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A MATRIX FORMULATION OF FROBENIUS POWER SERIES
SOLUTIONS USING PRODUCTS OF 4× 4 MATRICES

JEREMY MANDELKERN

Abstract. In Coddington and Levison [7, p. 119, Thm. 4.1] and Balser [4,

p. 18-19, Thm. 5], matrix formulations of Frobenius theory, near a regular

singular point, are given using 2× 2 matrix recurrence relations yielding fun-
damental matrices consisting of two linearly independent solutions together

with their quasi-derivatives. In this article we apply a reformulation of these

matrix methods to the Bessel equation of nonintegral order. The reformu-
lated approach of this article differs from [7] and [4] by its implementation of

a new “vectorization” procedure that yields recurrence relations of an alto-

gether different form: namely, it replaces the implicit 2× 2 matrix recurrence
relations of both [7] and [4] by explicit 4× 4 matrix recurrence relations that

are implemented by means only of 4×4 matrix products. This new idea of us-
ing a vectorization procedure may further enable the development of symbolic

manipulator programs for matrix forms of the Frobenius theory.

1. Introduction

The first appearance of a Bessel function was in a 1738 memoir by Daniel
Bernoulli [5], [31, p. 356] and since then, numerous books and papers have been
devoted to their properties ([31, ch. XVII], [30], [9, vol. 1, 2, & 3, ch. VI, VII, &
XIX], [10], [27, ch. 1, 4], [1, ch. 9–11], [13], [14], [15], [6], [8], [18], [17], [19], [23],
[24], [26], [27]–[29]).

In this article, we give a matrix recursion involving products of 4 × 4 matri-
ces by which the power series representations of two Bessel functions and their
quasi-derivatives emerge. This approach appears to be new: see, for example, the
historical observations in Section 8 below.

2. Matrix forms of Frobenius theory for second order equations

Consider the first order system with A(x) being a 2× 2 matrix,

X ′ =
1
x
A(x)X, where A(x) =

∞∑
n=0

Anx
n is convergent for |x| < a for some a > 0.

(2.1)
This system is said to have a regular singular point (RSP) at x = 0 and will
therefore have two linearly independent solutions defined for x ∈ (−a, 0) ∪ (0, a).
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We now give the matrix formulation of Frobenius theory from [7, p. 119, Thm. 4.1,
Eq. 4.4] and [4, p. 20, Ex. 2] stated as Theorem 2.1.

Theorem 2.1. Assume A0 has two distinct real eigenvalues r1 and r2, r1 > r2,
r1− r2 6= n, n = 1, 2, 3, . . .. Let P be the invertible change of basis matrix for which

B0 = P−1 ·A0 · P =
[
r1 0
0 r2

]
. (2.2)

Under the above assumptions, every system (2.1) has a unique fundamental matrix
solution of the form

Y (x) = T (x)xB0 , T (x) =
∞∑
n=0

Tnx
n, T0 = P, 0 < |x| < a, (2.3)

where the 2 × 2 matrix coefficients Tn are uniquely determined by the recurrence
relation

Tn (B0 + nI)−A0 · Tn =
n−1∑
m=0

An−m · Tm, n ≥ 1. (2.4)

Remark 2.2. When P (x)y′′+Q(x)y′+R(x)y = 0 with a RSP at x = 0 is converted
to the system form (2.1), the indicial roots, r1 and r2, of this scalar equation, are
identically the eigenvalues of A0.

Remark 2.3. B0 in (2.2)–(2.4) is a “monodromy matrix” and may be calculated
as in (2.2) by a diagonalization of A0 while xB0 may then be explicitly computed
by means of the formula: xB0 = exp(B0 · lnx).

Remark 2.4. The “uniqueness” of the 2× 2 matrix solution in (2.3) results from
the initialization T0 = P and from [4, p. 212, lem. 24] or [16, p. 225, Eq. 32] which
will be discussed further in Section 3.

We now state a definition from Balser [4, p. 18].

Definition 2.5. System (2.1) has a “good spectrum” if no two eigenvalues of A0

differ by a natural number.

Using the definition above, we now give the matrix formulation of Frobenius
theory from [7, p. 119, Thm. 4.1, Eq. 4.2] and [4, p. 19, Thm. 5] stated as Theorem
2.6.

Theorem 2.6. Every system (2.1) with good spectrum has a unique fundamental
matrix solution:

X(x) = S(x)xA0 , S(x) =
∞∑
n=0

Snx
n, S0 = I, 0 < |x| < ρ, (2.5)

where the 2 × 2 matrix coefficients Sn are uniquely determined by the recurrence
relation

Sn(A0 + nI)−A0Sn =
n−1∑
m=0

An−mSm, n ≥ 1. (2.6)

Remark 2.7. Any implementation of recursion relations (2.4) or (2.6) poses consid-
erable difficulty as these relations prohibit explicit representations of the unknown
matrices Sn or Tn in terms of previous Sn’s or Tn’s owing to their appearance once
on the left and once on the right in matrix products.
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To overcome this difficulty indicated above, we now introduce the new idea, a
vectorization procedure.

