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OSCILLATIONS WITH ONE DEGREE OF FREEDOM AND
DISCONTINUOUS ENERGY

MIGUEL V. S. FRASSON, MARTA C. GADOTTI,
SELMA H. J. NICOLA, PLACIDO Z. TABOAS

ABSTRACT. In 1995 for a linear oscillator, Myshkis imposed a constant impulse
to the velocity, each moment the energy reaches a certain level. The main
feature of the resulting system is that it defines a nonlinear discontinuous
semigroup. In this note we study the orbital stability of a one-parameter family
of periodic solutions and state the existence of a period-doubling bifurcation
of such solutions.

1. INTRODUCTION
The solutions of the damped linear oscillator
i+2ai+wir =0 w>a>0, (1.1)

are supposed to undergo a fixed instantaneous increase of velocity whenever they
reach a certain level Ey > 0 of energy. More precisely, the following condition is
imposed

%(a’:Q(t) + w?2?(t)) = By = Slirgi(s) =i(t)+o, o>0.
This note concerns the resulting discontinuous dynamical system in the plane xz.
Motivated by a pioneering work by Myshkis [10], we obtain the existence of orbitally
asymptotically stable simple periodic solutions, i.e., solutions which have exactly
one impulse in the period. We accomplish a period-doubling bifurcation for such
solutions.

The main feature of the problem is to be autonomous; that is, besides the in-
volved equation being autonomous, the moments of impulses are not previously
known. Therefore the solution operator of the whole system defines a discontinu-
ous semigroup.

Specific references to the subject are Myshkis [I2] and Samoilenko-Perestyuk
[I4]. For a wider class of related poblems see [2) [3, 4 [5l [6] [7, O [T, 12 13] and
references therein.

Section 2 aims to build a context for the problem. In Section 3 we state el-
ementary properties of positive simple periodic solutions. In Section 4 we prove
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the existence of orbitally unstable positive simple periodic solutions with small am-
plitude and of orbitally asymptotically stable with large amplitudes. Finally, in
Section 5 we give a sufficient condition for a period-doubling bifurcation of such
solutions.

2. OBJECT OF STUDY AND BASIC FACTS

By the time scaling 7 = wt and the change of variables (1) = (w/v/2Fy)z(7/w)
Equation is written as £’ + 2af’ + & = 0, where ' = d/dr, a = a/w € (0,1)
and the locus of level Ey of energy is taken to the circle S : &2 + 5’2 =1 in the
plane ££'. Retrieving the original notation and formulating the problem in the z%
plane we obtain

T =y,

1
y=—x—2ay (2.1)

with the impulsive condition
(2(t),y(t) € S = (x(t+),y(t+)) = (x(t), y(t) + v). (2.2)

Solutions of will be denoted by z and z(+;tg, 20), if 2(to;t0,20) = 20, or
briefly z(-;2z9) = 2(-;0,20). As the eigenvalues of are —a =+ 01, with § =
V1 —a? > 0, the origin is a stable focus and the energy decreases strictly along
nontrivial solutions, since

E(2(t)) = —2a(y(t))?, teR. (2.3)
Let a =sinb, b € (0,7/2), so that 6 = cosb. If z(-) = z(+; (0, —1)),
Z(t) = =0 'e ' (sindt, cos(6t + b)), tER. (2.4)

As () crosses the y axis at (0, —0) = (0, —e~2%7/%), completing a lap around the
origin, if v = Z(R), the family {/7},e(,1) describes all nontrivial orbits of (2.1]).
That is, the general nontrivial solution is

z()=pz(-+71), TER, o<p<l

Definition 2.1. A solution of (2.1)), (2.2) through by € R? at t = t; is a function
¢ : [to,0) — R? such that ¢(tg) = by and

(1) ¢(t—) = ¢(t), for all ¢ € (to, 00);
(2) ¢ € C! and satisfies in (t,t+€), for all ¢t € [tg, 00) and some ¢ > 0.
(3) ¢ is continuous in t if ¢(t) € R?\ S and ¢(t+) = &(t) + (0,v) if ¢(¢) € S.

