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ARBITRARY NUMBER OF LIMIT CYCLES FOR PLANAR
DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL

SYSTEMS WITH TWO ZONES

DENIS DE CARVALHO BRAGA, LUIS FERNANDO MELLO

Abstract. For any given positive integer n we show the existence of a class
of discontinuous piecewise linear differential systems with two zones in the

plane having exactly n hyperbolic limit cycles. Moreover, all the points on

the separation boundary between the two zones are of sewing type, except the
origin which is the only equilibrium point.

1. Introduction and statement of main results

One of the most challenging problems in the qualitative theory of planar ordinary
differential equations is the second part of the classical 16th Hilbert problem: the
determination of an upper bound for the number of limit cycles (and their relative
positions) for the class of polynomial vector fields of degree n. This problem remains
unsolved if n ≥ 2. The case n = 1, that is for the class of planar linear vector fields
the problem has a trivial answer. However, this problem presents a surprising
richness when adapted to the class of the planar piecewise linear systems.

Planar piecewise linear differential systems are widely studied nowadays because
of their applicability in several branches of science. A landmark of such study was
the work of Andronov et al. [1]. There is an expectation that these systems can
present all the dynamical behaviors of the classical nonlinear differential systems.

In this article, we study the existence, number, stability and distribution of limit
cycles for a class of piecewise linear differential systems in the plane. These issues
must be studied taking into account the following aspects: the number and stabil-
ity of equilibrium points as well as their locations with respect to the separation
boundary L (which defines the number of zones) and the behavior of the linear
vector fields on L. Usually, the points of discontinuity on the separation boundary
L are classified as sewing, sliding or tangency points. Here the term sliding is used
in a broad sense meaning sliding or escaping points. See [9] and the references
therein for more details.

Without being exhaustive we present below some results relative to the study of
limit cycles in piecewise linear differential systems in the plane. For the simplest
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case, that is for planar piecewise linear differential systems with two zones separated
by a straight line L and with only one equilibrium point p ∈ L, we have the following
results:

(i) With the additional hypothesis of the continuity on L\{p}, there is at most
one limit cycle [4];

(ii) With the additional hypothesis that the points on L\{p} are of sewing type,
there is at most one limit cycle [10];

(iii) With the additional hypothesis of the existence of a sliding segment on
L\{p}, there are examples with two limit cycles surrounding the sliding
segment [5].

The answer to the existence and the number of limit cycles in piecewise linear
systems with more than two zones in the plane was given in [6]. In that article
the authors provided an example of a planar piecewise linear Liénard system with
an arbitrary number of limit cycles all of them hyperbolic. More precisely, given a
positive integer n the authors showed, using the averaging theory, that the system
under consideration can have at least n limit cycles in the strip |x| ≤ 2n+ 2 for a
parameter ε ∈ R sufficiently small. Llibre, Ponce and Zhang [8] proved a conjecture
of [6] in which the upper bound for the number of limit cycles can be achieved for
a fixed n.

Recent studies suggest that three is the maximum number of limit cycles for
planar discontinuous piecewise linear differential systems with two zones separated
by a straight line L and only one equilibrium point p /∈ L. Numerical examples
which support this statement can be found in [2] and [7].

The separation boundary L between the two zones plays an important role in
planar discontinuous piecewise linear differential systems with only one equilibrium
point p /∈ L. The article [3] exhibits an example of such a system with seven limit
cycles having L as a polygonal curve.

Here we show that a planar discontinuous piecewise linear differential system
with two zones can have an arbitrary number of limit cycles, that is, the main
idea in [8] still remains for only two zones. So, we study the following class of
discontinuous piecewise linear differential with two zones in the plane

X ′ =

{
G−X, H(X) < 0,
G+X, H(X) ≥ 0,

(1.1)

where the prime denotes derivative with respect to the independent variable t,
called here the time, X = (x, y) ∈ R2 and

G± =
(
g±11 g±12

g±21 g±22

)
, (1.2)

are matrices with real entries satisfying the following assumptions:
(A1) g±12 < 0;
(A2) G− has complex eigenvalues with negative real parts, λ−1,2 = γ−±iω−, while

G+ has complex eigenvalues with positive real parts, λ+
1,2 = γ+±iω+, where

γ±, ω± ∈ R and ω± > 0.
In addition,

(A3) the function H is at least continuous and the set H−1(0) divides the plane
in two unbounded components, that is the function H implicitly defines
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a simple planar curve homeomorphic to the real line and whose trace is
unbounded.

