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HÖLDER CONTINUITY OF BOUNDED WEAK SOLUTIONS TO
GENERALIZED PARABOLIC p-LAPLACIAN EQUATIONS II:

SINGULAR CASE

SUKJUNG HWANG, GARY M. LIEBERMAN

Abstract. Here we generalize quasilinear parabolic p-Laplacian type equa-
tions to obtain the prototype equation

ut − div
“ g(|Du|)
|Du|

Du
”

= 0,

where g is a nonnegative, increasing, and continuous function trapped in be-
tween two power functions |Du|g0−1 and |Du|g1−1 with 1 < g0 ≤ g1 ≤ 2.

Through this generalization in the setting from Orlicz spaces, we provide a

uniform proof with a single geometric setting that a bounded weak solution is
locally Hölder continuous with some degree of commonality between degener-

ate and singular types. By using geometric characters, our proof does not rely

on any of alternatives which is based on the size of solutions.

1. Introduction

This article is intended as a companion paper to [12], which proved the Hölder
continuity of solutions to degenerate parabolic equations satisfying a generalized
p-Laplacian structure. Here, we examine the same question for singular equations,
but we refer the reader to [12] for a more detailed description of the history of this
problem.

Our interest here is in the parabolic equation

ut − divA(x, t, u,Du) = 0 (1.1)

when there is an increasing function g such that

A(x, t, u, ξ) · ξ ≥ C0G(|ξ|), (1.2a)

|A(x, t, u, ξ)| ≤ C1g(|ξ|) (1.2b)

for some positive constants C0 and C1, where G is defined by

G(σ) =
∫ σ

0

g(s) ds,
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and we assume that there are constants g0 and g1 satisfying 1 < g0 ≤ g1 such that

g0G(σ) ≤ σg(σ) ≤ g1G(σ) (1.3)

for all σ > 0. For the most part, we are only concerned here with the case that
g1 ≤ 2, but some of our results do not need this additional restriction, so we
shall always state it explicitly when it is used. Our results generalized those of
Ladyzhenskaya and Ural’tseva [15] and Chen and DiBenedetto [2, 3], who proved
Hölder continuity under the structure conditions

A(x, t, u, ξ) · ξ ≥ C0|ξ|p, |A(x, u, ξ)| ≤ C1|ξ|p−1 (1.4)

with p = 2 and p < 2, respectively. The structure (1.4) is contained in this model as
the special case g(s) = sp−1, in which case we may take g0 = g1 = p, but we consider
a class of structure functions g much wider than that of just power functions. In this
way, we obtain a uniform proof of Hölder continuity (with appropriate uniformity
of constants) for all p ∈ (1, 2] at once under the structure condition (1.4) as well as
a proof of Hölder continuity under more general structure conditions.

In [12], we have discussed our approach for a generalization of the case p ≥ 2, so
we concern ourselves here with the points relevant to the generalization of the case
p ≤ 2. It is known that solutions of this problem generally become zero in finite
time when p < 2 (see [7, Sections VII.2 and VII.3] for a more complete discussion
of this phenomenon) but not when p = 2 (because of the Harnack inequality, first
proved by Moser [19]), so our proof needs to take this behavior into account. In
addition, [8, Section 4] gives a Hölder exponent which degenerates as p approaches
2; the proof must be further modified for p close to 2 if the Hölder exponent is
to remain positive near p = 2. Our method manages the whole range 1 < p ≤ 2
uniformly for p away from 1. Although, as the authors point out in [9], this method
is more complicated analytically, it does handle the whole range easily and it is
quite simple geometrically.

We use the definition of weak solution given in [12], which we now present. For an
arbitrary open set Ω ⊂ Rn+1, we introduce the generalized Sobolev space W 1,G(Ω),
which consists of all functions u defined on Ω with weak derivative Du satisfying∫∫

Ω

G(|Du|) dx dt <∞.

We say that u ∈ Cloc(Ω) ∩W 1,G(Ω) is a weak supersolution of (1.1) if

0 ≤ −
∫∫

Ω

uϕt dx dt+
∫∫

Ω

A(x, t, u,Du) ·Dϕdxdt

for all ϕ ∈ C1(Ω̄) which vanish on the parabolic boundary of Ω; a weak subsolution
is defined by reversing the inequality; and a weak solution is a function which is
both a weak supersolution and a weak subsolution. In fact, we shall use a larger
class of ϕ’s which we discuss in a later section.

Our method of proof uses some recent geometric ideas of Gianazza, Surnachev,
and Vespri [10], who gave a different proof for the Hölder continuity in [2, 3]. While
[2, 3] examine an alternative based on the size of the set on which |u| is close to its
maximum, the method in [10] use a geometric approach from regularity theory and
Harnack estimates. Here, we use this geometric approach along with some elements
of the analytic approach in [3].

The proof is based on studying two cases separately. Either a bounded weak
solution u is close to its maximum at least half of a cylinder around (x0, t0) or not.
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In either case, the conclusion is that the essential oscillation of u is smaller in a
subcylinder centered at (x0, t0). Basically, our goal is reached using the geometric
character of u with two integral estimates, local and logarithmic estimates (5.2),
(5.3).

In the next section, we provide some preliminary results, mostly involving no-
tation for our geometric setting. Section 3 states the main lemma and uses that
lemma to prove the Hölder continuity of the weak solutions. The main lemma is
proved in Section 4, based on some integral inequalities which are proved in Section
5.

2. Preliminaries

Notation. (1) The parameters g0, g1, N , C0, and C1 are the data. When we
make the additional assumption that g1 ≤ 2, we use the word “data” to denote the
constants g0, N , C0, and C1.

(2) Let Ky
ρ denote the N−dimensional cube centered at y ∈ RN with the side

length 2ρ, i.e.,
Ky
ρ := {x ∈ RN : max

1≤i≤N
|xi − yi| < ρ}.

(Here, we use superscripts to denote the coordinates of x; we’ll use subscripts to
indicate different points.) For simpler notation, let Kρ := K0

ρ . We also define the
spatial distance | · |∞ by

|x− y|∞ = max
1≤i≤N

|xi − yi|.

In fact, all of our work can be recast with the ball

Byρ = {x ∈ RN : |x− y| < ρ},

where |x − y| is the usual Euclidean distance, in place of Ky
ρ with only slight

notational changes. There is no significant reason to use cubes rather than balls in
the degenerate case, but the method used in [2, 3] requires that cubes be subdivided
into congruent smaller subcubes, and the corresponding decomposition for balls is
much more complicated. In this work, no such decomposition is needed.

(3) For given (x0, t0) ∈ RN+1, and given positive constants θ, ρ and k, we say

Tk,ρ(θ) := θk2G
(k
ρ

)−1
,

Qx0,t0
k,ρ (θ) := Kx0

ρ × [t0 − Tk,ρ, t0],

Qk,ρ(θ) := Q0,0
k,ρ(θ).

The point (x0, t0) is called the top-center point of Qx0,t0
k,ρ (θ). We also abbreviate

Tk,ρ = Tk,ρ(1), Qx0,t0
k,ρ = Qx0,t0

k,ρ (1), Qkρ = Qk,ρ(1).

Geometry. We refer the reader to [12] for a discussion of our choices of notation,
but we do recall that if u is any function defined on an open set Ω, then for any
positive number ω and any (x0, t0) ∈ Ω, there a number R such that

Qx0,t0
ω,4R ⊂ Ω.
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Useful inequalities. Because of the generalized functions g and G, we are not
able to apply Hölder’s inequality or typical Young’s inequality. Here we present
essential inequalities which will be used through out the paper, all of which were
proved in [12].