Remark 2.2. (1) ¢ is denoted by ¢(-;t0,bg) or ¢(-;bo) if to = 0.

2) A function ¢ : (7,00) — R? is solution of (2.1)), in (7,00) if w‘[to’oo):
o(-5t0, ¥ (to)), for any to € (7,00).

(3) The solution ¢(+;tg,bo) is unique, but in general there is no uniqueness
for backward continuations. If |by| > 1, &(-;t0,bo) has a continuation to
(—o00,00). If |by| < 1, in general a maximal interval of existence to the left
is bounded below.
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3. POSITIVE SIMPLE SOLUTIONS

For the dynamics of (2.1)), (2.2) the only relevant solutions are ¢(-; b) with |b| > 1,
as they are the only that eventually undergo impulses. There is no loss of generality
in taking |b| = 1 and we do so. We denote by € the class of such solutions.

Definition 3.1. Let ¢(+;b), |b] = 1, be a periodic solution of , with
minimal period w > 0. The point ¢(0;b) is called vertex of v = ¢(-;b). We say
that ¢(0;b) is simple if it has a unique impulse in [0,w). If ¢(-;b) = (z(-),y()), it
is positive when x(t) > 0 for all ¢.

We close this section by setting some standing notations. A number 3, identified
to any 8/ = 8 mod 27, indicates a point (cos 3,sin3) € S or its arc length coordi-
nate in S. The context will clarify the meaning in each case. For 5 € S we denote
¢p = ¢(;5) and, if |5+ (0,v)| > 1, we set t; = t1(B) > 0 such that ¢g(t1) € S and
¢pp(t) ¢ S for 0 <t <t.

Definition 3.2. If D = {8 € S | |8+ (0,v)] > 1}, we define the return map
®,:D — S by ®,(8) = ds(t1(5)) for all § € D.

Clearly, if 8* € D is a fixed point of ®,, ¢g- is a simple periodic solution
whose period is t1(8*) and §* is the vertex of the simple cycle ¢g-(R). If 5* is an
attractor fixed point, ¢« is orbitally asymptotically stable and, if it is repelling, ¢~
is orbitally unstable. Here the orbital stability must be in the sense of conditional
stability relative to the class €, see [8], since if ¢ = ¢(-;b), |b] = 1, there are points
b inside S arbitrarily close to b and therefore ¢(¢;’) — (0,0), as t — oc.

If 3 € S, let sg be the vertical line sg: « = cos § and tg > 0 such that z(—tg; §) =
(cosB,yp) € sg and z(t; 8) ¢ sg for —tg <t < 0. We set vg = yg —sin 3, so that ¢g
is a positive simple periodic solution of , (2.2), vg > 0. We denote by o = ag
the polar angle of z(—tg; 3), according to Figure

bs

FI1GURE 1. Positive simple cycle.
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Remark 3.3. For any v € (0,e%"/% + 1), there exists exactly one positive simple
cycle of (2.1), (2.2) since § € (—7/2,0) — vg € (0, e®™/% 4 1) is a continuous
bijection.

4. ORBITAL STABILITY

Now we show that, for some ¢ > 0, the solution ¢z of , is orbitally
unstable if 5 € (—¢,0) and orbitally asymptotically stable if § € (—x/2, —7/2+ ().
Lemma 4.1. vg = -2+ o(B) as 8 — 0—.

Proof. Let § € (—m/2,0). System in polar coordinates,
7= —(2asin?O)r,

0 =—(1+asin20),
yields
r' = (2asin®6/(1 + asin20))r, ('=d/df). (4.1)
and a parametrization of ¢g is

Tﬂ((g) = eAB(g) = exp [2@4 m d8i|, 0 e R. (42)

0 2

sin“ s

As the integrand in (4.2) will be a regular participant, we introduce the notation
_ sin? s
"~ 1+asin2s’
For any small € > 0 such that & = —(1 + ¢€)3 < 7/2, the inequality
2a(2+ €)(1 + ¢€)?
1—a

a(8)

Aﬂ(e) 537 NS [6a_(1+6)6}7

yields
ra(—(1+€)B) = eI — 14+ 0(5%) as g — 0.
If ¢ = |pe|, pe being the intersection of the half lines s : § = —(1 4 €)8 and
s2 :1(0)cosf = cos 3, 8 € (0,7/2), the similarity of the triangles mnO and p.qO
seen in Figure [2] yields

2

e cos 3 :1+( +¢€)
cos(1+¢€)p 2!

