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CORDES NONLINEAR OPERATORS IN CARNOT GROUPS

GIUSEPPE DI FAZIO, MARIA STELLA FANCIULLO

Abstract. Our aim is to obtain Lp estimates for the second-order horizontal

derivatives of the solutions for a nondivergence form nonlinear equation in

Carnot groups.

1. Introduction

The W 2,p estimates for elliptic differential equations and systems is a very inter-
esting problem and many Authors have given several contributions to this problem
from several different points of view (see [5, 4, 7]) using different approaches. There
are essentially two main approaches to the problem: assuming on the coefficients of
the equation the Cordes condition or the VMO condition. The first one consists of
a geometric condition on the eigenvalues of linear operators. Cordes condition was
introduced in [6] and studied by many authors (in the cases of nonlinear nonvari-
ational equations and systems we quote [3, 4]). The second technique consists in
assuming the coefficients of the operator to be in VMO-type classes (see [5, 7, 9, 10],
and for more general setting see [1, 2]).

Here we obtain W 2,p estimates for the following nonlinear nondivergence form
equation

a(x, u,Xu,X2u) = f,

where X = (X1, X2, . . . , Xl) is a system of Hörmander’s vector fields on a Carnot
group, and we assume a condition that in the particular case of a linear equation
gives back the Cordes condition (see [8] for the case of the Heisenberg group).

Namely, we show that there exists a critical exponent p0 > 2 such that if the
datum f belongs to Lp, with 2 < p < p0, then the second derivatives X2u of the
solutions u have the same integrability as f .

2. Preliminaries

Let G be a finite-dimensional, stratified, nilpotent Lie algebra. We assume G =
⊕si=1Vi, where [Vi, Vj ] ⊂ Vi+j for i + j ≤ s and [Vi, Vj ] = 0 for i + j > s. Let
X1, . . . , Xl be a basis for V1 and suppose that X1, . . . , Xl generate G as a Lie
algebra. Then for 2 ≤ j ≤ s we choose a basis {Xij}, 1 ≤ i ≤ kj , for Vj consisting of
commutators of length j. We set Xi1 = Xi, i = 1, . . . , l and k1 = l, and we call Xi1 a
commutator of length 1. If G is the simply connected Lie group associated to G then
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G is called Carnot group. It is well known that the exponential mapping is a global
diffeomorphism from G to G and then for any g ∈ G there exists x = (xij) ∈ Rn,
1 ≤ i ≤ kj , 1 ≤ j ≤ s, n =

∑s
j=1 kj , such that g = exp(

∑
xijXij).

We now recall the definition of polynomials on the Carnot group G given by
Folland and Stein in [15].

A function P on G is said to be a polynomial on G if P◦ exp is a polynomial on
the Lie algebra G.

Let X1, X2, . . . , Xn be a basis of G and ξ1, ξ2, . . . , ξn be the dual basis for G∗ we
set ηi = ξi ◦ exp−1. Each ηi is a polynomial on G, and η1, η2, . . . , ηn form a system
of global coordinates on G. Then every polynomial on G can be written uniquely
as

P (x) =
∑
I

aIη
I(x), ηI = ηi11 · · · ηinn , aI ∈ R

where all but finitely many of the coefficients aI vanish. Clearly ηI is homogeneous
of degree d(I) =

∑n
j=1 ijdj , where dj is the length of Xj as a commutator. We

define the homogeneous degree of the polynomial P as max{d(I) : aI 6= 0}.
Here we recall the definition of the Carnot-Carathéodory metric. An absolutely

continuous curve γ : [0, τ ] → Rn is called subunitary if there exists a measurable
function c = (c1, c2, . . . , cl) : [0, τ ] → Rl such that γ′(t) =

∑l
j=1 cj(t)Xj(γ(t)),

for a.e. t ∈ [0, τ ], and ‖c‖∞ ≤ 1. The Carnot-Carathéodory distance d(x′, x′′) is
defined as the infimum of those τ > 0 for which there exists a subunitary curve
γ : [0, τ ]→ Rn with γ(0) = x′ and γ(τ) = x′′.

