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UNIQUENESS OF SOLUTIONS TO BOUNDARY-VALUE
PROBLEMS FOR THE BIHARMONIC EQUATION IN A BALL

VALERY V. KARACHIK, MAKHMUD A. SADYBEKOV, BERIKBOL T. TOREBEK

ABSTRACT. In this article we study a generalized third boundary-value prob-
lem for homogeneous biharmonic equation in a unit ball with general bound-
ary operators up to third order inclusively, containing normal derivatives and
Laplacian. A uniqueness theorem for the solution is proved, and some exam-
ples are given.

1. INTRODUCTION

Mathematical modeling of deformation problems of the plane theory of elasticity
is reduced in many cases to problems for the biharmonic equation under the corre-
sponding boundary conditions. Numerous scientific researches [1, 2] [3, [6] [7, [8, 23]
are devoted to the application of the biharmonic problems in mechanics and physics.
The necessity of modeling of complex processes leads to problems with more gen-
eral, than classical, boundary conditions.

The Dirichlet boundary-value problem is more well-researched problem for the
biharmonic equation. Despite this fact many such problems have not been investi-
gated until the last time. For example, the Green’s function of the Dirichlet problem
for the polyharmonic equation in the unit ball has been constructed rather recently
in [11) 12].

In recent years such boundary-value problems as the problems by Riquier, Neu-
mann, Robin for the biharmonic equation are actively studied. The questions of
spectral geometry are investigated both for classical Dirichlet and Neumann prob-
lems and for the boundary-value problems of Steklov’s type. Due to this fact the
questions of well-posedness of the boundary-value problems with more general than
classical, boundary conditions acquire relevance.

In this article a boundary-value problem with general boundary conditions for
the biharmonic equation in the unit ball is considered. Let S = {z € R™ : |z| < 1}
be n-dimensional unit ball in R” and 95 = {z € R™ : |z| = 1} be the unit sphere.
Hereinafter |z| = /23 + 23 + ... + 22.

In the unit ball S we consider the following boundary-value problem for the
biharmonic equation

A*u= f(z), x€S, (1.1)
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Aot + a012u + ageAu = ¢1(s), s€ 098,
v
5 P (1.2)
ajot + a11 —u + aAu + a13—Au = @a(s), s€09S

v v
where a% is the exterior normal derivative. Here the coefficients ap; and ai; at
Jj = 1,2,3 are real constants, and f(z),¢1(x), p2(z) are given sufficiently smooth
functions.

As a solution of the problem — we call a function from the class u €
C*(S) N C3(S) turning equation and the boundary conditions into the
identity.

Note that this problem generalizes the classical Dirichlet problem [19] 20] (a0 =
1, a11 = 1, and all other coefficients are zero), the Riquier’s problem [14] (ago = 1,
a12 = 1, and all other coefficients are zero), but does not generalizes the Neumann

problem [16], 17 18]
A?u(z) = f(z),z € S,

ou 0%u
o v1(8), 22 v2(s),s € DS.

When agg = 1, a12 > 0, a;1 < 0, and all other coefficients are zero, the conditions
(1.2)) are called the Steklov’s conditions [9].

Problem — was considered in [22]. The necessary conditions of the
solution’s uniqueness are found. In particular it was shown that if

app  Go1 + napz
0, 1.3
aip ai1 +naiz 7 (13)

then u =Const is not a solution of the homogeneous problem —. In this
article a criterion of the uniqueness of asolution to — is established.

Note that for various values of the coefficients ap; and a1; problem -
coincides with the problems considered in [6], 10, 24} [5]. In [28] @, 25| 29, 2] the
existence of solutions to the Neumann problem and other boundary-value problems
for the biharmonic equation with an operator of the fractional order in boundary
conditions are investigated. Also note that [27] 26| [I5] [13] are devoted to the study
of various boundary-value problems for elliptic equations in a ball.

2. MAIN RESULT
Theorem 2.1. A solution to (1.1))-(1.2) is unique if and only if the polynomial

apo + taopr 2a01 + (2n + 4t)ags

Alt) = ao +tanr  2a11 + (2n + 4t)arz + 1(2n + 4t)ays

(2.1)
has no integer roots in Ng = NU{0}. If A(m) = 0 for some integer nonnegative
m € Ny, then the homogeneous problem (1.1))-(1.2]) has solution

u(z) = (C’2|x|2 +Ch — C'Q)Hm(x),

where H,,(xz) are homogeneous harmonic polynomials of degree m, and the constants
C1,Cs are found from the system of algebraic equations

aoo + magy 2a01 + (2n + 4m)aps Ch _0 (2.2)
aig + maiy 2&11 + (271 + 4m)a12 + m(2n + 4m)a13 02 ’ ’



EJDE-2015/244 UNIQUENESS OF SOLUTIONS 3

Proof. Suppose that there exist two functions u (z) and ug(z) which are solutions
to (1.1)-(1.2). We show that the function u(x) = uy(z) — ua(z) should equal to
zZ€ero.