For |B| small enough, the estimates above imply rg(—(1 + €)8) < r¢, so that

yp/ cos B < —tan(l +€)8 and

B2+ 0(8Y as B — 0—.

tan(1
s _ an(l +¢€)f

1< -
sin 8 tan 3

Taking limits as 8 — 0—,
1< 1iminf—,y—ﬁ < limsup — _yﬁ
B—0— sinf 80— sinf

<l+e

so that limg_o_yg/sin3 = —1. Therefore yg = —F + o(f) and hence vg =
—28 4 0(8), as B — 0—. O

The theorem below in what concerns orbital instability is a result by Myshkis
[10). We give an alternative approach to extend it.
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FIGURE 2. vg = =28+ o(f) as § — 0—.

Theorem 4.2. There is a number { > 0 such that if 5 € (—(,0), the simple periodic
solution ¢g of (2.1), (2.2)) is orbitally unstable and if B € (—7w/2,—7/2+ ), ¢g is

orbitally asymptotically stable.

Proof. Let g € (—n/2,0) and €; # 0 so that §+ € = 01 € (—7/2,0). We take e
smaller if necessary to assure the existence of ®,,(81) = 8+ €2 € (—7/2,0), as it

is seen in Figure [3] for the case ¢; < 0.
Firstly we notice that ¢; and o are related by the equation

vg +sin(8 + €1)
cos(f + €1)

therefore, the implicit function theorem about (e1,0) = (0,0) yields

vgsin(G+ 1
U:%q—i—o(el),
|bs]

as e — 0. By (4.2), if b1 = 81 + (0,v3), €2 must satisfy

B+ez
|b1] exp [Qa/

a+to

= tan(a + o),

qa(9) ds} =1.

As [b1] = \/(vg +sin(B + €1))2 + cos?(B + €1), we have

B+e2

(vg + 2ugsin(B + €1) + 1) exp {4a/ qa(9) ds] =
a+o(er)

and the implicit function theorem leads to
1

a(B)[bs]?

vg cos 3
2a

o = [ga(@)(1 + v sin ) — Jer +ofer),

(4.3)

(4.4)
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abs

ba

FIGURE 3. B+ e = @y, (B +€1).

as €1 — 0. Let
1
9a(8)|bs]?

so that FI(8) < 0 and (4.4) is e2 = F(B)e1 + o(e1), as ¢ — 0, for short. Since
limg_, /2 |bg| = limg_,_ /o —(1 4+ vgsin3) = e/,

vg COSB]

F(B) = =

[qa(a)(l +vgsinf) —

(4.5)

|F(B)| = e /% <1, asf— —m/2. (4.6)

On the other hand, we have |sin 3| < |sina| < yg, see Figure [2] so that by
Lemma do(@)/qq(B) — 1 and vg = O(B), as § — 0, therefore recalling that
7a(8) = O(8?) as 3 — 0,

|F(B)] =00 as g —0. (4.7
For some ¢ > 0, Egs. (4.6) and (4.7) imply that |F'(8)| < 1if § € (—7/2,—7/2+()
and |F(8)] > 1if 8 € (=¢,0). In other words, any 8 € (—7/2,—7/2+ () is an

attractor fixed point of the return map ®,, and any 8 € (—(,0) is a repelling fixed
point of @,,;. ([
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5. PERIOD DOUBLING BIFURCATION

Solutions ¢g of , change from stable to unstable when [ varies over
(—m/2,0) from left to the right. Therefore it is natural to expect a bifurcation in
between. In this section we apply the theorem below [Il Theorem 12.7] to confirm
that this indeed occurs at least for small dampings.