Lemma 2.1. For a nonnegative and nondecreasing function g ∈ C[0,∞), let G be
the antiderivative of g. Suppose that g and G satisfy (1.3). Then for all nonnegative
real numbers σ, σ1, and σ2, we have

(a) G(σ)/σ is a monotone increasing function.
(b) For β > 1,

βg0G(σ) ≤ G(βσ) ≤ βg1G(σ).

(c) For 0 < β < 1,

βg1G(σ) ≤ G(βσ) ≤ βg0G(σ).

(d) σ1g(σ2) ≤ σ1g(σ1) + σ2g(σ2).
(e) (Young’s inequality) For any ε ∈ (0, 1),

σ1g(σ2) ≤ ε1−g1g1G(σ1) + εg1G(σ2).

Lemma 2.2. For any σ > 0, let

h(σ) =
1
σ

∫ σ

0

g(s) ds, H(σ) =
∫ σ

0

h(s) ds.

Then we have

g0h(σ) ≤ g(σ) ≤ g1h(σ),

g0H(σ) ≤ G(σ) ≤ g1H(σ),

(g0 − 1)h(σ) ≤ σh′(σ) ≤ (g1 − 1)h(σ),
1
g1
σh(σ) ≤ H(σ) ≤ 1

g0
σh(σ),

βg0H(σ) ≤ H(βσ) ≤ βg1H(σ)

for any β > 1.

Our next result concerns some inequalities about integration of a function over
various intervals. We shall use these inequalities in the proof of the Main Lemma.
This lemma is probably well-known, but we are unaware of any reference for it.

Lemma 2.3. Let f be a continuous, decreasing, positive function defined on (0,∞).
Then, for all δ and σ ∈ (0, 1), we have∫ 1

0

f(δ + s) ds ≤ 1
σ

∫ σ

0

f(δ + s) ds. (2.1)

If, in addition, for all β > 1 and σ > 0, we have

βf(βσ) ≥ f(σ), f(βσ) ≤ f(σ), (2.2)

then, for all δ ∈ (0, 1), we have∫ δ

0

f(δ + s) ds ≤ 2
2 + ln(1/δ)

int10f(δ + s) ds. (2.3)
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Proof. To prove (2.1), we define the function

F (σ) = σ

∫ 1

0

f(δ + s) ds−
∫ σ

0

f(δ + s) ds.

Since

F ′(σ) =
∫ 1

0

f(δ + s) ds− f(δ + σ),

and f is decreasing, it follows that F ′ is increasing so F is convex. Moreover

F (0) = F (1) = 0,

so F (σ) ≤ 0 for all σ ∈ (0, 1). Simple algebra then yields (2.1).
To prove (2.3), we first use a change of variables to see that, for any j ≥ 1, we

have ∫ 2jδ

jδ

f(δ + s) ds =
∫ jδ

0

f((j + 1)δ + σ) dσ = j

∫ δ

0

f((j + 1)δ + js)) ds.

Since (j + 1)δ + js ≤ (j + 1)(δ + s) and f is decreasing, we have∫ 2jδ

jδ

f(δ + s) ds ≥ j
∫ δ

0

f((j + 1)(δ + s)) ds

and then (2.2) gives ∫ 2jδ

jδ

f(δ + s) ds ≥ j

j + 1

∫ δ

0

f(δ + s) ds.

We now let J be the unique positive integer such that 2−J < δ ≤ 21−J and we take
j = 2i with i = 0, . . . , J − 1. Since j/(j + 1) ≥ 1/2, it follows that∫ δ

0

f(δ + s) ds ≤ 2
∫ 2i+1δ

2iδ

f(δ + s) ds.

Since ∫ 2Jδ

0

f(δ + s) ds =
∫ δ

0

f(δ + s) ds+
J−1∑
i=0

∫ 2i+1δ

2iδ

f(δ + s) ds,

we infer that ∫ 2Jδ

0

f(δ + s) ds ≥ [1 +
1
2
J ]
∫ δ

0

f(δ + s) ds.

The proof is completed by noting that J > ln(1/δ) and that∫ 1

0

f(δ + s) ds ≥
∫ 2Jδ

0

f(δ + s) ds.

�

Note that condition (2.2) is satisfied if f(σ) = σ−p with 0 ≤ p ≤ 1, in which case
this lemma can be proved by computing the integrals directly.
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3. Basic results and the proof of Hölder continuity

In this section, we prove the Hölder continuity of solutions of (1.1) for singular
equations (that is, equations with g1 ≤ 2) and for degenerate equations (that is,
equations with g0 ≥ 2). Our proof is based on some estimates for nonnegative
supersolutions of the equation, and these estimates will be proved in the next
section.

Our Main Lemma states that a nonnegative supersolution u of a singular equa-
tion is strictly positive in a subcylinder if u is near to the maximum value in more
than a half of cylinder.

Lemma 3.1 (Main Lemma). Let ω and R be positive constants. Then there are
positive constants δ and µ, both less than one and determined only by the data such
that, if u is a nonnegative solution of (1.1) in

Q = Qδω,2R
(3

4
)

with g1 ≤ 2, and ∣∣Q ∩ {u ≤ ω

2
}
∣∣ ≤ 1

2
|Q|, (3.1)

then
ess infQ u ≥ µω, (3.2)

with Q = Qµω,R/2.

We shall prove this lemma in the next section. Here we show first how to infer
a decay estimate for the oscillation of any bounded solution of (1.1).

Lemma 3.2. Let C0, C1, g0, g1, ρ, and ω be positive constants with C0 ≤ C1 and
1 < g0 ≤ g1 ≤ 2. Then there are positive constants σ and λ, both less than one and
determined only by data such that, if u is a bounded weak solution of (1.1) in Qω,ρ
with

ess oscQω,ρ u ≤ ω,
then

ess oscQσω,λρ u ≤ σω. (3.3)

Proof. We begin by taking δ and µ to be the constants from Lemma 3.1 and we set

σ = 1− µ, λ =
1
4

(µ
σ

)(2−g0)/g0
.

From the proof of Lemma 3.1, it follows that µ ≤ 1/4, so µ/σ ≤ 1. We also
introduce the functions u1 and u2 by

u1 = u− inf
Qω,ρ

u, u2 = ω − u1. (3.4)

It follows from Lemma 2.1(b) that

3
(δω

2
)2
G
(δω
ρ

)−1 ≤ ω2G
(ω
ρ

)−1
,

and hence the cylinder Q from Lemma 3.1 is a subset of Qω,ρ provided R = ρ/2.
There are now two cases. First, if∣∣Q ∩ {u1 ≤

ω

2
}
∣∣ ≤ 1

2
|Q|,
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then we apply Lemma 3.1 to u1 and hence

ess infQ u1 ≥ µω.

Since
ess supQ u1 ≤ ω,

it follows that
ess oscQ u = ess oscQ u1 ≤ (1− µ)ω = σω.

On the other hand if ∣∣Q ∩ {u1 ≤
ω

2
}
∣∣ ≥ 1

2
|Q|,

then ∣∣Q ∩ {u2 ≤
ω

2
}
∣∣ ≤ 1

2
|Q|,

and an application of Lemma 3.1 to u2 implies once again that

ess oscQ u ≤ σω.