We set Br(x0) = {x ∈ Rn : d(x, x0) < r}. When it is clear from the setting we
will omit x0 or r. It is well known that the Carnot-Carathéodory balls satisfy a
doubling condition, that is

|B2r(x0)| ≤ 2Q|Br(x0)|

for all r > 0 and x0 ∈ Rn. The constant Q is the homogeneous dimension of G .
We define the intrinsic Sobolev spaces for a bounded domain Ω in Rn. Let k ∈ N

and p ≥ 1 we set

W k,p(Ω) =
{
u : Ω→ R : u,Xi1 . . . Xiju ∈ Lp(Ω), 1 ≤ j ≤ k

}
endowed with the norm

‖u‖Wk,p(Ω) = ‖u‖Lp(Ω) +
k∑
h=1

l∑
ij=1

‖Xi1Xi2 . . . Xihu‖Lp(Ω) .

We define W k,p
0 (Ω) as the closure of C∞0 (Ω) in W k,p(Ω) with respect to the above

norm.
For I = (i1, i2, . . . , in) we denote the differential operator Xi1

1 X
i2
2 . . . Xin

n by
XI and d(I) the homogeneous degree of XI . We denote by Xu the gradient of u
(X1u,X2u, . . . ,Xl) and by X2u the hessian matrix {Xiju}i,j=1,...,l.

In [17] the existence of approximation polynomials of Sobolev functions in Carnot
groups and related Poincaré-type inequalities have been obtained. Here we state
some results [17, Theorems 2.7 and 5.1], that we will use in the sequel.

Theorem 2.1. Let k be a positive integer and u a function in W k,1(Ω). Then there
exists a polynomial P of degree less than k such that

∫
Ω
XI(u − P )dx = 0 for any

0 ≤ d(I) < k.
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Choosing first q10 = p = 2 and q21 = 2, p = 2Q
Q+2 in [17, Theorem 5.1], we obtain

the following two inequalities that we collect in the same statement.

Theorem 2.2. Let Br be a ball of Rn and u ∈ W 2, 2Q
Q+2 (Br). Then there exists a

polynomial of degree ≤ 1 such that∫
Br

|u− P |2dx ≤ cr2

∫
Br

|X(u− P )|2dx, (2.1)∫
Br

|X(u− P )|2dx ≤ c
(∫

Br

|X2u|
2Q

Q+2 dx
)Q+2

Q

, (2.2)

where the constant c is independent of Br and u. (The polynomial P is the same
as in Theorem 2.1).

The following Theorem has been proved in [14], (for different cases see [13, 11,
12]).

Theorem 2.3. There exists a constant CG ≥ 1 such that for every u ∈ W 2,2
0 (Ω)

the following inequality holds∫
Ω

|X2u|2dx ≤ CG
∫

Ω

|∆u|2dx , (2.3)

where ∆u =
∑l
i=1XiXiu.

3. Caccioppoli-type inequality and W 2,p estimates

Let Ω be a bounded domain in Rn. Let a(x, u, p,m) : Ω× R× Rl × Rl2 → R be
a Carathéodory function satisfying the condition

(A) there exist three positive constants, α, γ and δ such that CGγ + δ < 1, for
all M = {mij}i,j=1,...,l ∈ Rl × Rl, u ∈ R, p ∈ Rl,

∣∣∣ l∑
i=1

mii − α[a(x, u, p,m)]
∣∣∣2 ≤ γ|M |2 + δ

∣∣∣ l∑
i=1

mii

∣∣∣2, a.e. x ∈ Ω .

We consider the nonlinear nonvariational elliptic equation

a(x, u,X,X2u) = f , (3.1)

where f ∈ L2(Ω).

Definition 3.1. A function u ∈ W 2,2(Ω) is called a solution of (3.1) if u satisfies
(3.1) for a.e. x in Ω.

Remark 3.2. In the case of linear equation, i.e.

l∑
i,j=1

aij(x)XiXju(x) = f

condition (A) is stronger than the following Cordes condition (see [6, 18] for a
comparison between condition (A) and Cordes condition in Euclidean setting).
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Definition 3.3. The linear operator L ≡ aij(x)XiXj satisfies the Cordes condi-
tion Kε,σ,θ if there exist ε ∈ (0, 1], σ > 0 and θ > 0 such that for a.e. x ∈ Ω,∑l
i=1 aii(x) > 0 and

0 <
1
σ
≤

l∑
i,j=1

a2
ij(x) ≤ 1

l − 1 + ε

( l∑
i=1

aii(x)
)2

≤ θ2

l − 1 + ε
.