3. Preliminaries for the vectorization procedure using Theorem 2.1:
Bessel equation

For the Bessel Equation,

(xy′)′ +
(−ν2

x
+ λx

)
y = 0, x > 0, (3.1)

we obtain the 1st order system (2.1) as demonstrated by Baker in [3], where λ = 1.
Thus we set

X =
(
y
xy′

)
(3.2)

to yield

X ′ =
1
x
A(x)X, (3.3)

where
A(x) = A0 +A1x+A2x

2 (3.4)

with

A0 =
[

0 1
ν2 0

]
, A1 = O

2×2
, A2 =

[
0 0
−λ 0

]
.

Before we apply Theorem 2.1 and later Theorem 2.6 to system (3.3)–(3.4), we
first observe that the assumptions r1−r2 6= n, n = 1, 2, 3, . . ., from Theorem 2.1 and
that of a good spectrum from Theorem 2.6 prohibit both the nonzero integer and
the nonzero half-integer values of the indicial roots of (3.1), r1,2 = ±ν. However,
for system (3.3)–(3.4), the assumptions of Theorems 2.1 and 2.6 may be slightly
relaxed to admit the nonzero half-integer values of ν. This analysis follows from a
theorem of Kaplan [21, p. 369, Thm. 5, Eq. 9–40]. Recall in the scalar Frobenius
theory, with the solution ansatz

y(x) =
∞∑
n=0

cnx
n+r,

(3.1) gives rise to the two-term recurrence relation

cn = − λ

(n+ r + v)(n+ r − v)
cn−2,

hence the theorem of Kaplan applies ensuring that two linearly independent non-
logarithmic power series solutions exist whenever the indicial roots r1,2 of (3.1)
satisfy (r1 − r2)/k 6= n, n = 1, 2, 3, . . ..

For the Bessel equation (3.1), Kaplan’s parameter k is 2, so it follows that the
fundamental matrix solutions to (3.3)–(3.4), given by both Theorems 2.1 and 2.6,
are valid so long as ν 6= 1, 2, 3, . . ..

Summarizing, the assumptions on the indicial roots r1,2, in Theorems 2.1 and
2.6, are sufficient (but not necessary) to exclude all the logarithmic cases in the
Frobenius theory as required for Theorems 2.1 and 2.6 to apply. Our objective
now is to apply the matrix form of Frobenius theory, as stated in Theorem 2.1,
to obtain a fundamental matrix solution Y (x, λ) to the system form of the Bessel
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equation (3.3)–(3.4). To this end, we compute the monodromy matrix B0 in (2.2)
by a diagonalization of A0 whose eigenvalues are r1,2 = ±ν. We find

B0 = P−1 ·A0 · P =
[
ν 0
0 −ν

]
, (3.5)

where the matrices

P−1 =
[

1
2

1
2ν

1
2 − 1

2ν

]
, A0 =

[
0 1
ν2 0

]
, P =

[
1 1
ν −ν

]
.

Next we compute the matrix exponential xB0 as

xB0 = exp
([
ν 0
0 −ν

]
lnx
)

=
∞∑
n=0

( 1
n!

[
ν 0
0 −ν

]n
lnn x

)
(3.6)

=

∑∞n=0
1
n!ν

n lnn x 0

0
∑∞
n=0

1
n! (−ν)n lnn x

 =
[
xν 0
0 x−ν

]
. (3.7)

Observe now that the recurrence relation (2.4) for the Bessel equation (3.3)–(3.4)
becomes for n = 2, 3, 4, . . .,

Tn

[
ν + n 0

0 −ν + n

]
−
[

0 1
ν2 0

]
Tn =

[
0 0
−λ 0

]
Tn−2, (3.8)

with the initialization given by (2.3):

T0 = P =
[

1 1
ν −ν

]
.

It follows from A1 = O
2×2

, that T1 = O
2×2

and then from (3.8) that:

T2n−1 = O
2×2

, n = 1, 2, 3, . . . . (3.9)

Now to get T2 from T0, we observe that for n = 2, (3.8) becomes[
a2 b2
c2 d2

] [
ν + 2 0

0 −ν + 2

]
−
[

0 1
ν2 0

] [
a2 b2
c2 d2

]
=
[

0 0
−λ −λ

]
, (3.10)

where we have set

T2 =
[
a2 b2
c2 d2

]
.

Here we can now observe the main obstacle in solving (3.10) for T2: namely, the
matrix T2 appears in a “commutator” form, multiplying a 2 × 2 matrix once on
the left and once on the right, thus prohibiting the explicit solution for T2 in the
matrix form of the recurrence relation (3.10). However, T2 is uniquely determined
by matrix theory from Gantmacher [16, p. 225, Eq. 32] or the restatement as a
lemma in Balser [4, p. 212, Eq. A.1], which asserts that the general commutator
matrix equation for square matrices A, B, C, and X:

A ·X −X ·B = C (3.11)

has a unique solution X if A and B have no common eigenvalues. This criteria
holds in (3.10) with

A = −
[

0 1
ν2 0

]
, B = −

[
ν + 2 0

0 −ν + 2

]
, ν 6= 1, 2, 3, ..., (3.12)
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so the existence of a unique solution of (3.10) for X = T2 follows directly from this
matrix theory.