Since 4λµ/σ ≤ 1, we infer from Lemma 2.1(c) that

(σω)2G
(σω
λρ

)−1 ≤ (µω)2G
(4µω
ρ

)−1
.

Since λ ≤ 1/4, it follows that Qσω,λρ is a subset of the cylinder Q from Lemma 3.1,
and (3.3) follows. �

For any real number τ and any function u defined on an open subset Ω of RN+1,
we define

|τ |G =
U

G−1(U2/|τ |)
, (3.5a)

where

U = ess oscΩ u. (3.5b)

With this time scale, we define the parabolic distance between two sets such K1

and K2 by

distP (K1;K2) := inf
(x,t)∈K1

(y,s)∈K2, s≤t

max{|x− y|∞, |t− s|G}.

(Note that, strictly speaking, this quantity is not a distance because it is not sym-
metric with respect to the order in which we write the sets. Nonetheless, the
terminology of distance is useful as a suggestion of the technically correct situa-
tion.)

The proof of [12, Theorem 2.4] immediately yields a modulus of continuity in
terms of G and a Hölder continuity estimate.

Theorem 3.3. Let u be a bounded weak solution of (1.1) with (1.2) in Ω, and
suppose 1 < g0 ≤ g1 ≤ 2. Then u is locally continuous. Moreover, there exist
constants γ and α ∈ (0, 1) depending only upon the data such that, for any two
distinct points (x1, t1) and (x2, t2) in any subset Ω′ of Ω with distP (Ω′; ∂pΩ) positive,
we have

|u(x1, t1)− u(x2, t2)| ≤ γU
( |x1 − x2|+ |t1 − t2|G

distP (Ω′; ∂PΩ)

)α
. (3.6)
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In addition (with the same constants),

|u(x1, t1)− u(x2, t2)| ≤ γU
( |x1 − x2|+ |1|G max{|t1 − t2|1/g0 , |t1 − t2|1/g1}

distP (Ω′; ∂PΩ)

)α
.

(3.7)

For initial regularity, we have the following variant of Lemma 3.1. Note that this
lemma is essentially the same as [7, Proposition IV.13.1] (the result is mentioned
only indirectly in [3]), but the proof is much simpler. To simplify notation, we
define the cylinders

Q+,x0,t0
k,R (θ) = Kx0

R ×
(
t0, t0 + θk2G

( k
R

)−1
)
, Q+

k,R(θ) = Q+,0,0
k,R (θ),

and we set Q+
k,R = Q+

k,R(1). With ν0 the constant from Proposition 4.4 and U a
given constant, we also define QR(U) to be the cylinder Q+

U,R(ν0/9).

Lemma 3.4. Let C0, C1, g0, g1, ρ, and ω be positive constants with C0 ≤ C1 and
1 < g0 ≤ g1. Suppose also that u is a bounded weak solution of (1.1) in Q+

ω,ρ with

ess oscQ+
ω,ρ

u ≤ ω.

Then there is a constant λ ∈ (0, 1), determined only by data, such that

ess oscQ+
ω′,λρ

u ≤ ω′, (3.8a)

where

ω′ = max{5
6
ω, 3 ess oscKρ×{0} u}. (3.8b)

Proof. We begin by setting

ω0 = ess oscKρ×{0} u.

If ω < 3ω0, then ω′ = 3ω0. We now perform some elementary calculations to show
that Q+

ω′,λρ ⊂ Q+
ω,ρ if λ is small enough. First, since ω ≤ ω′ and λ ≤ 1, we can use

Lemma 2.1(c) to infer that

G
(ω
ρ

)
≤
(λω
ω′
)g0
G
( ω′
λρ

)
≤ λg0G

( ω′
λρ

)
.

If λ ≤ 9−1/g0 , then we have

G
(ω
ρ

)
≤ 1

9
G
( ω′
λρ

)
.

Since ω0 ≤ ω, it follows that ω ≥ 1
3ω
′ and therefore

ω2G
(ω
ρ

)−1 ≥ 1
9

(ω′)2G
(ω
ρ

)−1
,

so

ω2G
(ω
ρ

)−1 ≥ (ω′)2G
( ω′
λρ

)−1
.

Hence λ ≤ 9−1/g0 implies that Q+
ω′,λρ ⊂ Q+

ω,ρ and therefore (3.8) is valid.
If ω ≥ 3ω0, we take ν0 be the constant from Proposition 4.4. This time, we set

R = 1
6ρ, and we note that Q+

ω/3,2R(ν0) ⊂ Q+
ω,ρ. To proceed, we define

u1 = u− ess infQ+
ω/3,2R

u, u2 = ω − u1,
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and we set k = ω/3.
We consider two cases. First, if

ess supK2R×{0} u1 ≤
2
3
ω, (3.9)

then u1 ≥ k on K2R × {0}. We then apply Proposition 4.4 to u1 in Q+
k,2R(ν0) to

infer that

ess infQ+
k,R(ν0) u1 ≥

k

2
.

It follows that

ess oscQ+
k,R(ν0) u ≤ ω −

k

2
=

5
6
ω. (3.10)

If (3.9) does not hold, then some straightforward algebra shows that

ess supK2R×{0} u2 ≤
2
3
ω,

so we can apply Proposition 4.4 to u2, again obtaining (3.10).
To see that (3.10) implies (3.8), we examine separately the cases ω′ = 5

6ω and
ω′ = ω0. In both cases, we see that λρ ≤ R if λ ≤ 1

3 .
In the first case, we observe that λ ≤ 1

3 implies that 5/(6λ) ≥ 5
2 ≥ 1. If, in

addition,

λ ≤ 5
6
(4ν0

25
)1/g0

,

we conclude that

G
(ω
ρ

)
≤
(6λ

5
)g0
G
(5ω

6λ
)
≤ 4ν0

25
G
(5ω

6λ
)
,

and hence Q+
ω′,λρ ⊂ Q+

k,R(ν0) in this case. Combining this observation with (3.10)
gives (3.8).

In the second case, we observe that ω′ ≥ 5
6ω, so λ ≤ 5

6 implies that

G
(ω
ρ

)
≤
(λω
ω′
)g0
G
( ω′
λρ

)
If also

λ ≤ 5
6

(
ν0

17
)1/g0 ,

Then we have

G
(ω
ρ

)
≤
(λω
ω′
)g0
G
( ω′
λρ

)
≤
(5λ

6
)g0
G
( ω′
λρ

)
≤ 1

9
(5

6
)2
ν0G

( ω′
λρ

)
since (5/6)2/9 ≥ 1/17. It follows again that Q+

ω′,λρ ⊂ Q
+
k,R(ν0) and hence we obtain

(3.8). Combining all these cases, we see that the result is true with

λ = min{1
9
,

5
6

(
ν0

17
)1/g0}

since 9−1/g0 ≥ 1/9. �
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From this lemma, we infer a continuity estimate near the initial surface. We
recall from [18] that BΩ is the set of all (x0, t0) ∈ ∂PΩ such that, for some positive
numbers r and s, the cylinder

Kx0
r × (t0, t0 + s)

is a subset of Ω. We also define the initial surface B′Ω of Ω as in [12] to be the set
of all (x0, t0) ∈ BΩ such that Kr × {t0} ⊂ ∂PΩ for some r′ > 0. As noted in [12],
B′Ω need not be the same as BΩ.

