A+ |Vi)?

j=1
. m
< epetle — |2 T e - y! [0+
e=1,0£1
m

—

+ene YO IIA% xoy (@ = y)IIIHS; (@ = y7)/rens)]
J

+ ey DA X (& = g NHE (@ = y7) /o)
Jj=1
+exy(1+77) Y | AR, )|
j=1
e D[V = 9] THEY, (G0 =) rens)
j=1
+exA(L+ 7)Y [VR(, )
j=1
+e L+ i)l —y 172 D le—y|7?
0=1,0%]

m

ted+ i)z =y 72 Y ey
0=1,045
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Here

[V, Xro|w

= VXT’Q cw + XTO ° vw[sz XT‘o]w

= 20X, Aw + wA? X,y + 4V X0, - V(Aw) 4+ 4Vw - V(Axy,) +4V2X,, - V2.
So,

INO) s (Bgs,r0)-Blyi ooy < € s T1VINO) < eur? sy
ro/2<r<rg

Finally
||N(0)Hc§va(gfuz.n:1 B(yirenn)) = Cule +72 5, F7+ ).

To derive the second estimate, we use the fact that for 9, and vy € B,,,?A of
— EL ALY
CA(Q*), we obtain

1N (51) = N (%2) | gse () = ‘

Guy o érs_,M (5(?71) - 5Y(%))

4
ey Y che

Using([6.4]) and Proposition we conclude that

[N (1) — N('L~)2)||c,‘fv“(grg \ i) < CJ?,A,»nyll - @2“@‘5“(()*)'

ra)\,_y,yj)

Reducing €, A and 7, if necessary, we can assume that

=2
ChTeny S 9

for all € € (0,e,), A € (0,A;) and v € (0,7,). Then, and are sufficient
to show that o — N(e, \,7,7,Y, ®, ¥D) is a contraction from

{ve Cf’a(Q* (Y)): ||"~7||c§va(ﬁ*(y)) < QCfsrg,A,—y}

into itself and hence has a unique fixed point o(e, A,~,7,Y, ®, ¥;-) in this set. This
fixed point is a solution of (6.3)).
We summarize these resutls as follows.

Proposition 6.4. For each k > 0, there exists €, > 0, A;, > 0, v, >0, and ¢, >0
(only depending on k) such that for all e € (0,e5), A € (0, A\y), v € (0,7x) and for
all set of parameters 7, points Y satisfying

il < w2, and Y = X[ < ke,
and boundary functions ® and ¥ satisfying (4.3) and
||¢H((C4,a($3))1n S ng,)\,'y’ ||\I’||(C2,a(s3))m S "ﬂﬂ?,)\,'y'
The function
(e, M 1, Y, 2, 05) = Y (L) Gy + D xeg (= ¢V H (W, 075 (- =) [rens)
=1

j=1

J:
+ /17(57 >\7 v, ﬁ7 Yv7 (1)7 \117 ')a
is a solution to (6.2) in Q,_, (V). In addition
||f}(57 >‘a v 777 K (I), \117 .)HC;L,‘O‘(Q*) S 20,&"?))\77. (611)
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Observe that the function o(e, A, 7,7, Y, ®, ¥) being obtained as a fixed point for
contraction mapping, it depends continuously on the parameters  and the points
Y.

7. NONLINEAR CAUCHY-DATA MATCHING

Keeping the notations of the previous sections, we gather the results of the
Proposition and Proposition From now let x > 1 is fixed large enough (we
will shortly see how) and assume that € € (0,e,), A € (0, \,) and v € (0,7,).

Assume that X = (z!,...,2™) € Q™ is a nondegenerate critical point of the
function W defined in the introduction. For all j = 1,...,m, we define 7 > 0 by
—dlog7! = R(2’,27) + > _ G(a',2%). (7.1)

£

We assume that we are given:
(i) points Y := (y!,...,y™) € Q™ close to X := (z!,...,2™) satisfying (6.7).

(ii) parameters 7 := (7',...,7™) € R™ satisfying .
(iii) parameters T := (71,...,7™) € (0,00)™ satisfying (where, for each
j=1,...,m, 7 is replaced by Ti)
We set

J
Rs)wy _T/TE/\N

First, we consider the boundary data
® = (sﬂl, @™ € (CPSP)™ and W= (Y.L, 9™ € (CH(S)

satisfying (4.2]) and ( .