4. A vectorization procedure

To overcome the commutator equation (3.10), so that a solution procedure for
T2 and more generally Tn emerges, we now introduce a rather simple approach that
seems to have eluded others: namely, we will first write the four scalar equations
for the four unknowns a2, b2, c2 and d2 (well-known) and then generate, by means
of products of suitable 4× 4 matrices (the new idea), an explicit solution formula.
This first yields, by computation of the matrix products in (3.10), the equivalent
4× 4 linear system

(ν + 2)a2 − c2 = 0

(−ν + 2)b2 − d2 = 0

(ν + 2)c2 − ν2a2 = −λ
(−ν + 2)d2 − ν2b2 = −λ

(4.1)

Now we introduce a “vectorization” of the matrices T0, T2, T4, . . . as follows:

⇀

T 0 :=


a0

b0
c0
d0

 =


1
1
ν
−ν

 , where T0 = P =
[
a0 b0
c0 d0

]
=
[

1 1
ν −ν

]
, (4.2)

and for n = 1, 2, 3, . . .,

⇀

T 2n :=


a2n

b2n
c2n
d2n

 , where T2n =
[
a2n b2n
c2n d2n

]
. (4.3)

Thus the rows of the 2× 2 matrices T2n are “stacked” on top of one another to

form the 4×1 vectors
⇀

T 2n. Now in the second stage of our vectorization procedure,
the 4× 4 linear system (4.1) is written as

M2

⇀

T 2 = Λ
⇀

T 0, M2 =


(ν + 2) 0 −1 0

0 (−ν + 2) 0 −1
−ν2 0 (ν + 2) 0

0 −ν2 0 (−ν + 2)

 , (4.4)

Λ :=


0 0 0 0
0 0 0 0
−λ 0 0 0
0 −λ 0 0

 . (4.5)

By the assumption that ν 6= ±1, M2 is invertible and hence:
⇀

T 2 = M−1
2 · Λ ·

⇀

T 0

=


2+ν

4(1+ν) 0 1
4(1+ν) 0

0 2−ν
4(1−ν) 0 1

4(1−ν)
ν2

4(1+ν) 0 2+ν
4(1+ν) 0

0 ν2

4(1−ν) 0 2−ν
4(1−ν)




0 0 0 0
0 0 0 0
−λ 0 0 0
0 −λ 0 0




1
1
ν
−ν

 (4.6)
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=


−λ

22(ν+1)

−λ
22(1−ν)

−λ
22(ν+1)

−λ
22(1−ν)

 .

Finally, we revert from the vector form of the solution to obtain the 2×2 matrix
solution to (3.10) as

T2 =
[
a2 b2
c2 d2

]
=

[
−λ

22(ν+1)
−λ

22(1−ν)
−λ

22(ν+1)
−λ

22(1−ν)

]
. (4.7)

Clearly, the 4 × 4 matrix equation (4.4) is preferable to the 2 × 2 commutator
matrix equation (3.10). Accordingly, we can now proceed to generate a “closed
form” solution of the matrix recurrence relation (3.8) for the Bessel equation by
employing the above vectorization procedure in the general case. Thus, putting
n = 2j in (3.8) and taking

T2j =
[
a2j b2j
c2j d2j

]
,

⇀

T 2j =


a2j

b2j
c2j
d2j

 ,

then the recurrence relation (3.8) becomes

M2j

⇀

T 2j = Λ
⇀

T 2j−2, for j = 1, 2, 3, . . . , (4.8)

where

M2j =


(ν + 2j) 0 −1 0

0 (−ν + 2j) 0 −1
−ν2 0 (ν + 2j) 0

0 −ν2 0 (−ν + 2j)

 .
By the assumption that ν 6= ±1,±2,±3, . . ., M2j is invertible and hence:

⇀

T 2j = M−1
2j · Λ

⇀

·T 2j−2, (4.9)

where

M−1
2j =


2j+ν

4j(j+ν) 0 1
4j(j+ν) 0

0 2j−ν
4j(j−ν) 0 1

4j(j−ν)
ν2

4j(j+ν) 0 2j+ν
4j(j+ν) 0

0 ν2

4j(j−ν) 0 2j−ν
4j(j−ν)

 .
Now proceeding to implement the recursion for n = 2j − 2, 2j − 4, . . . , 2 gives

⇀

T 2j = (M−1
2j Λ)

⇀

T 2j−2 = (M−1
2j Λ)(M−1

2j−2Λ)(M−1
2j−4Λ) · · · (M−1

2 Λ)
⇀

T 0, (4.10)

for j = 1, 2, 3, . . .. So, by our vectorization procedure, it follows that (3.8) becomes

⇀

T 2j =
( j−1∏
N=0

(M−1
2j−2NΛ)

)⇀
T 0, j = 1, 2, 3, . . . . (4.11)
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As all matrices in (4.11) are known, we can compute the product, obtaining