Now we prove a Caccioppoli type inequality for solutions of (3.1).

Theorem 3.4. Let condition (A) hold true and f ∈ L2(Ω). Then for any u ∈
W 2,2(Ω) solution of (3.1), for any r > 0 such that B2r b Ω, there exists a polyno-
mial P of degree less than 2 such that

∫
B2r

XI(u−P )dx = 0 for any 0 ≤ d(I) < 2,
and ∫

Br

|X2u|2dx ≤ cr−2

∫
B2r

|X(u− P )|2dx+ c

∫
B2r

f2dx . (3.2)

Proof. Let B2r b Ω. From Theorem 2.1 there exists a polynomial P of degree less
than two such that

∫
B2r

XI(u− P )dx = 0, for I with d(I) < 2.
Let η be a C∞0 (Rn) with the properties 0 ≤ η ≤ 1, η = 1 in Br, η = 0 in Rn \B2r

and |Xη| ≤ c
r .

If we set U = η(u − P ) ∈ W 2,2
0 (B2r), since X2P = 0 (see the proof of [17,

Theorem 2.7]), we have X2(u− P ) = X2u and X2U = X2u in Br. We have

η∆u = η(∆u− αa(x, u,Xu,X2u)) + ηαf ,

which implies

|η∆u| ≤ η|∆u− αa(x, u,Xu,X2u)|+ |ηαf |

≤ η[γ|X2u|2 + δ|∆u|2]1/2 + ηα|f |.

Note that

∆U = η∆u+A(u− P ), (3.3)

ηX2u = X2U −B(u− P ), (3.4)

where
A(u− P ) = (u− P )∆η + 2

∑
XiηXi(u− P ) (3.5)

and

B(u− P ) = {(u− P )XiXjη +XiηXj(u− P ) +XjηXi(u− P )}ij .
Then for x ∈ B2r,

|∆U| ≤ |η∆u|+ |A(u− P )| ≤ η(γ|X2u|2 + δ|∆u|2)1/2 + ηα|f |+ |A(u− P )|,
from which it follows that for all ε > 0,

|∆U|2 ≤ η2(γ|X2u|2 + δ|∆u|2) + (ηα|f |+ |A(u− P )|)2

+ 2η(γ|X2u|2 + δ|∆u|2)1/2(ηα|f |+ |A(u− P )|)
≤ η2(γ|X2u|2 + δ|∆u|2) + (ηα|f |+ |A(u− P )|)2

+ εη2(γ|X2u|2 + δ|∆u|2) +
1
ε

(ηα|f |+ |A(u− P )|)2

= (1 + ε)η2(γ|X2u|2 + δ|∆u|2) +
(
1 +

1
ε

)
(ηα|f |+ |A(u− P )|)2
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≤ (1 + ε)η2(γ|X2u|2 + δ|∆u|2) + 2
(
1 +

1
ε

)
(η2α2|f |2 + |A(u− P )|2).

Then from (3.3) and (3.4),

|∆U|2 ≤ (1 + ε)γ|X2(U)−B(u− P )|2 + (1 + ε)δ|∆U −A(u− P )|2

+ 2
(
1 +

1
ε

)
η2α2|f |2 + 2

(
1 +

1
ε

)
|A(u− P )|2

≤ (1 + ε)γ(|X2(U)|2 + |B(u− P )|2 + 2|X2(U)||B(u− P )|)
+ (1 + ε)δ(|∆U|2 + |A(u− P )|2 + 2|∆U||A(u− P )|)

+ 2
(
1 +

1
ε

)
η2α2|f |2 + 2

(
1 +

1
ε

)
|A(u− P )|2

≤ (1 + ε)γ
[
(1 + ε)|X2(U)|2 +

(
1 +

1
ε

)
|B(u− P )|2

]
+ (1 + ε)δ

[
(1 + ε)|∆U|2 +

(
1 +

1
ε

)
|A(u− P )|2

]
+ 2
(
1 +

1
ε

)
η2α2|f |2 + 2

(
1 +

1
ε

)
|A(u− P )|2

≤ (1 + ε)2γ|X2(U)|2 + (1 + ε)2δ|∆U|2

+ c(ε, α, γ, δ)[|A(u− P )|2 + |B(u− P )|2 + |f |2].