For (x0, t0) ∈ B′Ω and ω > 0, we write distB(x0, t0) for the supremum of the set
of all numbers r such that Q+,x0,t0

ω,r ⊂ Ω and Kx0,t0
r × {0} ⊂ ∂PΩ.

Theorem 3.5. Let u be a bounded weak solution of (1.1) in Ω, and suppose 1 <
g0 ≤ g1 ≤ 2. Suppose also that the restriction of u to B′Ω is continuous at some
(x0, t0) ∈ B′Ω. Then u is locally continuous up to (x0, t0). Specifically, if there is
a continuous increasing function ω̃ defined on [0,distB(x0, t0)) with ω̃(0) = 0,

5
6
ω̃(2r) ≤ ω̃(r) (3.11)

for all r ∈ (0,distB(x0, t0)/2), and with

|u(x0, t0)− u(x1, t0)| ≤ ω̃(|x0 − x1|)

for all x1 with |x0 − x1| < distB(x,t0), then there exist constants γ and α ∈ (0, 1)
depending only upon the data such that, for any (x, t) ∈ Ω with t ≥ t0, we have

|u(x0, t0)− u(x, t)| ≤ γU
( |x0 − x|+ |t0 − t|G

distB(x0, t0)

)α
+ 3ω̃

(
γ|x0 − x|∞ + γ distB(x0, t0)1−α|t0 − t|αG

)
.

(3.12)

Proof. We start by taking ω0 = U and ρ0 = distB(x0, t0). If (x, t) /∈ Q+,x0,t0
ω0,ρ0 , then

the result is immediate for any α as long as γ ≥ 1. With λ as in Lemma 3.4, we
set σ = 5/6, and

ε = min{λ, 1
2
σ(2−g0)/g0}.

If (x, t) ∈ Q+,x0,t0
ω0,ρ0 , then we define ρn = λnρ0. We also define ω′n for n > 0

inductively as ω′n+1 = max{ 5
6ω
′
n, 3ω

∗(ρn)}, and we set

Qn = Q+,x0,t0
ω′n,ρn

.

It follows from Lemma 3.4 that ess oscQn u ≤ ω′n, but this estimate must be
improved. To this end, we set

ωn = max
{(5

6
)n
ω0, 3ω̃(ρn−1)

}
,

and infer from the proof of [12, Theorem 2.6] that ω′n ≤ ωn for n > 0. Hence

ess oscQn u ≤ ωn.

As before, we assume that x 6= x0 and t 6= t0, so there are nonnegative integers n
and m such that

ρn+1 ≤ |x0 − x|∞ < ρn,

and

ω2
m+1G

(ωm+1

ρm+1

)−1

≤ |t0 − t| < ω2
mG
(ωm
ρm

)−1
.
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With α1 = log1/2(5/6), it follows that(5
6
)n ≤ (2|x0 − x|∞

ρ0

)α1

, ω̃(ρn) ≤ ω̃(
1
λ
|x0 − x|∞).

Moreover, if we set β = εσ(2−g0)/g0 and ω̂m = βmω0, it follows that ω̂m+1 ≤ ω′m+1,
so (as in the proof of Theorem 2.4)

|t0 − t|G ≥ βm+1ρ0.

For α2 = logβ σ, we infer again that

ω̂m ≤
( |t0 − t|G

ρ0

)α2

ω0.

In addition, for α3 = logβ λ (which is in the interval (0, 1]), we infer that

ρm ≤
( |t0 − t|G

βρ0

)α3

ρ0.

Therefore,
ω̄(ρm) ≤ ω̄

(
ρ1−α3

0 |t0 − t|α3
G

)
.

And the proof is complete by combining all these inequalities and taking α =
min{α1, α2, α3}. �

As in [12, Theorem 2.5], condition (3.11) involves no loss of generality in that any
modulus of continuity for the restriction of u to B′Ω is controlled by one satisfying
this condition.

4. Proof of the main lemma

Throughout this section, u is a bounded nonnegative weak solution of (1.1) with
(1.2). The proof of Lemma 3.1 is composed of four steps under the assumption that
u is large at least half of a cylinderQω,2R. First, Proposition 4.1 gives spatial cube at
some fixed time level on which u is away from its minimum (zero value) on arbitrary
fraction of the spatial cube. From the spatial cube, positive information spread in
both later time and over the space variables with time limitations (Proposition 4.2
and Proposition 4.5). Controlling the positive quantity θ > 0 in Tk,ρ(θ) is key
to overcoming those time restrictions. Once we have a subcylinder centered at
(0, 0) in Qω,4R with arbitrary fraction of the subcylinder, we finally apply modified
De Giorgi iteration (Proposition 4.3) to obtain strictly positive infimum of u in a
smaller cylinder around (0, 0).

4.1. Basic results. Our first proposition shows that if a nonnegative function is
large on part of a cylinder, then it is large on part of a fixed cylinder. Except for
some minor variation in notation, our result is [7, Lemma 7.1, Chapter III]; we refer
the reader to [12, Proposition 3.1] for a proof using the present notation.

Proposition 4.1. Let k, ρ, and T be positive constants. If u is a measurable
nonnegative function defined on Q = Kρ × (−T, 0) and if there is a constant ν1 ∈
[0, 1) such that

|Q ∩ {u ≤ k}| ≤ (1− ν1)|Q|,
then there is a number

τ1 ∈
(
− T,− ν1

2− ν1
T
)
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for which

|{x ∈ Kρ : u(x, τ1) ≤ k}| ≤
(
1− ν1

2
)
|Kρ|.

Our next proposition is similar to [7, Lemma IV.10.2].

Proposition 4.2. Let ν, k, ρ, and θ be given positive constants with ν < 1. If
g1 ≤ 1, then, for any ε ∈ (0, 1), there exists a constant δ = δ(ν, ε, θ, data) such that,
if u is a nonnegative supersolution of (1.1) in Kρ × (−τ, 0) with

|{x ∈ Kρ : u(x,−τ) < k}| < (1− ν) |Kρ| (4.1)

for some

τ ≤ θ(δk)2G
(δk
ρ

)−1

, (4.2)

then
|{x ∈ Kρ : u(x,−t) < δk}| < (1− (1− ε)ν) |Kρ|

for any −t ∈ (−τ, 0].

Proof. The proof is almost identical to that of [12, Proposition 3.2]. With Ψ defined
as

Ψ = ln+
( k

(1 + δ)k − (u− k)−

)
,

we note that δk|Ψ′| ≤ 1. It follows that

|Ψ′|2G
( |Dζ|

Ψ′
)
≤ (δk|Ψ′|)2−g1 (δk)−2

G (δk|Dζ|)

≤ σ−g1 (δk)−2
G

(
δk

ρ

)
.