⇀

T 2j =



(−1)j ·λj
22j ·j!·(ν+1)j

(−1)j ·λj
22j ·j!·(1−ν)j

(−1)j ·λj ·(2j+ν)
22j ·j!·(ν+1)j

(−1)j ·λj ·(2j−ν)
22j ·j!·(1−ν)j

 (4.12)

where αj = (α)(α+ 1) · · · (α+ j−1) is the Pochhammer symbol. Finally, we revert
from vector form to yield the closed form 2× 2 matrix solution of (3.8),

T2j =

 (−1)j ·λj
22j ·j!·(ν+1)j

(−1)j ·λj
22j ·j!·(1−ν)j

(−1)j ·λj ·(2j+ν)
22j ·j!·(ν+1)j

(−1)j ·λj ·(2j−ν)
22j ·j!·(1−ν)j

 . (4.13)

From (2.3), (3.7), and (4.13), the fundamental solution to (3.3)–(3.4) given by
Theorem 2.1 is then

Y (x, λ) =
[
y1(x, λ) y2(x, λ)
xy′1(x, λ) xy′2(x, λ)

]
= T (x)xB0 =

( ∞∑
j=0

T2j

)
x2j ·

[
xν 0
0 x−ν

]

=
( ∞∑
j=0

T2j ·
[
xν 0
0 x−ν

])
x2j

=

 ∑∞
j=0

(−1)j ·λj ·x2j+ν

22j ·j!·(ν+1)j

∑∞
j=0

(−1)j ·λj ·x2j−ν

22j ·j!·(1−ν)j∑∞
j=0

(−1)j ·λj ·(2j+ν)·x2j+ν

22j ·j!·(ν+1)j

∑∞
j=0

(−1)j ·λj ·(2j−ν)·x2j−ν

22j ·j!·(1−ν)j

 .

(4.14)

As system (3.3)–(3.4) is the matrix formulation of the Bessel equation (3.1), we may
expect the fundamental matrix (4.14) to contain Bessel functions. This connection
will now be made in the next section.

5. Connection to Bessel functions

From (4.14), the Bessel functions and the modified Bessel functions are not
yet transparent. This is because these special functions receive their definitions
from the standard Frobenius theory, which uses a scalar recurrence relation for the
equations:

x2u′′ + xu′ + (x2 − ν2)u = 0 Bessel equation (5.1)

x2u′ + xu′ − (x2 + ν2)u = 0 modified Bessel equation (5.2)

where no eigenparameter λ appears. The Bessel functions then receive their defi-
nitions by making special choices of constants multiplying the Frobenius solutions
ui(x), i = 1, 2, 3, 4 to (5.1) and (5.2) where u1(x) = y1(x, 1), u2(x) = y2(x, 1),
u3(x) = y1(x,−1), and u4 = y2(x,−1), so that

Jν(x) =
1

2νΓ(ν + 1)
u1(x) =

∞∑
j=0

( (−1)j

j!Γ(ν + 1 + j)

)(x
2

)2j+ν

, (5.3)
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J−ν(x) =
1

2−νΓ(ν + 1)
u2(x) =

∞∑
j=0

( (−1)j

j!Γ(1− ν + j)

)(x
2

)2j−ν
, (5.4)

Iν(x) =
1

2νΓ(ν + 1)
u3(x) =

∞∑
j=0

( 1
j!Γ(ν + 1 + j)

)(x
2

)2j+ν

, (5.5)

I−ν(x) =
1

2−νΓ(ν + 1)
u4(x) =

∞∑
j=0

( 1
j!Γ(1− ν + j)

)(x
2

)2j+ν

. (5.6)

We now wish to identify which Bessel functions are generated in the fundamental
matrix solution Y (x, λ) in (4.14). Comparison between (4.14), (5.3)–(5.6) reveals
that the entries of Y (x, λ) contain weighted Bessel functions of the arguments

√
λx

and
√
|λ|x, or more specifically,

Y (x, λ) =

[
2νΓ(ν + 1)λ−ν/2Jν(

√
λx) 2−νΓ(1− ν)λν/2J−ν(

√
λx)

2νΓ(ν + 1)λ−ν/2xJ ′ν(
√
λx) 2−νΓ(1− ν)λν/2xJ ′−ν(

√
λx)

]
(5.7)

for λ ≥ 0, and

Y (x, λ) =

[
2νΓ(ν + 1)|λ|−ν/2Iν(

√
|λ|x) 2−νΓ(1− ν)|λ|ν/2I−ν(

√
|λ|x)

2νΓ(ν + 1)|λ|−ν/2xI ′ν(
√
|λ|x) 2−νΓ(1− ν)|λ|ν/2xI ′−ν(

√
|λ|x)

]
(5.8)

for λ < 0.

Remark 5.1. (1) One consequence of Theorem 2.1, due to the monodromy matrix
B0 and the initialization T0 = P in the recurrence relation (2.4), is that the funda-
mental matrix solution (2.3) to (3.3)–(3.4) captures the Frobenius solutions to the
scalar Bessel equation (3.1) in the first row of (4.14) and their quasi-derivatives in
the second row.