A member of the class (1.1) will be denoted by (G−, G+,H). Note that the hy-
pothesis (A3) ensures the existence of only two zones whose separation (boundary)
set is defined by LH = {X ∈ R2 : H(X) = 0}.

Our goal is to build a suitable function Ψ satisfying the assumptions on H and
to choose matrices G− and G+ in the Jordan normal forms J± such that, for any
positive integer n, the system (J−, J+,Ψ) has exactly n hyperbolic limit cycles.
Furthermore, 0 = (0, 0) ∈ H−1(0) and LH\{0} is a sewing set. As far as we know,
it is the first example of such systems. We prove the following main theorem.

Theorem 1.1. Given any positive integer n there is a planar piecewise linear
differential system with two zones (J−, J+,Ψ) having n hyperbolic limit cycles.

Novaes and Ponce [11] obtained examples of planar piecewise linear differential
systems with two zones having n limit cycles, for every positive integer n. However,
the limit cycles obtained can be non-hyperbolic.

This article is structured as follows. In Section 2 we present the proof of Theorem
1.1 and we give an example of such a system with ten limit cycles. In the last section
we make some concluding remarks.

2. Proof of main results

We consider the case in which the matrices G+ and G− are in the Jordan normal
forms; that is,

J± =
(
γ± −ω±
ω± γ±

)
. (2.1)

The solutions of X ′ = J−X will be denoted by

(t,X0) 7→ X−(t,X0) = (x−(t,X0), y−(t,X0)),

while the solutions of X ′ = J+X will be denoted by

(t,X0) 7→ X+(t,X0) = (x+(t,X0), y+(t,X0)),

where
x±(t,X0) = eγ

±t
(
cos(ω±t)x0 − sin(ω±t)y0

)
,

y±(t,X0) = eγ
±t
(
sin(ω±t)x0 + cos(ω±t)y0

)
.

(2.2)

In Lemma 2.1 we present a result associated with the system (J−, J+,Φ), where

X 7→ Φ(X) = x− φ(y)

and
y 7→ φ(y) = ρv(y), (2.3)

with ρ > 0, s ∈ R 7→ v(s) = s u(s) and

s ∈ R 7→ u(s) =

{
0, s < 0,
1, s ≥ 0

is the unit step function.
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Figure 1. Displacement function (y0, ρ) 7→ δφ(y0, ρ).

Lemma 2.1. Let η− < 0 and η+ > 0 be numbers satisfying −η− < η+ < −3η−,
where η± = γ±/ω±, and define

ρc = tan
(
π
η+ + η−

η+ − η−
)
.

Then, the origin of the system (J−, J+,Φ) is:
(a) An unstable focus, if 0 < ρ < ρc,
(b) A stable focus, if ρ > ρc,
(c) A center, if ρ = ρc.

Proof. Let X0 = (x0, y0) = (φ(y0), y0) ∈ LΦ be any initial condition with y0 > 0.
The displacement function is defined by

(y0, ρ) 7→ δφ(y0, ρ) = y+(−τ+, X0)− y−(τ−, X0), (2.4)

where τ− > 0 is the smallest time such that X−(τ−, X0) ∈ LΦ, and τ+ > 0 is the
smallest time such that X+(−τ+, X0) ∈ LΦ. See Figure 1.

From (2.2) and (2.3), the time τ− is the solution of the equation x−(τ−, X0) = 0
and is given by

τ− = τ−(y0, ρ) =
1
ω−

(
arctan

(x0

y0

)
+ π

)
, (2.5)

and τ+ is the solution of x+(−τ+, X0) = 0, and is given by

τ+ = τ+(y0, ρ) = − 1
ω+

(
arctan

(x0

y0

)
− π

)
. (2.6)

Thus,

y−(τ−, X0) = −eγ
−τ−

√
x2

0 + y2
0 ,

y+(−τ+, X0) = −e−γ
+τ+

√
x2

0 + y2
0 ,

(2.7)
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and, therefore,

(y0, ρ) 7→ δφ(y0, ρ) = ∆φ(y0, ρ)
√
φ(y0)2 + y2

0 ,

where

(y0, ρ) 7→ ∆φ(y0, ρ) =
(
eγ

−τ− − e−γ
+τ+

)
= e−γ

+τ+
(
eγ

−τ−+γ+τ+
− 1
)
. (2.8)

From (2.5) and (2.6), we have

ρ 7→ a(ρ) = γ−τ− + γ+τ+ = π(η+ + η−)− (η+ − η−) arctan(ρ) (2.9)

and a(ρ) = 0 implies

ρ = ρc = tan
(
π
η+ + η−

η+ − η−
)
.