Arguing as in the proof of [12, Proposition 3.2] (and noting that 2g1 ≥ 1) then
yields ∫ −s

−τ

∫
Kρ

h(Ψ2)|Ψ||Ψ′|2G
( |Dζ|
|Ψ′|

)
dx dt

≤ 2g1θh
(
j2(ln 2)2

)
(j ln 2)σ−g1 |Kρ|

≤ 2g1θ
H(j2(ln 2)2)

j ln 2
σ−g1 |Kρ|

for any s ∈ (0, τ). This inequality is the same as [12, (3.4)].
Since the remainder of the proof of [12, Proposition 3.2] is valid for the full range

1 < g0 ≤ g1, we do not repeat it here. �

Our next step should be a proposition concerning the spread of positivity over
space analogous to [12, Proposition 3.3]; however, because we need a much stronger
result here, we defer its discussion to the next subsection. Instead, we present a
modified DeGiorgi iteration with generalized structure conditions (1.2), which was
proved as [12, Proposition 3.4]. Basically, our Proposition 4.3 is equivalent to [7,
Lemmata III.4.1, III.9.1, IV.4.1]. We point out in particular that [7, Lemma IV.4.1],
which is the same as [2, Lemma 3.1], follows from our proposition by taking θ = 1,
k = ω/2m and ρ = (2m+1/ω)(2−p)/pR.
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Proposition 4.3. For a given positive constant θ, there exists ν0 = ν0(θ, data) ∈
(0, 1) such that, if u is a nonnegative supersolution of (1.1) in Qk,2ρ(θ) with

|{(x, t) ∈ Qk,2ρ(θ) : u(x, t) < k}| < ν0|Qk,2ρ(θ)| (4.3)

for some positive constants k and ρ, then

ess infQk,ρ(θ) u(x, t) ≥ k

2
.

We also recall [12, Proposition 3.5], which will be critical in our proof of initial
regularity.

Proposition 4.4. There exists ν0 ∈ (0, 1), determined only by the data, such that,
if u is a nonnegative supersolution of (1.1) in Qk,2ρ(θ) with

|{(x, t) ∈ Qk,2ρ(θ) : u(x, t) < k}| < ν0

θ
|Qk,2ρ(θ)| (4.4a)

for some positive constants k, ρ, and θ and if

u(x,−Tk,2ρ(θ)) ≥ k (4.4b)

for all x ∈ K2ρ, then

ess infKρ×(−Tk,2ρ(θ),0) u ≥
k

2
.

4.2. Expansion of positivity in space. Throughout this subsection, ν, ν0, ρ,
and k are given positive constants with ν, ν0 < 1. Also, to simplify notation, we set

T =
(k

2
)2
G
( k

2ρ
)−1

.

We assume that u is a nonnegative supersolution of (1.1) in K2ρ × (−T, 0) such
that ∣∣{x ∈ K2ρ : u(x, t) ≤ k

2
}
∣∣ ≤ (1− ν0)|K2ρ| (4.5)

for all t ∈ (−T, 0).
We wish to prove the following proposition, which is a generalization of [7,

Lemma IV.5.1]. In fact, this lemma is not the complete first alternative as de-
scribed in that source; we single it out as the crucial step in that alternative.

Proposition 4.5. Let ν ∈ (0, 1) and ν0 ∈ (0, 1] be constants. If g1 ≤ 2 and if u
is a nonnegative supersolution of (1.1) in K2ρ × (−T, 0) which satisfies (4.5), then
there is a constant δ∗ determined only by ν, ν0, and the data such that∣∣{x ∈ Kρ : u(x, t) ≤ δ∗k

2
}
∣∣ ≤ ν|K2ρ| (4.6)

for all t ∈ (−T1, 0), where

T1 =
(k

2
)2
G
(k
ρ

)−1
. (4.7)

Our proof follows that of [7, Lemma IV.5.1] rather closely with a few modifica-
tions based on ideas from [17, Section 4]. In addition, our proof shows much more
easily that the constants in [7, Chapter IV] are stable as p 6= 2.

Our first step is as in [7, Section IV.6]. We show that u satisfies an additional
integral inequality, which is the basis of the proof of Proposition 4.5. Before stating
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our inequalities, we introduce some notation. For positive constants κ and δ with
κ ≤ k/2 and δ < 1, we define two functions Φκ and Ψκ as follows:

Φκ(σ) =
∫ (σ−κ)−

0

(1 + δ)κ− s
G
( (1+δ)κ−s

2ρ

) ds, (4.8a)

Ψκ(σ) = ln
[ (1 + δ)κ
(1 + δ)κ− (σ − κ)−

]
. (4.8b)

We also note that there are two Lipschitz functions, ζ1 defined on K2ρ and ζ2
defined on [−T, 0], such that

ζ1 = 0 on the boundary of K2ρ, (4.9a)

ζ1 = 1 in Kρ, (4.9b)

|Dζ1| ≤
1
ρ

in K2ρ, (4.9c)

{x ∈ K2ρ : ζ1(x) > ε} is convex for all ε ∈ (0, 1), (4.9d)

ζ2(−T ) = 0, (4.9e)

ζ2 = 1 on (−T1, 0), (4.9f)

0 ≤ ζ ′2 ≤
(2
k

)2
G
(k
ρ

)
on (−T, 0). (4.9g)

Let us note that it’s easy to arrange that ζ ′2 ≥ 0 and that

1
ζ ′2
≥
(k

2
)2
G
( k

2ρ
)−1 −

(k
2
)2
G
(k
ρ

)−1
.

Since Lemma 2.1(b) implies that

G
(k
ρ

)
≥ 2g0G

( k
2ρ
)
≥ 2G

( k
2ρ
)
,

we infer the second inequality of (4.9g).
Also, we introduce the notation D− to denote the derivative

D−f(t) = lim sup
h→0+

f(t)− f(t− h)
h

.

With these preliminaries, we can now state our integral inequality. Our proof
of this inequality is essentially the same as that for [7, Lemma IV.6.1]; the new
ingredient is a more careful estimate of the integral involving ζt (which we denote
by I4). In this way, we obtain an estimate which does not depend on p − 2 being
bounded away from zero, which was the case in [7, (6.9) Chapter IV].

Lemma 4.6. If g1 ≤ 2 and if u is a weak supersolution of (1.1) in K2ρ × (−T, 0)
satisfying (4.5), then there are positive constants γ and γ0, determined only by ν,
ν0, and the data such that

D−
(∫

K2ρ

Φκ(u(x, t))ζq(x, t) dx
)

+ γ0

∫
K2ρ

Ψg0
κ (u(x, t))ζq(x, t) dx ≤ γ|K2ρ| (4.10)

for all t ∈ (−T, 0), where
q = g0/(g0 − 1). (4.11)
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Proof. With

u∗ =
(1 + δ)κ− (u− κ)−

2ρ
,

we use the test function
ζq((1 + δ)κ− (u− κ)−)

G(u∗)
in the weak form of the differential inequality satisfied by u to infer that, for all
sufficiently small positive h, we have

I1 + I2 ≤ I3 + I4

with

I1 =
∫
K2ρ

Φκ(u(x, t))ζq(x, t) dx−
∫
K2ρ

Φκ(u(x, t− h))ζq(x, t− h) dx,

I2 =
∫ h

t−h

∫
K2ρ

ζq(x, τ)D(u− κ)−(x, τ)A
1

G(u∗(x, τ))

×
[
1− u∗(x, τ)g(u∗(x, τ))

G(u∗(x, τ))

]
dx dτ,

I3 = q

∫ t

t−h

∫
K2ρ

Dζ(x, τ)Aζq−1(x, τ)
(1 + δ)κ− (u− κ)−

G (u∗(x, τ))
dx dτ,

I4 = q

∫ t

t−h

∫
K2ρ

Φκ(u(x, τ))ζq−1(x, τ)ζt(x, τ) dx dτ,

and A evaluated at (x, τ, u(x, τ), Du(x, τ)) in I2 and I3. We now use (1.2a) and the
first inequality in (1.3) to see that

I2 ≥ C0(g0 − 1)
∫ t

t−h

∫
K2ρ

ζq(x, τ)
G(|D(u− κ)−(x, τ)|)

G(u∗(x, τ))
dx dτ.