Thanks to the result in Proposition @ we can find u;n; a solution of
A?u— AAu — N Vul? — pte" =0

in each B,_, | (y7), which can be decomposed as

Uins (€, N, 7, T, Y, @ \I/x)

= Ue i (@ =y )+ h(RL, (x = y7)/repns) + H (P05 (@ = o) [rea )

+o(e, A7, 70! W R (@ =) frens)
in By, (y?). Similarly, given the boundary data
d = (h,...,¢™) € (CH(S®)™ and W= (..., 9™) € (C2(S*)™
satisfying and , we use the result of Proposition to find ey & solution
f

’ A? — AAu — A\Vul? — pte" =0
in Q,_, (YY), which can be decomposed as

uext(g )\v’y ﬁai) @x)
:ZHH (v« +mew* VH (@475 (2 = y7) renq)

+v(67/\,%n,1€¢,‘1’;m)-

It remains to determine the parameters and the boundary functions in such a way
that the function which is equal to i in U; B, N (y7) and which is equal to wext
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in Q,_, (Y) is a smooth function. This amounts to find the boundary data and
the parameters so that, for each j =1,...,m

Uint = Uext, a'r‘uint = 8ruext7 Auint = Auextv a’r‘Auint = a’r‘Auextv (72)

on 0B,_, | (y7). Assuming we have already done so, this provides for each &, A and
7 are small enough a function w. ., € C**(Q) (which is obtained by patching
together the function u,, and the function ey ) solution of A%y — AAwu — \|Vu|? —
pie® = 0 and elliptic regularity theory implies that this solution is in fact smooth.
This will complete the proof of our result since, as £, A and ~ tend to 0, the sequence
of solutions we have obtained satisfies the required properties, namely, away from
the points 27 the sequence w, ), converges to > G(z7,-).

Before, we proceed, some remarks are due. First it will be convenient to observe
that the functions u. ,; can be expanded as

U i (z) = —8log |z — 4log 77 + (9(7"?7)w) (7.3)
near 0B, , . Also, the function
> (1+i)G(y,x)
j=1

which appears in the expression of ueyt can be expanded as

> (1+i)GW Y +2) = =8(1+i)log 2|+ E; (V') + VE;(YV;9)) -2+ 0(r2 5 )
=1

(7.4)
near 9B,_, (y’). Here, we have defined

E;j(Y;) =Ry, )+ Y G’
£
In (7.2), all functions are defined on 9B,_, | (y7), nevertheless, it will be conve-
nient to solve, instead of (7.2]) the following set of equations

(uint - uext)(yj + Te,)\,'y') = 07 (aruint - 6ruext)(yj + Ts,)\,'\/') = 07

) ) 7.5
(Auint - Auext)(y] + rs,A,'y') = Oa (arAuint - 8rAuext)(y] + rs,)\,"/') = 07 ( )

on S3. Here all functions are considered as functions of z € S% and we have simply
used the change of variables x = 3’ 4- 7. x 52 to parameterize 0B, , _ (y7).
Since the boundary data satisfy (4.2) and (4.3)), we decompose

O =Dy + P+ D, U=_8Dy+ 120, + U,
O =3Py + Py + P, V=0 +0Tt

where the components of ®y, P, are constant functions on S*, the components of
P, él, @1 belong to ker(Ags + 3) = span{ey,...,eq} and where the components
of &L, ¥l oL UL are L2 (S3) orthogonal to the constant function and the func-
tions eq,...,e4. Observe that the components of ¥ over the constant functions or
functions in ker(Ags + 3) are determined by the corresponding components of ®.
Moreover, U has no component over constant functions.
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We first consider the L2(S®)-orthogonal projection of (7.5) onto the space of
functions which are orthogonal to the constant function and the functions eq, ..., e4.
This yields the system

et — @t = MY (e, 07,7, T, Y, ®,&, 0, D)
O Hi (oM7) — 0, H (@, 7t ) = MU (6,0, 7,0, T, Y, ®, 8, 9, 9)
Pt — it = MY (e X\, 7, T, Y, 8,8, 0, 1) (7.6)
O AH (@7 b i) — 9, AH (@I 7+ )
= MY (e, M, 7,7, T,Y,®,&,0,0)
where the functions M, ) are nonlinear functions of the parameters e,n Y, T and
the boundary data ®, ®, ¥ and 0. Moreover using ([7.3]) and ([7.4) and also

(keeping in mind that e (1, 2)) and (keepmg in mlnd that ve(-1 O))
conclude that, for each j =1,...,m and k =0,1,2,3

||M ||C4 koo (53) < C’I“E Ay (77)

for some constant ¢ > 0 independent of x (provided ¢ € (0,&,),A € (0, ;) and
¥ € (0,7%))-

Thanks to the result of Lemma and ([7.7)), this last system can be re-written
as

J,L

(@1, L, Ut Ut) = M(g,\, 7,7, T,Y,®, 0,0, )
where
M || (.0 (53))2m x (c2e(s3))2m < €r2 5,

for some constant ¢ > 0 independent of x (provided (£., Ax,7x) € (0,€,)3). More-
over, and imply (reducing e,, A and -, if necessary) that, the mapping
M is a contraction from the ball of radius xr2 \ ~ in (CH(83))2m x (C%>(53))2™
into itself and as such has a unique fixed point in this set. Observe that this fixed
point depends continuously on &, )\ 'y7 7, T, Y and also on @, <I>0, P, ®, and T;.