(2) Evidently the 4× 4 matrix recurrence relation (4.11) has enabled two Bessel
functions and their quasi-derivatives to emerge by a novel means: namely, as prod-
ucts of 4× 4 matrices.

We now demonstrate that our vectorization procedure applies equally well in
implementing Theorem 2.6.

6. An example of the vectorization procedure using Theorem 2.6:
Bessel equation

In this section we take note of the fact that the vectorization procedure, used
to solve the matrix recurrence relation (2.4) in Theorem 2.1, applies equally well
to solve the recurrence relation (2.6) in Theorem 2.6. As it turns out, Theorem
2.6 yields in the first row of its fundamental matrix X(x, λ), linear combinations of
the two Frobenius solutions y1(x, λ) and y2(x, λ), obtained earlier by application of
Theorem 2.1.

We find S2n−1 = O
2×2

, n = 1, 2, 3, . . ., while for n = 2, the recurrence relation

(2.6) yields the system
2a2 + ν2b2 − c2 = 0
a2 + 2b2 − d2 = 0

−ν2a2 + 2c2 + ν2d2 = −λ
−ν2b2 + c2 + 2d2 = 0

(6.1)
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where S2 =
[
a2 b2
c2 d2

]
.

Similarly to equation (4.6), we find by employing a vectorization procedure that

⇀

S 2 :=


a2

b2
c2
d2

 = (M−1
2 Λ)

⇀

S 0

=
1

4(ν2 − 1)


ν2 − 2 ν2 −1 ν2

1 ν2 − 2 1 −1
−ν2 ν4 ν2 − 2 ν2

ν2 −ν2 1 ν2 − 2


︸ ︷︷ ︸

M−1
2


0 0 0 0
0 0 0 0
−λ 0 0 0
0 −λ 0 0


︸ ︷︷ ︸

Λ


1
0
0
1


︸ ︷︷ ︸
⇀
S0

=



−λ
25

{
1

ν+1 + 1
1−ν

}
−λ
25

{
1
ν

[
1

ν+1 + 1
1−ν

]}
−λ
25

{
2+ν
ν+1 + 2−ν

1−ν

}
−λ
25

{
1
ν

[
1

ν+1 + 1
1−ν

]}

 .

⇀

S 2j = (M−1
2j Λ)

⇀

S 2j−2 = (M−1
2j Λ)(M−1

2j−2Λ)(M−1
2j−4Λ) · · · (M−1

2 Λ)
⇀

S 0

=
( j−1∏
N=0

(M−1
2j−2NΛ)

)⇀
S 0

=



(−1)j ·λj
22j+1·j!

{
1

(ν+1)j
+ 1

(1−ν)j

}
(−1)j ·λj
22j+1·j!

{
1
ν

[
1

(ν+1)j
− 1

(1−ν)j

]}
(−1)j ·λj
22j+1·j!

{
2j+ν

(ν+1)j
+ 2j−ν

(1−ν)j

}
(−1)j ·λj
22j+1·j!

{
1
ν

[
1

(ν+1)j
+ 1

(1−ν)j

]}

 , j = 1, 2, 3, . . . ,

(6.2)

and

M−1
2j =

1
4(ν2 − j2)


υ2−2j2

j ν2 −1 ν2

j

1 υ2−2j2

j
1
j −1

−ν2 ν4

j
υ2−2j2

j ν2

ν2

j −ν2 1 υ2−2j2

j

 . (6.3)

Accordingly, the fundamental solution matrix (2.5) is readily calculated as

X(x, λ) =
[
y3(x, λ) y4(x, λ)
xy′3(x, λ) xy′4(x, λ)

]
= S(x)xA0

=
∞∑
j=0

{
S2j ·

[
xν+x−ν

2
xν−x−ν

2ν

ν(xν−x−ν)
2

xν+x−ν

2

]}
x2j

(6.4)

The above expression is a matrix whose first row is

1
2

∞∑
j=0

A2jx
2j+ν +

1
2

∞∑
j=0

B2jx
2j−ν ,

1
2ν

∞∑
j=0

A2jx
2j+ν − 1

2ν

∞∑
j=0

B2jx
2j−ν ,
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and its second row is

1
2

∞∑
j=0

(2j + ν)A2jx
2j+ν +

1
2

∞∑
j=0

(2j − ν)B2jx
2j−ν ,

1
2ν

∞∑
j=0

(2j + ν)A2jx
2j+ν − 1

2ν

∞∑
j=0

(2j − ν)B2jx
2j−ν .

Here A2j and B2j are given by

A2j =
(−1)j · λj

22j · j! · (ν + 1)j
, B2j =

(−1)j · λj

22j · j! · (1− ν)j
, (6.5)

and we have used

xA0 = exp
([ 0 1
ν2 0

]
· lnx

)
=
∞∑
n=0

1
n!