Also, (1.2b) and Lemma 2.1(e) (with σ1 = (qC1/C0)|Dζ(x, τ)|ρu∗(x, τ), σ2 =
|D(u− κ)−(x, τ)|, and ε = ζ(x, τ)(g0 − 1)/(2g1)) imply that

qDζ(x, τ) ·A(x, τ, u,Du)ζq−1(x, τ)
(1 + δ)κ− (u− κ)−

G (u∗(x, τ))
≤ J1 + J2

with

J1 = gg11 (
2

g0 − 1
)g1−1ζq−g1

G(q(C1/C0)|Dζ|ρu∗)
G(u∗)

,

J2 =
1
2
C0(g0 − 1)ζq

G(|D(u− κ)−|)
G(u∗)

.

From our conditions on ζ and because q ≥ 2 ≥ g1, we conclude that there is a
constant γ1, determined only by data, such that J1 ≤ γ1, so

I3 ≤ γ1h|K2ρ|+
1
2
I2.

Next, we estimate Φκ. Since κ ≤ k/2 and δ ∈ (0, 1), it follows that, for all s ∈
(0, (u− κ)−), we have (1 + δ)κ− s ≤ 2k and hence

G
( (1 + δ)κ− s

2ρ

)
≥
( (1 + δ)κ− s

2k

)2

G
(k
ρ

)
.
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It follows that

Φκ(u) ≤ 4k2G
(k
ρ

)−1
∫ (u−κ)−

0

[(1 + δ)κ− s]−1 ds = 4k2G
(k
ρ

)−1Ψκ(u),

and therefore

I4 ≤ 16q
∫ t

t−h

∫
K2ρ

Ψκ(u(x, τ))ζq−1(x, τ) dx dτ.

Combining all these inequalities and setting

I21 =
∫ t

t−h

∫
K2ρ

ζ2(x, τ)
G(|D(u− κ)−(x, τ)|)

G(u∗(x, τ))
dx dτ,

I41 =
∫ t

t−h

∫
K2ρ

Ψκ(u(x, τ))ζq−1(x, τ) dx dτ

yields

I1 +
1
2
C0(g0 − 1)I21 ≤ γ1h|K2ρ|+ 16qI41. (4.12)

Our next step is to compare

I22 =
∫ t

t−h

∫
K2ρ

ζq(x, τ)Ψg0
κ (u(x, τ)) dx dτ

with I21. To this end, we first use Lemma 5.3 with ϕ = ζq1 , v = (u − κ)−, and
p = g0 to conclude that there is a constant γ2 determined only by the data and ν0

such that, for almost all τ ∈ (t− h, t), we have∫
K2ρ

ζq(x, τ)Ψg0
κ (u(x, τ)) dx ≤ γ2ρ

g0

∫
K2ρ

ζq(x, τ)|DΨκ(u(x, τ))|g0 dx. (4.13)

(Of course, we have multiplied (5.4) by ζq2 (τ) here.) Now we use the explicit ex-
pression for Ψκ to infer that

ρ|DΨκ(u(x, τ))| = |D(u− κ)−(x, τ)|
2u∗(x, τ)

≤ |D(u− κ)−(x, τ)|
u∗(x, τ)

.

Whenever |D(u− κ)−(x, τ)| ≤ u∗(x, τ), we conclude that

ρg0 |DΨκ(u(x, τ))|g0 ≤ 1

and, wherever |D(u− κ)−(x, τ)| > u∗(x, τ), we infer from Lemma 2.1 that

ρg0 |DΨκ(u(x, τ))|g0 ≤ G(|D(u− κ)−(x, τ)|)
G(u∗(x, τ))

.

It follows that, for any (x, τ), we have

ρg0 |DΨκ(u(x, τ))|g0 ≤ 1 +
G(|D(u− κ)−(x, τ)|)

G(u∗(x, τ))
.

Inserting this inequality into (4.13) and integrating the resultant inequality with
respect to τ yields

I22 ≤ γ2(I21 + h|K2ρ|).
By invoking (4.12), we conclude that

I1 +
1

2γ2
C0(g0 − 1)I22 ≤

(
γ1 +

1
2γ2

C0(g0 − 1)
)
h|K2ρ|+ 16qI41.

We now note that
Ψκ(u)ζq−1 = (Ψg0

κ (u)ζq)1/g0 ,
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so Young’s inequality shows that

Ψκ(u)ζq−1 ≤ εΨg0
κ (u)ζq + ε−q

for any ε ∈ (0, 1). By choosing ε sufficiently small, we see that there are constants
γ0 and γ such that

I1 + γ0I2 ≤ γh|K2ρ|.
To complete the proof, we divide this inequality by h and take the limit superior
as h→ 0+. �

Our next step is to estimate the integral of ζq over suitable N -dimensional sets
with q defined by (4.11). Specifically, for each positive integer n and a number
δ ∈ (0, 1) to be further specified, we define the set

Kρ,n(t) = {x ∈ K2ρ : u(x, t) < δnk}
and we introduce the quantities

An(t) =
1
|K2ρ|

∫
Kρ,n(t)

ζq(x, t) dx, Yn = sup
−T<t<0

An(t)

We shall show that, for a suitable choice of δ (which will require at least that
δ ≤ 1/2) and n, we can make Yn small. In fact, based on the discussion in [7,
Section 7 Chapter IV], we shall find n0 and δ so that Yn0 ≤ ν. In fact, our method
is to estimate An+1(t) in terms of Yn for each n.

We first estimate An+1(t) if

D−
(∫

K2ρ

ζq(x, t)Φδnk(u(x, t)) dx
)
≥ 0. (4.14)

(This is the case [7, (7.5) Chapter IV].) Our estimate now takes the following form.

Lemma 4.7. Let ν and ν0 be constants in (0, 1). If (4.14) holds, then there is a
constant δ0, determined only by ν, ν0, and the data, such that δ ≤ δ0 implies that

An+1(t) ≤ ν. (4.15)

Proof. On Kρ,n+1(t), we have

Ψδnk(u) = ln
[ (1 + δ)δnk
(1 + δ)δnk − (u− δnk)−

]
≥ ln

[ (1 + δ)δnk
(1 + δ)δnk − (δn+1k − δnk)−

]
= ln

1 + δ

2δ
.

It follows that(
ln

1 + δ

2δ

)g0 ∫
Kρ,n+1(t)

ζq(x, t) dx ≤
∫
Kρ,n+1(t)

ζq(x, t)Ψδnk(u(x, t)) dx.

By invoking (4.10) and (4.14), we conclude that∫
Kρ,n+1(t)

ζq(x, t) dx ≤ γ

γ0

(
ln

1 + δ

2δ

)−g0
|K2ρ|.