It is obvious that the function u(z) is biharmonic and satisfies the homogeneous
conditions (|1.2)):

A*u=0, z€S8, (2.3)
0
agoU + ap1 a—u + agAu =0, se€ds,
5 v 5 (2.4)
alou—i—au%u—l—algAu—i—am%Au =0, seds.

Any biharmonic in S function from the class u(x) € C3(S) can be represented by
the Almansi formula in the form (see [15]):
oo hg, . ) .
u(w) = uo(@) + [ovo(@) = 30 N (uf) +laloQ) HD @), wes,  (25)
m=0 i=1

where h,, = %(m:f;?’), and {H,(,?(:c),m € Np,i = 1,hg} is a complete
orthogonal on 95 system of homogeneous harmonic polynomials [I5]. Herewith a
series in (2.5)) is uniformly converges for |z| < e < 1, this series allows termwise
differentiation of any order and the obtained series also converge uniformly.

Consider the two operators

L1 = apo + ap1A + ap2A,
Ly = a0+ a11A + a12A + ai3AA,

where
- 0
A= i—

Since u € C3(S), then from the properties of the operator A (see. [15]) it follows
that

0
Liu(x) = agou + ap1=—u + ageAu =0,
s€8S ov
P P xr— s €S (2.6)
Lou(z) = ajpu+aj1—u+ apsAu+ajz—Au =0,
s€DS v ov

It is easy to notice that for every fixed j = 1,2 the polynomials

L (uf) + o)) HY(@)|
are orthogonal on 05 for all m € Ny and i = 1, h,;,.

We fix arbitrary m € Ny and ¢ = 1, h,;,. By virtue of the uniform convergence of
the series (2.5) at x| <e < 1, we have

HY (z)Liju(z)ds,
|z|=¢e
(e ] hp
= H ()L, Z (u;gk) + |m|2111(,k)) HI()’“)(Z‘)dsJc

|z|=e p=0 k=1
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= H,(f;) (x)L, (u%) + |x|2v,(fb)) H,(,?(a:)dsx.

|z|=¢

Taking the limit € — 1 in this equality and using (2.6]), we obtain
/ HO (1)L, (uﬁ}) + |x|2v§;’)) HO(x)ds, =0, j=1,2. (2.7)
lz|=1

We separately calculate the integrand. For this we note that
Alvw) = wAu + uAw,
A(|z]*H,, () = 2nH,,(x) + 4mH,,(z) = (2n 4 4m)H,,(z).
Then on 95 we have
Ly (ul) + 2o ) H) (@)
= (ago + ao1 A + agsA) (u;? + |x|%§;')) H ()
= (a0 (u(i) + 2209} HO(2) + ag, <2|:17|2 O 4l + mla|2of) )
+ agav®) (2n + 4m))HY (z)
= (ugfl) (ago + mao1) + v') (agy + (m + 2)aor + (2n + 4m)a02)> HW (z)
and
Ly (uf) + o o) HY (@)
= (a10 + a11A + a12A + aj3AA) (ugfl) + |a:|2v7(7?> HY (x)
= (o () + |20 ) + axr (muf) + (m +2) 220 ) ) HP (2)
+ (algv,(n)@n +4m) + a150m(2n + 4m)> HY ()
( (a10 +maq1) + e )(am + (m+ 2)az
+ (2n + 4m)aiz + m(2n + 4m)a13))H7(n) ().
Therefore equation can be rewritten in the form
(€9 (ago + maon) + 082 (ago + (m + 2)aoy + (20 + 4m)ace) ) IHD (@), 05) = 0,
(ug,i) (a10 + maq1) + v,(,? (alo + (m 4+ 2)air + (2n + 4m)aqs
+m(2n + dm)ass) ) [|HS ()|, 95) = 0.
Since HH,(Y? (x)||%2(8s) # 0, then we obtain
ul) (ago + mao1) + v (ago + (m + 2)ao1 + (2n + 4m)agz) =0,
u,(fl) (a10 + mas1) + v,(n) (a10 + (m =+ 2)as; + (2n + 4m)aia + m(2n + 4m)ai3) =0,
or in the matrix form

ago + map1 ago + (m + 2)&01 + (2” + 4m)a02 ( ) —0 (2 8)
aio —+ maniy aio —+ (TTL + 2)&11 —+ (2n + 4m)(a12 —+ malg) ( ) ’
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It is easy to see that the determinant of this system is equal to A(m). Therefore

(2)
because A(m) # 0 the system (2.8]) has the only trivial solution (ZE%) = 0. By

m

virtue of arbitrary choice of indexes m € Ny and i = 1, h,,,, we obtain that the

problem ([2.3))-(2.4) has the only trivial solution.
If A(m) = 0 for some m € Ny, then the algebraic system (2.2)) has a nontrivial

solution (Cl) # 0 and hence
Cs
ago + magy ago + (m + 2)@01 + (2n + 4m)a02 C,— Oy —0
aio + mai aio + (m =+ 2)0,11 + (2?’L + 4m) (a12 + malg) CQ ’
Consequently, on S the equalities
Ly (C1 = Cy + [2]?C,) H,, (z) = 0,
Lo (01 —Cy + |£C‘202) Hm(l‘) =0
are true and therefore u(x) = Cy Hy, (x) + Co(|z|* — 1) H,,(z) is a nontrivial solution
of the homogeneous problem ([2.3))-(2.4)). O

Corollary 2.2. If ago = a19 = 0, then solution of the problem (1.1)-(1.2) is not
unique for all values of all other coefficients in the boundary conditions.