(
P ·
[
ν 0
0 −ν

]
· P−1︸ ︷︷ ︸

A0

)n
· lnn x

=

 xν+x−ν

2
xν−x−ν

2ν

ν(xν−x−ν)
2

xν+x−ν

2

 .
(6.6)

Comparison between (6.4)–(6.5) and (4.14) now reveals:

X(x, λ) =

[
y3(x, λ) y4(x, λ)

xy′3(x, λ) xy′4(x, λ)

]

=

[
1
2y1(x, λ) + 1

2y2(x, λ) 1
2ν y1(x, λ)− 1

2ν y2(x, λ)

x
(

1
2y
′
1(x, λ) + 1

2y
′
2(x, λ)

)
x
(

1
2ν y
′
1(x, λ)− 1

2ν y
′
2(x, λ)

)] , (6.7)

where the first row of X(x, λ) may be represented in terms of Bessel functions as

y3(x, λ)

=

{
1
2λ
−ν/2 · 2νΓ(ν + 1)Jν(

√
λx) + 1

2λ
ν/2 · 2−νΓ(1− ν)J−ν(

√
λx), λ ≥ 0

1
2 |λ|

−ν/2 · 2νΓ(ν + 1)Iν(
√
|λ|x) + 1

2 |λ|
ν/2 · 2−νΓ(1− ν)I−ν(

√
|λ|x), λ < 0

(6.8)

y4(x, λ)

=

{
1
2νλ
−ν/2 · 2νΓ(ν + 1)Jν(

√
λx)− 1

2νλ
ν/2 · 2−νΓ(1− ν)J−ν(

√
λx), λ ≥ 0

1
2ν |λ|

−ν/2 · 2νΓ(ν + 1)Iν(
√
|λ|x)− 1

2ν |λ|
ν/2 · 2−νΓ(1− ν)I−ν(

√
|λ|x), λ < 0

(6.9)

Remark 6.1. One consequence of Theorem 2.6, due to the monodromy matrix A0

and the initialization S0 = I in recurrence relation (2.6), is that the fundamental
matrix solution (2.5) to (3.3)–(3.4) captures linear combinations of Bessel Functions
in the first row of (6.4) with their corresponding quasi-derivatives in the second row.

Lastly we sketch the vectorization procedure as it may be applied to a general
Frobenius-type problem of the non-logarithmic cases.
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7. A vectorization procedure for the general problem

For the general problem with A(x) being a 2× 2 matrix,

X ′ =
1
x
A(x)X =

1
x

[A0 +A1x+A2x+ · · · ]X, (7.1)

recurrence relation (2.4) of Theorem 2.1 is

Tn (B0 + nI)−A0 ·Tn =
n−1∑
m=0

An−m ·Tm = AnT0 +An−1T1 + · · ·+A1Tn−1, n ≥ 1,

(7.2)
where, as in Theorem 2.1,

B0 = P−1 ·A0 · P =
[
r1 0
0 r2

]
, T0 = P. (7.3)

If r1 and r2 are real with r1 > r2, then the assumption that (7.1) has a good
spectrum is

r1 − r2 6= n, n = 0, 1, 2, 3, . . . , (7.4)

which rules out the logarithmic cases of Frobenius theory as required and hence the
vectorization procedure introduced in Section 4 is applicable to solve (7.2). This
fact follows immediately from the lemma of Gantmacher and Balser in (3.11) as
applied to (7.2) since for n = 1, 2, 3 . . ., the eigenvalues r1 +n and r2 +n of B0 +nI
differ from the eigenvalues r1 and r2 of A0 because of assumption (7.4). Thus a
unique solution of (7.2) for the 2×2 matrix Tn must exist and since the right hand
side of (3.11) is immaterial for the application of this lemma, successive solution
for unique T1, T2, . . . , Tn is possible. To illustrate the vectorization procedure in
this general case, consider the first step for n = 1:

T1 (B0 + I)−A0T1 = A1T0. (7.5)

Letting

T0 =
[
a0 b0
c0 d0

]
, T1 =

[
a1 b1
c1 d1

]
, An =

[
Dn En
Fn Gn

]
, n = 0, 1, 2, 3, . . . ,

then the matrix equation (7.5) corresponds to the four scalar equations:

a1(r1 + 1)−D0a1 − E0c1 = D1a0 + E1c0

b1(r2 + 1)−D0b1 − E0d1 = D1b0 + E1d0

c1(r1 + 1)− F0a1 −G0c1 = F1a0 +G1c0

d1(r2 + 1)− F0b1 −G0d1 = F1b0 +G1d0

Writing these in the form of a 4× 4 matrix equation we thus see that the analog of
equation (4.4) is

M1

⇀

T 1 = Λ1

⇀

T 0, where again
⇀

T 0 =


a0

b0
c0
d0

 ,
⇀

T 1 =


a1

b1
c1
d1

 , (7.6)
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and in this general case we find:

M1 =


r1 + 1−D0 0 −E0 0

0 r2 + 1−D0 0 −E0

−F0 0 r1 + 1−G0 0
0 −F0 0 r1 + 1−G0

 , (7.7)

Λ1 =


D1 0 E1 0
0 D1 0 E1

F1 0 G1 0
0 F1 0 G1

 . (7.8)

Hence,
⇀

T 1 = (M−1
1 · Λ1) ·

⇀

T 0, (7.9)
The fact that M1 is invertible follows (under the assumption of good spectrum)
directly from the existence of a unique solution for T1 of equation (7.5). Likewise
in the nth step, recurrence relation (7.2) converts by our vectorization procedure to