If −η− < η+ < −3η−, then ρc > 0. So, for any y0 > 0 such that

x0 = φ(y0) = ρcy0u(y0) = ρcy0,

δφ(y0, ρc) ≡ 0. This proves item (c). Items (a) and (b) follow from x0 = ρv(y0)
and (2.9) since s 7→ arctan(s) is a monotonically increasing function. �

Figure 2. The graphs of the functions y 7→ φ(y) and y 7→ ψ(y)
are illustrated by continuous black and orange lines, respectively.

Given an integer number n ≥ 1, consider the finite sequences {ul}l∈N and
{vl}l∈N , where

ul = (2l − 3)ru(l − 2),

vl =
1
ρc

(
ul + (−1)lεu(l − 2)

)
,

(2.10)

for l ∈ N = {1, 2, . . . , n+2}, r, ε ∈ R satisfying 0 < ε < r. So v1 < v2 < · · · < vn+2.
Consider

X 7→ Ψ(X) = x− ψ(y),
where

y 7→ ψ(y) = u1 +
n+1∑
k=1

αk (v(y − vk)− βkv(y − vk+1)) , (2.11)
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and the real numbers αk and βk are given by

αk =
uk+1 − uk
vk+1 − vk

, k = 1, 2, . . . , n+ 1,

βk =

{
1, k = 1, . . . , n,
0, k = n+ 1.

The sets LΦ and LΨ have intersections at the points pi = (xi, yi) ∈ R2, with
xi = 2ri,

yi =
1
ρc
xi =

2r
ρc
i,

(2.12)

for i = 1, . . . , n. In fact,

y 7→ g(y) = ψ(y)− φ(y)

= u1 +
n+1∑
k=1

αk (v(y − vk)− βkv(y − vk+1))− ρcv(y)

is a continuous function on the closed interval [vj , vj+1] satisfying g(v1) = 0 and

g(vj) =
n+1∑
k=1

F (j, k) =
j−1∑
k=1

F (j, k) + F (j, j) +
n+1∑
k=j+1

F (j, k)− ρcv(vj),

for j = 2, . . . , n+ 1, where

F (j, k) = αk(v(vj − vk)− βkv(vj − vk+1)).

Since {vl}l∈N is a monotone increasing finite sequence, it follows that

g(vj) =
j−1∑
k=1

F (j, k)− ρv(vj)

=
j−1∑
k=1

αk(vk+1 − vk)− ρcvj

=
j−1∑
k=1

(uk+1 − uk)− ρcvj = (1 + 2(j − 2))r − ρcvj

= (2j − 3)r −
(
(2j − 3)r + (−1)jε

)
= (−1)j+1ε,

for j = 2, . . . , n+ 1.
Thus g(vi+1)g(vi+2) = −ε2 < 0 for i = 1, . . . , n and by Bolzano’s Theorem the

function y 7→ g(y) has at least n zeros. Since the function y 7→ ψ(y) is piecewise
linear and the union of straight lines of the form

y ∈ [vl, vl+1] 7→ Ll(y) = αl(y − vl) + ul, (2.13)

for l = 1, . . . , n + 1, there exist exactly n zeros, that is there exists a unique
yi ∈ [vi+1, vi+2] such that g(yi) = 0. Moreover, it is easy to see that

yi =
vi+1 + vi+2

2
=

1
ρc

ui+1 + ui+2

2
,

is such as in (2.12) for i = 1, . . . , n.
The n points pi = (xi, yi) ∈ R2 given by (2.12) are zeros of the displacement

function y0 7→ δψ(y0) associated with the system (J−, J+,Ψ).
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Here we studied only the case in which η− and η+ are such as in Lemma 2.1
and in addition η+ < −1/η− although other choices are possible. The slope of the
straight line y 7→ L1(y) = α1y is

α1 =
1
ρc

(
1 +

ε

r

)
.