We insert this fixed point in and now project the corresponding system
over the set of functions spanned by e1,.-.,eq4 and finally over the set of constant
functions.

The first projection yields the system of equations

(I)l = M1(57>‘7777~75T7 Ya q)(),i)(),q)l’élv@l)
&)1 = MQ({':?)"’V??%T, Y, @O,é)an)l,él’(I}l)
\Ijl - M3(€7)‘777ﬁ7T7 Ya (POv(iOv(blvélv\i/l)

va)"’YVEj (Y7 yj) = Mij)([;’ )‘7 e ﬁa Ta Ya (I)O7 é)07 (I)la (i)la i’l)

(7.8)

where the functions My, (and also M, {J )) are nonlinear functions depending contin-
uously on the parameters €, A, v, 7, T Y and the components of the boundary data
@07 @07 @17 ‘bl and \Ifl MOI‘GOVGI‘

|Mk| S CT?,)\,'Y

for some constant ¢ > 0 independent of k (provided provided € € (0,e,), A € (0, A,)

and v € (0,7x))-
Let us comment briefly on how these equations are obtained. These equations

simply come from (7.2) when expansions (|7.3) and (7.4) are taken into account,
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together with the expression of Hi(¢?, 4pd;-) and H¢(¢7,4)7; ) given in Lemma
and Lemma and also the estimates (5.11)) and (6.11)). Observe that the projec-

tion of the term # — VE;(Y;y7) -  which arises in (7.4), as well as the projection
of its partial derivative with respect to r, over the set of constant function is equal
to 0. Moreover, this term projects identically over the set of functions spanned by
€1,-..,eq4 as well as its derivative with respect to r. Finally, its Laplacian vanishes
identically.

Recall that we have define in the introduction the function

W)=Y RW,v)+ Y. Gy .y"?)
Jj=1 J1#j2
Using the symmetries of the functions G and R, namely the fact that
G(r,y) = G(y,z) and R(z,y) = R(y, )
we obtain
Now, we have assumed that the point X = (z!,...,2™) is a nondegenerate critical
point of the functional W and hence VW|x = 0, and

(RY)™ > Z — D(VW)|x(Z) € R)™
is invertible. Therefore, the last equation can be rewritten as
Terny(Y — X) = Ms(e,\, 7,7, T,Y, @, &g, @1, D1, ¥y)

The projection of over the constant function, leads to the system
(log 1/T?,A,'y)_1 IOg(Tj/Tg) = M6(57 A0, 1LY, @, (i’07 by, &)17 Uy, \i’l)

Oy = My(z, A, 7,7, T,Y, Bo, Do, ®1, D1, ¥y, ¥y)

Oy = Ms(c, A, 7,7, T,Y, Bo, Do, ®1, D1, ¥y, ¥y)

ii = Mo (e, \, 7, 71, T, Y, ®g, &g, By, D1, Uy, Uy)

(7.9)

where the function M satisfy the usual properties. We are now in a position to
define 7_ and 77 since, according to the above, as e, A and «y tend to 0 we expect
that y; will converge to z; and that 7; will converge to 7;° satisfying and hence
it is enough to choose 7_ and 71 in such a way that

4log(t-) < —sup B;(Y, ;) < —inf (Y, 2;) < 4log(T™).

So, if we define the parameters U := (u!, ..., u™) where
J=—o—log(7’/7]), Z=rcr, (Y -X
@ = g OB, 2= (Y = X)

so that the system we have to solve reads

(53 )‘7 v, Uv 77]; Zv cI)Ov &)07 (I)lv &)17 qjl) = M(Ea )‘7 v, Uv 77}) Z7 <D07 ci)07 CI)lv &)17 @1) (71())
where as usual, the nonlinear function M depends continuously on the parameters
T, 7, Z and the functions ®¢, g, P71, ¥; and is bounded (in the appropriate norm) by

a constant (independent of €, A, v and k) time ri)w, provided € € (0,¢,), A € (0, As)
and v € (0,7,). Observe that

UneR™, Ze(RYHY™, &y, oo € R™
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(I)l,‘i)l,\i/l S (ker(As3 _|_3))m

In addition, reducing e,, A\, and -y, if necessary, this nonlinear mapping sends the
ball of radius m’i Ay (for the natural product norm) into itself, provided « is fixed
large enough, € € (0,e.), A € (0,A;) and v € (0,7,). Applying Schauder’s fixed
point Theorem in the ball of radius ﬁri A~ in the product space where the entries
live yields the existence of a solution of and this completes the proof of
Theorem
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