By choosing δ0 sufficiently small, we infer (4.15). �

Our estimate when (4.14) fails is more complicated, as shown for the power case
in [7, Section IV.8].
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Lemma 4.8. Let ν and ν0 be constants in (0, 1). There are positive constants δ1
and σ < 1, determined only by ν, ν0, and the data, such that if

D−
(∫

K2ρ

ζq(x, t)Φδnk(u(x, t)) dx
)
< 0 (4.16)

for some δ ∈ (0, δ1) and if Yn > ν, then

An+1(t) ≤ σYn. (4.17)

Proof. In this case, we define

t∗ = sup
{
τ ∈ (−T, t) : D−

(∫
K2ρ

ζq(x, τ)Φδnk(u(x, τ)) dx
)
≥ 0
}

(and note that this set is nonempty). From the definition of t∗, we have that∫
K2ρ

ζq(x, t)Φδnku(x, t) dx ≤
∫
K2ρ

ζq(x, t∗)Φδnku(x, t∗) dx. (4.18)

It follows from Lemma 4.6 and the definition of t∗ that∫
K2ρ

ζq(x, t∗)Ψ
g0
δnku(x, t∗) dx ≤ C|K2ρ|,

with C = γ/γ0. Now we set

K∗(s) = {x ∈ K2ρ : (u− δnk)−(x, t∗) > sδnk}

for s ∈ (0, 1), and

I1(s) =
∫
K∗(s)

ζq(x, t∗) dx.

As in the proof of Lemma 4.7, we have that

Φsδnk(u(x, t∗)) ≥ ln
1 + δ

1 + δ − s
,

so

I1(s) ≤ C
(

ln
1 + δ

1 + δ − s

)−g0
|K2ρ|. (4.19)

Moreover, if x ∈ K∗(s), then

u(x, t∗) < (1− s)δnk ≤ δnk,

and hence K∗(s) ⊂ Kρ,n, so
I1(s) ≤ Yn|K2ρ|. (4.20)

We now define

s∗ =
[
1− exp

(
−
(2C
ν

)1/g0)](1 + δ∗),

with δ∗ ∈ (0, 1) chosen so that s∗ < 1. Since Yn > ν, a simple calculation shows
that

C
(

ln
1 + δ

1 + δ − s

)−g0
≤ 1

2
Yn (4.21)

for s > s∗ provided δ ≤ δ∗.
Next, we set

I2 =
∫
K2ρ

ζq(x, t∗)Φδnk(u(x, t∗)) dx
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and use Fubini’s theorem to conclude that

I2 =
∫
K2ρ

ζq(x, t∗)
(∫ δnk

0

χ{(δnk−u)+>s}((1 + δ)δnk − s)
G
( (1+δ)δnk−s

2ρ

) ds
)
dx

=
∫ δnk

0

(1 + δ)δnk − s
G
( (1+δ)δnk−s

2ρ

)( ∫
K2ρ

ζq(x, t∗)χ{(δnk−u)+>s} dx
)
ds

Using the change of variables τ = s/(δnk), we see that

I2 =
∫ 1

0

(1 + δ)− τ
G
( δnk(1+δ−τ)

2ρ

)( ∫
K2ρ

ζq(x, t∗)χ{(δnk−u)+>δnkτ} dx
)
dτ

=
∫ 1

0

(1 + δ)− τ
G
( δnk(1+δ−τ)

2ρ

)I1(τ) dτ.

Combining this equation with (4.19), (4.20), and (4.21) then yields

I2 ≤ Yn|K2ρ|
[ ∫ s∗

0

(1 + δ)− τ
G
( δnk(1+δ−τ)

2ρ

) dτ +
1
2

∫ 1

s∗

(1 + δ)− τ
G
( δnk(1+δ−τ)

2ρ

) dτ].
We now define the function

f(τ) =
τ

G
(
δnkτ

2ρ

)
and we set σ∗ = 1− s∗. Using the change of variables s = 1− τ then yields

I2 ≤ Yn|K2ρ|K,

with

K =
∫ 1

σ∗

f(δ + s) ds+
1
2

∫ σ∗

0

f(δ + s) ds.

Since

K =
∫ 1

0

f(δ + s) ds− 1
2

∫ σ∗

0

f(δ + s) ds,

it follows from (2.3) that

K ≤
(
1− σ∗

2
) ∫ 1

0

f(δ + s) ds,

and therefore

I2 ≤ Yn|K2ρ|
(

1− σ∗
2

)∫ 1

0

f(δ + s) ds. (4.22)

Our next step is to obtain a lower bound for I2. Taking into account (4.18), we
have

I2 ≥
∫
Kρ,n+1(t)

ζq(x, t)Φδnk(u(x, t)) dx.

Next, for z < δn+1k, we have

Φδnk(z) =
∫ (z−δnk)−

0

(1 + δ)δnk − s
G
( (1+δ)δnk−s

2ρ

) ds
≥
∫ δnk(1−δ)

0

(1 + δ)δnk − s
G
( (1+δ)δnk−s

2ρ

) ds
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=
∫ 1−δ

0

f(δ + s) ds

≥
(

1− 2
2 + ln δ

)∫ 1

0

f(δ + s) ds

by (2.1), so

Φδnk(u(x, t)) ≥
(

1− 2
2 + ln(1/δ)

)∫ δ

0

f(δ + s) ds

for all x ∈ Kρ,n+1(t) and hence

I2 ≥
(

1− 2
2 + ln(1/δ)

)(∫
Kρ,n+1(t)

ζq(x, t) dx
)(∫ δ

0

f(δ + s) ds
)
.

In conjunction with (4.22), this inequality implies that

An+1(t) ≤ 1− (σ∗/2)
1− (2/(2 + ln(1/δ))

Yn.

By taking δ2 sufficiently small, we can make sure that

σ =
1− (σ∗/2)

1− (2/(2 + ln(1/δ2))

is in the interval (0, 1). If we take δ1 = min{δ∗, δ2}, we then infer (4.17) for
δ ≤ δ1. �

As shown in [7], if t∗ and t are equal in this proof, we can infer (4.15) very simply.
We are now ready to prove Proposition 4.5.

Proof of Proposition 4.5. Since Yn+1 ≤ Yn, it follows from Lemmata 4.7 and 4.8
that, for all positive integers n, we have

An+1(t) ≤ max{ν, σYn}

for all t ∈ (−T, 0) and hence Yn+1 ≤ max{ν, σYn}. Induction implies that

Yn ≤ max{ν, σn−1Y1}

for all n. In addition Y1 ≤ 1, so there is a positive integer n0, determined by ν, a0,
and the data such that Yn0 ≤ ν.

Next, we recall that ζ = 1 on Kρ × (−T1, 0), and hence, for all t ∈ (−T1, 0), we
have ∣∣{x ∈ Kρ : u(x, t) ≤ δn0k}

∣∣ =
∫
{x∈Kρ:u(x,t)≤δn0k}

ζq(x, t) dx

≤
∫
{x∈K2ρ:u(x,t)≤δn0k}

ζq(x, t) dx ≤ Yn0 .

The proof is complete by using the inequality Yn0 ≤ ν and taking δ∗ = δn0 . �
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4.3. Proof of main lemma.

Proof. With δ to be chosen, we use Proposition 4.1 with k = ω/2, ρ = 2R, ν1 = 1
2 ,

and

T = 3
(δω

2
)2
G
( δω

2R
)−1

to infer that there is a τ1 ∈ (−T,−T/3) such that∣∣∣{x ∈ K2R : u(x, τ1) ≤ ω

2
}
∣∣∣ ≤ 3

4
|K2R|.