Mn

⇀

T n =
n−1∑
m=0

(
Λn−m ·

⇀

Tm

)
, n = 1, 2, 3, . . . , (7.10)

where

⇀

T n =


an
bn
cn
dn

 , Mn =


r1 + n−D0 0 −E0 0

0 r2 + n−D0 0 −E0

−F0 0 r1 + n−G0 0
0 −F0 0 r1 + n−G0

 ,
and where

Λn−m =


Dn−m 0 En−m 0

0 Dn−m 0 En−m
Fn−m 0 Gn−m 0

0 Fn−m 0 Gn−m

 .
A closed form representation for

⇀

T n is then

⇀

T n = M−1
n ·

( n−1∑
m=0

(
Λn−m ·

⇀

Tm
))

=
n−1∑
m=0

((
M−1
n · Λn−m

)
·
⇀

Tm

)
, (7.11)

for n = 1, 2, 3, . . ., which formulates the 4 × 1 vector
⇀

T n explicitly as a sum of
products of 4× 4 matrices with 4× 1 vectors whose representations are all readily
obtained from this section. Therefore, under the assumption of good spectrum of
system (7.1), our vectorization procedure indeed applies in the general case.

In the last section, we give a brief history of the Bessel equation and the power
series method. We also summarize the work of prior authors towards the Bessel
equation in chronological order.

8. Some history on the Bessel equation and the power series method

The Bessel equation x2w′′+xw′+(x2−a2)w = 0 takes its name from the German
astronomer F. W. Bessel who in 1824, while studying the perturbations of the
planets, began the development of the now extensive theory of its solutions (see [6]).
In Bessel’s treatment, he assumed the parameter a to be an integer and managed
to obtain integral definitions of the Bessel functions (Schlömilch and Lipschitz later
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named these functions after Bessel [19, p. 319]). Interestingly, the now standard
power series representations for the Bessel functions (5.3-5.4) do not appear in
Bessel’s 1824 seminal paper and they are also missing from the original papers of
Frobenius and Fuchs (see [14]–[13]). Given that the power series solution ansatz was
originated by L. Euler [2, p. 204] and thus it predates the work of Bessel, Frobenius,
and Fuchs, these omissions are notable. In fact, the power series formulas for the
Bessel functions arose first not from the Euler/Frobenius/Fuchsian theory but from
Bessel’s integral representations and thus it is these integral representations that
appear in the early books (compare E.C.J. von Lommel [23], C.G. Neumann [24],
and G. N. Watson [30, ch. 2]).

Some special instances of series expansions of Bessel functions were however
generated before Bessel’s 1824 paper through investigations to such varied topics
as the oscillations of heavy chains and circular membranes, elliptic motion, and heat
conduction in cylinders (see [5] for instance where D. Bernoulli, in 1738, obtained an
open form series expansion of a Bessel function of order 0 or [10] where L. Euler, in
1764, generated a Bessel series while investigating vibrations of a stretched circular
membrane. Below is a summary of the extent of prior author’s treatments of the
Bessel equation using the Euler/Frobenius/Fuchsian power series method and its
matrix forms (references and pages indicated).

Key for the following table:
I Solutions of a scalar Bessel equation are obtained as a power series near
x = 0 using the power series method.

II A 2× 2 matrix formulation of the power series method for 2nd order equa-
tions is given.

III A 2× 2 matrix form of the Bessel equation is given.