We integrate on B2r and apply (2.3) in Theorem 2.3 to obtain∫
B2r

|∆U|2dx ≤ (1 + ε)2γ

∫
B2r

|X2(U)|2dx+ (1 + ε)2δ

∫
B2r

|∆U|2dx

+ c

∫
B2r

(|f |2 + |A(u− P )|2 + |B(u− P )|2)dx

≤ (1 + ε)2(γCG + δ)
∫
B2r

|∆U|2dx

+ c

∫
B2r

(|f |2 + |A(u− P )|2 + |B(u− P )|2)dx.

It follows that

[1− (1 + ε)2(γCG + δ)]
∫
B2r

|∆U|2dx

≤ c
∫
B2r

(|f |2 + |A(u− P )|2 + |B(u− P )|2)dx,

and then ∫
B2r

|∆U|2dx ≤ c
∫
B2r

(|f |2 + |A(u− P )|2 + |B(u− P )|2)dx.

Finally, we get that∫
Br

|X2u|2dx ≤
∫
B2r

|X2U|2dx ≤ CG
∫
B2r

|∆U|2dx

≤ c
∫
B2r

(|f |2 + |A(u− P )|2 + |B(u− P )|2)dx.
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Now we observe that from (3.5) and Poincaré inequality (2.1) we obtain∫
B2r

|A(u− P )|2dx

≤ c
∫
B2r

|∆η|2|u− P |2dx+ c

∫
B2r

∑
|Xiη|2|Xi(u− P )|2dx

≤ cr−2
{
r−2

∫
B2r

|u− P |2dx+
∫
B2r

|X(u− P )|2dx
}

≤ cr−2

∫
B2r

|X(u− P )|2dx.

In the same way, we find that∫
B2r

|B(u− P )|2dx ≤ cr−2

∫
B2r

|X(u− P )|2dx,

from which the Caccioppoli type inequality follows. �

Next we state [19, Theorem 3.3] which is a generalization of the Gehring lemma
[16].

Lemma 3.5. Let U and G be non-negative functions in Ω such that

U ∈ Ltloc(Ω), G ∈ Lsloc(Ω), 1 < t < s.

If there exists c > 1 such that for every B2r b Ω, r < 1,∫
−
Br

U tdx ≤ c
(∫
−
B2r

Udx
)t

+ c

∫
−
B2r

Gtdx,

then there exists ε ∈ (0, s − t] such that U ∈ Lploc(Ω), for all p ∈ [t, t + ε) and, for
every B2r b Ω, with r < 1, we have(∫

−
Br

Updx
)1/p

≤ K
[(∫
−
B2r

U tdx
)1/t

+
(∫
−
B2r

Gpdx
)1/p]

,

where the constant K depends on c, t and Q.

Our main Theorem is now an easy consequence of Caccioppoli-type inequality
(3.2) and Lemma 3.5.

Theorem 3.6. Let u ∈ W 2,2(Ω) be a solution of (3.1) then there exists p0 > 2
such that, if f ∈ Lp(Ω), with 2 ≤ p < p0, then u ∈ W 2,p

loc (Ω) and for all B2r ⊂⊂ Ω
we have (∫

−Br
|X2u|pdx

)1/p

≤ c
(∫
−B2r

|X2u|2dx
)1/2

+
(∫
−B2r

|f |pdx
)1/p

.

Proof. Let B2r ⊂⊂ Ω, from the Caccioppoli-type inequality (3.2) and Poincaré
inequality (2.2) it follows∫

Br

|X2u|2dx ≤ cr−2
(∫

B2r

|X2u|
2Q

Q+2 dx
)Q+2

Q

+
∫
B2r

f2dx ,

from which ∫
−Br
|X2u|2dx ≤ c

(∫
−B2r

|X2u|
2Q

Q+2 dx
)Q+2

Q

+
∫
−B2r

f2dx. (3.6)
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Now we can apply Lemma 3.5 with U = |X2u|
2Q

Q+2 , t = Q+2
Q , G = |f |

2Q
Q+2 and

s = p(Q+2)
2Q , to obtain the thesis. �
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