Next, we set ν = 1
4 , ρ = 2R, k = ω/2, τ = τ1, and θ = 3. Since τ1 ≤ T and

T = 3(δk)2G
(2δk
ρ

)−1 ≤ 3(δk)2G
(δk
ρ

)−1
,

it follows that (4.1) is satisfied, so Proposition 4.2 implies that∣∣{x ∈ K2R : u(x, t) ≤ δω

2
}
∣∣ ≤ 7

8
|K2R| (4.23)

for all t ∈ (τ1, 0) provided we take δ to be the constant from that proposition. (In
particular, δ is determined only by the data.) Since τ1 ≥ T/3, it follows that

τ1 ≥
(δω

2
)2
G
( δω

2R
)−1

,

and hence (4.23) holds for all

t ∈
(
−
(δω

2
)2
G
( δω

2R
)−1

, 0
)
.

Now we use Proposition 4.5, with ω = δω and ν to be chosen, to infer that there
is a constant δ∗ ∈ (0, 1), determined only by the data and ν such that∣∣{x ∈ KR : u(x, t) ≤ δ∗δω

2
}
∣∣ ≤ ν|K2R| (4.24)

for all

t ∈
(
−
(δω

2
)2
G
(δω
R

)−1
, 0
)
.

Since G
( δω/2

R

)
≤ G

(
δω
R

)
and δ∗ ≤ 1, it follows that(δω

2
)2
G
(δω
R

)−1 ≥
(δω

2
)2
G
(δω/2
R

)−1 ≥
(δ∗δω/2

R

)2

G
(δ∗δω/2

R

)−1

.

We now take ν0 to be the constant corresponding to θ = 1 in Proposition 4.3, and
we set ν = 2−Nν0, which determines δ∗. Then (4.3) is satisfied for k = δ∗δω/2 and
ρ = R/2. Proposition 4.3 then yields (3.2) with µ = δ∗δ/4. �

5. Auxiliary theorems

We now present the basic results used in the previous sections of the paper. Since
the results are either well-known or were proved in [12], we just state the results
here.
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5.1. Local energy estimate. The local energy estimate is a fundamental inequal-
ity playing an important role in the proofs of several results, especially Proposi-
tion 4.1, Proposition 4.2, and Proposition 4.5. We refer the reader to [12, Proposi-
tion 4.1] for a proof.

Proposition 5.1. Let G satisfy structure conditions (1.2) in a cylinder Qρ :=
Kρ × [t0, t1], and let ζ be a cutoff function on the cylinder Qρ, vanishing on the
parabolic boundary of Qρ with 0 ≤ ζ ≤ 1. Define constants r, s, and q by

r = 1− 1
g1
, s =

g0

g1
, and q = 2g1. (5.1)

If u is a locally bounded weak supersolution of (1.1), then there exist constants c0,
c1, and c2 depending on data such that∫

Kρ×{t1}
Gr−1

(ζ(u− k)−
ρ

)
(u− k)s+2

− ζq dx

+ c0

∫∫
Qρ

G (|D(u− k)−|)Gr−1
(ζ(u− k)−

ρ

)
(u− k)s−ζ

q dx dt

≤ c1
∫∫

Qρ

Gr−1
(ζ(u− k)−

ρ

)
(u− k)s+2

− ζq−1|ζt| dx dt

+ c2

∫∫
Qρ

G (|Dζ|ζ(u− k)−)Gr−1
(ζ(u− k)−

ρ

)
(u− k)s− dx dt

(5.2)

for any constant k.

We refer the reader to [12, Proposition 4.1] for the corresponding result about
nonpositive subsolutions.

5.2. Logarithmic energy estimate. With the functions h and H defined in
Lemma 2.2, the logarithmic energy estimate was proved as [12, Proposition 4.2],
which also contains the corresponding result for nonpositive weak subsolutions.

Proposition 5.2. Assume that G satisfies (1.2) in a cylinder KR× [t0, t1]. Let q ≥
g1 and δ ∈ (0, 1) be constants, and let ζ be a cut-off function which is independent
of the time variable. Let u be a nonnegative weak supersolution of (1.1)and let k
be a positive constant. Then∫

KR×{t1}
H(Ψ2)ζq dx+ C0(4g0 − 2)

∫ t1

t0

∫
KR

G(|Du|)h(Ψ2)(Ψ′)2ζq dx dt

≤
∫
KR×{t0}

H(Ψ2)ζq dx+ C∗
∫ t1

t0

∫
KR

h(Ψ2)Ψ(Ψ′)2G
( |Dζ|
|Ψ′|

)
ζq−g1 dx dt

(5.3)

where

C∗ =
C0

g1

(
2qg1C1

C0

)g1
, Ψ(u) = ln+

[
k

(1 + δ)k − (u− k)−

]
.

5.3. A Poincaré type inequality. For our proofs, we shall need the following
result which is [7, Proposition I.2.1].

Lemma 5.3. Let Ω be a bounded convex subset of RN and let ϕ be a nonnegative
continuous function on Ω such that ϕ ≤ 1 in Ω and such that the sets {x ∈ Ω :
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ϕ(x) > k} are convex for all k ∈ (0, 1). Then, for any p ≥ 1, there is a constant C
determined only by N and p such that(∫

Ω

ϕ|v|p dx
)1/p

≤ C (diam Ω)N

|{x ∈ Ω : v(x) = 0, ϕ(x) = 1}|(N−1)/N

(∫
Ω

ϕ|Dv|p dx
)1/p

(5.4)

for all v ∈W 1,p.

Note that if the set {x ∈ Ω : v(x) = 0, ϕ(x) = 1} has measure zero, then (5.4)
is true because the right hand side is infinite.

5.4. Embedding theorem. Our next result is a variation on the Sobolev imbed-
ding theorem, which is just [12, Theorem 4.4].

Theorem 5.4. For a nonnegative function v ∈ W 1,1
0 (Q) where Q = K × [t0, t1],

K ⊂ RN , we have∫∫
Q

v dx dt ≤ C(N)|Q ∩ {v > 0}|
1

N+1

×
[

ess supt0≤t≤t1

∫
K

v dx
] 1
N+1

[ ∫∫
Q

|Dv| dx dt
] N
N+1

.

(5.5)

5.5. Iteration. Finally, we recall [7, Lemma I.4.1].

Lemma 5.5. Let {Yn}, n = 0, 1, 2, . . ., be a sequence of positive numbers, satisfying
the recursive inequalities

Yn+1 ≤ CbnY 1+α
n (5.6)

where C, b > 1 and α > 0 are given numbers. If

Y0 ≤ C−
1
α b−

1
α2 ,

then {Yn} converges to zero as n→∞.
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regolari (in Italian), Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25–43.
[5] DiBenedetto, E.; A boundary modulus of continuity for a class of singular parabolic equations,

J. Differential Equations, 6 (1986), no. 3, 418–447.
[6] DiBenedetto, E.; On the local behaviour of solutions of degenerate parabolic equations with

measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), no. 3, 487–535.
[7] DiBenedetto, E.; Degenerate parabolic equations, Universitext, Springer-Verlag, New York

(1993).



24 S. HWANG, G. M. LIEBERMAN EJDE-2015/288

[8] DiBenedetto, E.; Gianazza, U.; Vespri, V.; A new approach to the expansion of positivity set

of non-negative solutions to certain singular parabolic partial differential equations, Proc.

Amer. Math. Soc., 138 (2010), no. 10, 3521–3529.
[9] DiBenedetto, E.; Gianazza, U.; Vespri, V.; Harnack’s inequality for degenerate and singular

parabolic equations, Springer Monographs in Mathematics, Springer, New York (2012),

[10] Gianazza, U.; Surnachev, M.; Vespri, V.; A new proof of the Hölder continuity of solutions
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