Author(s); Year; Reference I II III

F. W. Bessel; 1824; [6] No No No

L. Fuchs; 1866, 1868; [14], [15] No No No

C. G. Neumann; 1867; [24] No No No

E. C. J. von Lommel; 1868; [23] No No No

G. Frobenius; 1873; [13] No No No

A. Gray, G. B.Matthews; 1895; [18] Yes, p. 7–12 No No

L. Schlesinger; 1897; [28] No No No

L. Schlesinger; 1900, 1904, 1922; [29] Yes, p. 274-279 Yes, p.132-142 No

A. R. Forsythe; 1902; [12] Yes, p.100–102 No No

H. F. Baker; 1902; [3] No Yes, p. 335 Yes, p.348
Whittaker, Watson; 1902, 1915,
1920, 1944; [31]

Yes, p.197-202 No No

A. R. Forsythe; 1903, 3rd ed.; [11] Yes, p.176-186, 6th ed. No No

N. Nielsen; 1904; [25] Yes, p. 4–5 No No

G. N. Watson; 1922, 1944; [30] Yes, p.38–42, 57-63 No No
R. Courant, D. Hilbert; 1924,
1931; [8]

Yes, p.260, 418 No No

E. L. Ince; 1926; [20] Yes, p.403-404 Yes, p.408-415 Yes, p.415

A. Erdelyi; 1953; [9] Yes, p.4–5 No No

Lappo-Danilevsky; 1936; 1953; [22] No Yes, p.143 No

Coddington, Levison; 1955; [7] No Yes, ch.4, p.119 No

Abramowitz, Stegun; 1964; [1] Yes, p.360; 437 No No

E. Hille; 1969; [19] Yes, p.319-320 Yes, p.188-191,239-250 No



14 J. MANDELKERN EJDE-2015/212

W. Balser; 2000; [4] Yes, p.23 Yes, ch.2, p.19 No

Olver et al; 2010; [26] Yes, p.217 No No

So it appears that the power series method was not applied to the Bessel Equation
until some years after the original papers of Frobenius and Fuchs, (see [13]–[15]).
As indicated in the table, the earliest application of the Euler/Frobenius/Fuchsian
power series method to the Bessel Equation that I could find was in the 1895 book
of Gray and Matthews [18]. Also, as revealed by the above table, only two authors
appear to have written the Bessel equation in a matrix form, first Baker in [3]
and then later Ince in [20]. Note though that neither of these authors attempted
to apply their 2 × 2 matrix forms of the power series method to the matrix form
of the Bessel equation so as to obtain a 2 × 2 fundamental matrix as given in
this paper in (4.14). This fact appears to stem from the computational difficulty
of generating the solution matrix X of (3.11) for use in implementing the matrix
recurrence relations (2.4) or (2.6), a matter not addressed by Schlesinger [29], Baker
[3], Ince [20], Lappo-Danilevsky [22], Coddington and Levison [7, ch. 4], Hille [19],
or Balser [4, ch. 2], all who formulated a 2 × 2 matrix power series formulation
of the Euler/Frobenius/Fuchsian theory. At least it appears that none of these
authors provide a nontrivial example of a matrix equation for which the recurrence
relations (2.4) or (2.6), in Theorems 2.1 and 2.6, were successfully solved to yield
an explicit representation of the fundamental matrix solution in (2.3) or (2.5).

A search of the literature leads this author to believe that the development
of a general method to properly resolve the computational difficulty in (2.4) and
(2.6), associated with the 2 × 2 matrix power series method, has indeed been left
undone. This is further supported by a remark of Ince [20, p. 415], where in specific
reference to the matrix form of the Bessel Equation (3.3)-(3.4), with ν = 1, he
states, “The scope of the matrix method is very wide, but its successful application
demands a knowledge of theorems in the calculus of matrices which cannot be given
here.” Likewise, after Hille furnishes his solution ansatz to the matrix equation
w′(z) = F (z) ·w(z) involving a regular singular point at the origin, and defines his
“resolvent of the commutator”, he states, “Thus the formal solution is well defined,
if not explicitly known”, [19, p. 233].

It should be noted though that two authors did however come close to obtaining
an explicit solution of the 2×2 matrix recurrence relation. Both Lappo-Danilevsky
in [22] and then later Hille in [19] proposed highly theoretical solutions to the 2× 2
matrix recurrence relation using a 2× 2 matrix theory. Lappo-Danilevsky’s theory
appears to be invoked in Hille’s resolvent of the commutator [19, p. 233], which, in
principle, is a matrix inverse operator that if one could explicitly obtain it, then it
would theoretically yield the general solution to the 2×2 matrix recurrence relation
in (2.4) or (2.6) or (7.2); and, in particular, the solution (4.14) obtained here would
be expressible as a product of suitable 2× 2 matrices. The fact though that there
is no implementation to any specific examples of the Lappo-Danilevsky theory or
the Hille theory in their works or in any of the works by the later authors who
also gave a 2× 2 matrix formulation of the Frobenius theory does indicate that an
explicit solution to the 2× 2 matrix recurrence relation that could be implemented
in the general case as shown in Section 7 has heretofore eluded previous authors.
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9. Conclusion

In the literature, prior matrix treatments of Frobenius theory, like Theorem 2.1
and 2.6, make use of coupled matrix recurrence relations that pose considerable
difficulties in their implementation. The new idea outlined in this paper, our vec-
torization procedure, appears to provide a rather elegant means to reformulate the
matrix recurrence relations of both Theorem 2.1 and 2.6 into equivalent recurrence
relations that require only computation of well-defined matrix products and sums.
It can also be noted that our vectorization procedure seems to generalize and ap-
ply to the third order, fourth order, . . ., nth order Frobenius-type problems of the
non-logarithmic cases and near regular singular points by generating equivalent re-
currence relations that require only matrix multiplications and sums involving 9×9
matrices, 16× 16 matrices, · · · , n2 × n2 matrices respectively.
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improved this paper’s exposition. In particular, in Section 5: Connection to Bessel
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10. Addendum posted on May 11, 2017

The author wants to correct the two 4 × 4 matrices M1 and Mn appearing in
equations (7.7) and (7.10), respectively. They were printed with typos in the 4th
row, 4th column. These matrices should read:

M1 =


r1 + 1−D0 0 −E0 0

0 r2 + 1−D0 0 −E0

−F0 0 r1 + 1−G0 0
0 −F0 0 r2 + 1−G0

 , (10.1)

Mn =


r1 + n−D0 0 −E0 0

0 r2 + n−D0 0 −E0

−F0 0 r1 + n−G0 0
0 −F0 0 r2 + n−G0

 . (10.2)

End of addendum
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