Theorem 5.1 (Period doubling bifurcation). Let {f\} a one-parameter family of
real functions and suppose that

(1) fx(0) =0 for all X in an interval about Ao;
(2) £3,(0) =-1;

@ 25| %0

Then there is an interval I about 0 and a function p : I — R such that
Jp@)(®) #x  and f;?(m) () = x.

By the proof of Theorem there is a 8% € (—7/2,0), 0 < a < 1, such that
F(B) = —1. Now we show that such a G is a period doubling bifurcation point
of the family of periodic solutions ¢g, —7/2 < 5 < 0, at least if a is small enough.

Theorem 5.2. Ifa € (0,1) is sufficiently small, then any 3% € (—7/2,0) such that
F(5%) = —1 is a period doubling bifurcation point for the family ¢z, —m/2 < 3 < 0.

Proof. Let us follow (4.4]) to define the family of functions fz, —7/2 < § < 0, in
such a way that

€2 = fgler) = F(B)er + o(er),
as ¢ — 0. Condition (1) of Theorem f3(0) = 0 for all g € (—7/2,0), is
immediate and, if * denotes for a moment d/de;, Condition (2), f5.(0) = F(8;) =
—1, follows from the definition of 3.
Now it remains to show that

o(f2) 0 :

[ 93 Jomp; (0) = %[(F(ﬁ)) Jo=p; #0
for a small enough. Retaking the notation ' = d /df this is equivalent to F’ (%) # 0,
since F'(3%) # 0. We note that if § = 37,

2 (8)|bs|* = vﬁgzsﬁ + ga(a)(—vgsin B — 1);
therefore,
. 1 vg cos 3 . /
F'(fa) = {qa(ﬁ)wmz( 3 T aal@)vpsin 1)
1 ) o
e [l + 20apallal + 2R (s

+ ¢, (a)a’ (—vgsin B — 1) + ga () (—vj sin f — v cos ﬁ)}ﬁﬂ*.

It suffices to show that the term in the brackets in the right side of (5.1)) is nonzero.
Equation (4.2) implies |bs| = exp[2a fﬁa a(s)ds] — 1 as @ — 0, uniformly in
B8 € (—m/2,0). This yields y3 — —sing and o — —f, as a — 0, uniformly in
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B2

B

_/‘

FIGURE 4. 31 = ®2(61) # D(61) = So.

B € (—n/2,0). Moreover, the implicit function theorem applied to the equation
«
exp [2@/ qa(s)ds] cos a = cos 3,
B8

leads to
sin B(1 + asin 2«)

o'(B) = ys(1+asin28)
Thus o — —1 as a — 0, uniformly in § € (—x/2,0). Finally, we note that the
following limits, taken as a — 0, are uniform in 8 € (—x/2,0):
lim g, () = sin® 3,
lim ¢/,(8) = sin 28,
limvg = —25sin g3,

lim v = —2cos f,
lim |b5‘/ = 0.

Therefore, the limit, as a — 0, of the term in the brackets in the right side of (5.1))
is
v% cos 3 —uvgsinf  sin4df

2a 2
Since lim,—.o(vj cos B—vgsin f) = —2cos 23, in order to assure the expression (5.2))
is nonzero, 5} must be bounded away from —7 /4 for a small enough. According to

sin 26 + lim (5.2)
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(4.5) lim, o —F(—m/4) = oo; therefore, for some n > 0, 5% ¢ (—m/4—n,—7/4+n).
That is, F'(3%) # 0 for a € (0, 1) sufficiently small. O

Figure E| shows a typical positive periodic orbit emanating from (.

Final remarks. Smallness of a is a request of our proof of Theorem possibly
this hypothesis can be weakened or even discarded.

The larger is the coefficient @ € (0,1), the larger is the region of stability in
(=m/2,0). In fact, by , T_nj2(m) = e?™/% — o0 as a — 1. Therefore, for any
fixed B € (—7/2,0), one has |bg| — oo as a — 1, so that the number €; in
satisfies e — 0, as a — 1.
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