Proof. As it easily follows from the representation (2.1)), in this case A(0) = 0
and therefore the system (2.2)) has nontrivial solutions of the form C(;l> # 0.

Consequently, the homogeneous problem (1.1)-(|L.2]) has a nontrivial solution of the
form u =Const. O

Remark 2.3. If t = 0 from (2.1)) we have

apo  aop1 + Nag2

A(0) =2
0) aip Q11 +naiz

Therefore the necessary condition (1.3) from [22] of uniqueness of the solution of
the problem (1.1)-(1.2]) in our terms can be written in the form

A(0) #£0

and this condition is a particular case of our Theorem [2.1

3. PARTICULAR CASES OF THE PROBLEM

1. The Dirichlet problem: let agy = 1, ay;; = 1, and all other coefficients are
equal to zero, then we have

A(t):‘i 8‘227&0.

The uniqueness conditions of the solution of the Dirichlet problem (well-known
result) follows from the proved Theorem [2.1

2. The Riquier’s problem [14]: let agy = 1, a12 = 1, and all other coefficients are
equal to zero, then the determinant A(t) has the form

1 0

0 (2n+4m) = (2n+4m) # 0.

A(m) = |
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From Theorem [2.1] proved by us follows the well-known result on the uniqueness of
the solution of the Riquier’s problem.

3. The Riquier-Neumann problem: let ag; = 1, a;3 = 1, and all other coefficients
are equal to zero

A%y =0, z€8;
0 0 (3.1)

W= e1(2), EAU = pa(z), €IS

The corresponding determinant of this problem has the form

t 2

Alt) = ‘0 t(2n + 4t)

‘ = 1%(2n + 4t).

It is easy to see that A(0) = 0. The corresponding system ([2.2)) has the form

0 2\ (Ci\ _ 0

0 0)\Cy) 7
and its solution can be written in the form Cy = 0, C'y — is an arbitrary constant.
By the proved Theorem a solution of the problem (3.1) is not unique up to a
constant u(z) = C1Hy(z) = C4.

4. Consider the problem (|I.1)-(1.2]) in a particular case when agy = 0, ajg =
aij;p = 0:
Au=0,z€S8;

(3.2)

0 0
ool + ag1 au =¢1(s), a2Au+ algaAu = o(s), s€0dS.

The determinant A(¢) has the form
A(t) = apo + tao1 2a01
0 (2Tl + 4t)a12 + t(2’ﬂ + 4t)a13
= (27’L + 4t) (a(]o + ta01)(a12 + talg).
Consequently, the solution of the problem (3.2)) is unique if and only if the equation
(ago + tap1)(a12 + taiz) = 0 has no integer non-negative solutions.

Let agp = —2, ap1 = 1, a12 = —3, a13 = 1 in (3.2), i.e. consider the homogeneous
problem

A%y =0,z €8;
(3.3)
—2u+@ =0, —3Au+% =0, z € 0S.
v v

For this problem A(t) = (2n + 4¢)(t — 2)(t — 3) and hence A(2) =0 and A(3) = 0.
If m = 2 the system has the form

(8 n—i4)) (g;> =0.

Solutions of this system have the form Cy = 0, C7 — is an arbitrary constant. Thus
the polynomial us(z) = C1 Ha(z) is a solution of problem ([3.3]).
If m = 3, then the system of (2.2 takes the form

b 3)()->
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Solutions of this system have the form C3 = —2Cy, C; — is an arbitrary constant.
Hence the functions ug(z) = Cy(|z|> — 3)H3(x) are solutions of the homogeneous
problem according to the proved Theorem

Indeed, it is evident that ug(z) and ugz(x) are biharmonic polynomials. Further,
it is easy to calculate that

Lyus = —2ug + Aug = C1(—2H2 + AHs) = 0,
Lous = —3Aus + AAuy =0,
Lius = —2us + Ausz = Cy (—2(|x\2 —3) + (5|z)* — 9)) Hj(x)
Cy (3|z|* = 3) Hs(z)|os =0,
Lous = —3Aus + AAuy = Cy (—3(2n + 12) + 3(2n + 12)) Hs(z) = 0,
i.e., the boundary conditions of the problem hold.

So, if solution of the problem (3.3 exists, then it is unique up to polynomials of
the form

u(r) = C1Ho(x) + Cy(|z]* — 3)Hs(x)
with arbitrary constants C; and Cj.

5. The Robin problem [10]: let ags = a19 = a11 = 0, and all other coefficients
are positive:

A%u=0, z€b,

0
agot + amgu =1(s), s€09,

0
araAu + alggAu = a(s), se€098S.

In this case we have

A(t) = ago + tao1 2a01
0 (271 + 4t) ais +t (2n + 4If) a3

= (2n + 4t) (ago + tao1) (a12 + tais) # 0.

Hence the Robin problem is unconditionally solvable.
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