Thus, we take ρc such that
v2 − v1

u2 − u1
=

1
ρc

(
1 +

ε

r

)
<

2
ρc

< − 1
η−

and
v3 − v1

u3 − u1
=

1
ρc

(
1− ε

3r

)
>

2
3ρc

> η+

for 0 < ε < r. Therefore,

− 1
3η+

< η− < 0,

−2η− < tan
(
π
η+ + η−

η+ − η−
)
<

2
3η+

.

(2.14)

Figure 3. The set R is illustrated by the blue region. The con-
tinuous black, red and brown lines represent the graphs of the sets
C1, C2 and C3, respectively.

From the inequalities

− 1
3η+

< η− < 0, η− < η+,

−η− < η+ < −3η−, η+ < −1/η−,

−2η− < tan
(
π
η+ + η−

η+ − η−
)
<

2
3η+

,
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we obtain the following main functions

s 7→ h1(s) = −π − arctan(2s)
π + arctan(2s)

s,

s 7→ h2(s) = −
π − arctan

(
2
3s

)
π + arctan

(
2
3s

)s,
s 7→ h3(s) = − 1

3s
and the set

R =
{

(η−, η+) ∈ R2 : η+ > h1(η−), η− < h2(η+)
}
.

The set R is illustrated in Figure 3. The points q1 and q2 (displayed only with six
decimals) are given by

q1 = (η−1 , η
+
1 ) = (0, 0) ∈ C1 ∩ C2,

q2 = (η−2 , η
+
2 ) = (−0.454479, 0.733439) ∈ C1 ∩ C2 ∩ C3,

where

C1 = {(η−, η+) ∈ R2 : η+ = h1(η−)},
C2 = {(η−, η+) ∈ R2 : η− = h2(η+)},
C3 = {(η−, η+) ∈ R2 : η+ = h3(η−)}.

Figure 4. The dashed red lines are the nullclines associated with
X ′ = J−X and the dashed blue ones are the nullclines associated
with X ′ = J+X. The orange and black continuous lines are the
graph of the sets Ψ−1(0) and Φ−1(0), respectively.
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It follows that the vector fields J−X and J+X are both transversal to the set LΨ

if (η−, η+) ∈ R. This means that the set LΨ\{0} is a sewing set according to Figure
4. Therefore if X0 = (x0, y0) = (ψ(y0), y0) ∈ LΨ and employing the same previous
notation, there exists the smallest time τ− > 0 such that X−(τ−, X0) ∈ LΨ or
more precisely x−(τ−, X0) = 0. In the same way there exists the smallest time
τ+ > 0 such that X+(−τ+, X0) ∈ LΨ or x+(−τ+, X0) = 0. Moreover, the times
τ− and τ+ are the same as given in (2.5) and (2.6); that is,

τ− = τ−(y0) =
1
ω−

(
arctan

(x0

y0

)
+ π

)
, (2.15)

τ+ = τ+(y0) = − 1
ω+

(
arctan

(x0

y0

)
− π

)
. (2.16)

Thus, the following function is well defined

y0 7→ δψ(y0) = y+(−τ+, X0)− y−(τ−, X0), (2.17)

where y−(τ−, X0) and y−(τ−, X0) are such as in (2.7).
The function y0 7→ δψ(y0) can be rewritten as

y0 7→ δψ(y0) = ∆ψ(y0)
√
ψ(y0)2 + y2

0 ,

where

y0 7→ ∆ψ(y0) =
(
eγ

−τ− − e−γ
+τ+

)
= e−γ

+τ+
(
eγ

−τ−+γ+τ+
− 1
)
. (2.18)

From (2.12), (2.18) and Lemma 2.1, it follows that the system (J−, J+,Ψ) has
n limit cycles since δψ(yi) = 0, for i = 1, . . . , n.

To show that the n limit cycles are all hyperbolic we take an open interval
Ii ⊂ [vi+1, vi+2] such that yi ∈ Ii for i = 1, . . . , n, since the function y 7→ ψ(y) is
not differentiable at all the points in its domain. Thus, for y0 ∈ Ii the derivative of
y0 7→ δψ(y0) with respect to y0 is

d

dy0
δψ(y0) =

d

dy0
∆ψ(y0)

√
ψ(y0)2 + y2

0 + ∆ψ(y0)
d

dy0

√
ψ(y0)2 + y2

0 , (2.19)

where

y0 7→
d

dy0
∆ψ(y0) =

d

dy0

(
eγ

−τ− − e−γ
+τ+

)
= γ−eγ

−τ− d

dy0
τ−(y0) + γ+e−γ

+τ+ d

dy0
τ+(y0).

From (2.13) it results that

x0 = Li+1(y0) = αi+1(y0 − vi+1) + ui+1

and the derivatives of (2.15) and (2.16) with respect y0 are

d

dy0
τ−(y0) =

αi+1vi+1 − ui+1

ω−(Li+1(y0)2 + y2
0)
,

d

dy0
τ+(y0) = − αi+1vi+1 − ui+1

ω+(Li+1(y0)2 + y2
0)
.

Therefore, for y0 = yi ∈ Ii and from (2.10) and (2.12),

d

dy0
τ−(yi) = − 1

ω−
(−1)iεS(ρc, r, ε, i),
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d

dy0
τ+(yi) =

1
ω+

(−1)iεS(ρc, r, ε, i),

where

S(ρc, r, ε, i) =
ρ2
c

2ri(r + (−1)iε)(1 + ρ2
c)
> 0 (2.20)

for i = 1, . . . , n and 0 < ε < r. So

d

dy0
∆ψ(yi) = γ−eγ

−τ− d

dy0
τ−(yi) + γ+e−γ

+τ+ d

dy0
τ+(yi)

= (−1)iε
(
η+e−γ

+τ+
− η−eγ

−τ−
)
S(ρc, r, ε, i)

and taking into account the result (2.20) and that η+e−γ
+τ+ − η−eγ

−τ− > 0,
0 < ε < r and ∆ψ(yi) = 0 it follows from (2.19) that

d

dy0
δψ(yi) =

d

dy0
∆ψ(yi)

√
x2
i + y2

i (2.21)

is different from zero. This implies that the n limit cycles are all hyperbolic. Fur-
thermore if i ∈ {1, . . . , n} is odd (or even) then the associated limit cycle is stable
(or unstable). Note that with the choice (2.10) the first limit cycle is always an
attractor limit cycle. Also note that the period of each limit cycle is constant and
given by τ− + τ+ (see (2.15) and (2.16)) and can be made equal to 2π through a
different time rescaling in each zone which becomes ω− = ω+ = 1. Theorem 1.1 is
proved.

Figure 5. The set R is illustrated by the blue region. The black
dot represents the pair (η−, η+) = (−0.3, 0.5) ∈ R.

Now we present an example with ten limit cycles.
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Figure 6. Phase portrait of the system (J−, J+,Ψ) with ten limit
cycles for (η−, η+) = (−0.3, 0.5) ∈ R, r = 1, ε = 0.5 and n = 10.
The stable (unstable) limit cycles are illustrated by blue (red) lines.

Figure 7. The continuous black line is the graph of the dis-
placement function y0 7→ δψ(y0) of (J−, J+,Ψ) for (η−, η+) =
(−0.3, 0.5) ∈ R, r = 1, ε = 0.5 and n = 10. The stable limit cycles
are illustrated by blue dots and the unstable by red dots.

Example 2.2. In this example we consider the case η− = −0.3 and η+ = 0.5; that
is, ρc = 1 and the pair (η−, η+) ∈ R (see Figure 5).

For r = 1, we choose ε = 0.5. According to Theorem 1.1, with these values and
n = 10, there exists a system (J−, J+,Ψ) such that its phase portrait has exactly
ten hyperbolic limit cycles. This result is summarized in Figures 6 and 7.

2.1. Concluding remarks. In this article, we study one of the main problems in
the qualitative theory of planar differential equations: the number and distribution
of limit cycles in piecewise linear differential systems with two zones in the plane.

We give a rigorous proof of the existence of an arbitrary number of limit cycles
in piecewise linear differential systems with two zones in the plane. See Theorem
1.1. Based on our results we prove the conjecture about the existence of a piecewise
linear differential system with two zones in the plane with exactly n limit cycles,
for any n ∈ N. See [3].
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