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FAVARD SPACES AND ADMISSIBILITY FOR VOLTERRA
SYSTEMS WITH SCALAR KERNEL

HAMID BOUNIT, AHMED FADILI

Abstract. We introduce the Favard spaces for resolvent families, extending

some well-known theorems for semigroups. Furthermore, we show the rela-
tionship between these Favard spaces and the Lp-admissibility of control op-

erators for scalar Volterra linear systems in Banach spaces, extending some

results in [22]. Assuming that the kernel a(t) is a creep function which sat-
isfies a(0+) > 0, we prove an analogue version of the Weiss conjecture for

scalar Volterra linear systems when p = 1. To this end, we also show that
the finite-time and infinite-time (resp. finite-time and uniform finite-time)

L1-admissibility coincide for exponentially stable resolvent families (reps. for

reflexive state space), extending well-known results for semigroups.

1. Introduction

Several authors have investigated the notion of the admissibility of control op-
erator for semigroups [11, 12, 13, 23, 26, 27, 29]. The first studies on admissibility
of control operator for Volterra scalar systems began with the paper of Jung [17].
Later, admissibility for linear Volterra scalar systems have been discussed by a
number of authors in [10, 14, 15]. In [17], Jung links the notion of finite-time
L2-admissibility for Volterra scalar system with finite-time L2-admissibility of the
well-studied semigroups case for completely positive kernel. Likewise, in [14] the
infinite-time L2-admissibility for a Volterra scalar system is linked with the infinite-
time L2-admissibility for semigroups for a large class of kernel and the result sub-
sumes that of [17]. In [15], the authors have given necessary and sufficient condition
for finite-time L2-admissibility of a linear integrodifferential Volterra scalar system
when the underlying semigroup is equivalent to a contraction semigroup, which
generalizes an analogous result known to hold for the standard Cauchy problem
and it subsumes the result in [17]. Another result is related to the case where the
generator of the underlying semigroup has a Riesz basis of eigenvectors in [10]. In
Section 2, we give some preliminaries about the concept of resolvent family, and
the relationship between linear integral equation of Volterra type with scalar kernel.
It is well-known that for a Cauchy problem there are strong relations connecting
its semigroup solution and its associated generator. Likewise, for a Volterra scalar
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problem, there are some results connecting its resolvent family and the domain of
the associated generator; which will be reviewed in Section 3. There are many re-
sults available from semigroups theory concerning the Favard spaces (see. [3, 6]). In
Section 4, we define the Favard spaces for scalar Volterra integral equations, and for
these spaces we account for some results which are similar to those of semigroups.
Especially, we account for a similar result to that in [5, Theorem 9] if the kernel is a
creep function. In Section 5, we introduce the ideas of Lp-admissibility of resolvent
families in the same spirit of semigroups and we describe the relationship between
the Lp-admissibility to the Favard spaces, already introduced in Section 4. This
extends some results obtained for the semigroups case in [22]. In particular, we are
able to prove that for Volterra scalar systems with a creep kernel a(t) such that
a(0+) > 0; the finite-time and the infinite-time L1-admissibility are equivalent for
exponentially stable resolvent family; and if the underlying state space is reflexive
then the finite-time and the uniform finite-time L1-admissibility are also equivalent;
extending well-known results for semigroups for all p ∈ [1,∞[. (See. [29, 8]).

2. Preliminaries

In this section we collect some elementary facts about scalar Volterra equations
and resolvent family. These topics have been covered in detail in [25]. We refer to
these works for reference to the literature and further information.

Let (X, ‖ · ‖) be a Banach space, A be a linear closed densely defined operator
in X and a ∈ L1

loc(R+) is a scalar kernel. We consider the linear Volterra equation

x(t) =
∫ t

0

a(t− s)Ax(s)ds+ f(t), t ≥ 0,

x(0) = x0 ∈ X,
(2.1)

where f ∈ C(R+, X).
Since A is a closed operator, we may consider (X1, ‖x‖1) the domain of A

equipped with the graph-norm, i.e. ‖x‖1 = ‖x‖ + ‖Ax‖. It is continuously em-
bedded in X. If the resolvent set ρ(A) of A is nonempty, A1 : D(A2) → X1, with
A1x = Ax, is a closed operator in X1 and ρ(A) = ρ(A1). On the other hand, we
may consider X−1 the completion of X with respect to the norm

‖x‖−1 = ‖(µ0I −A)−1x‖ for some µ0 ∈ ρ(A) and all x ∈ X.

These spaces are independent of the choice of µ0 and are related by the following
continuous and dense injections

X1
d
↪→ X

d
↪→ X−1.

Furthermore, the operator A : D(A)→ X−1 is continuous and densely defined, its
(unique) extension to X as domain makes it a closed operator in X−1, and it is
called A−1 and we have ρ(A) = ρ(A−1) (see. e.g. [24]).

We define the convolution product of the scalar function a with the vector-valued
function f by

(a ∗ f)(t) :=
∫ t

0

a(t− s)f(s)ds, t ≥ 0.

Definition 2.1. A function x ∈ C(R+, X) is called:
(i) strong solution of (2.1) if x ∈ C(R+, X1) and (2.1) is satisfied.
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(ii) mild solution of (2.1) if a ∗ x ∈ C(R+, X1) and

x(t) = f(t) +A[a ∗ x](t) t ≥ 0. (2.2)

Obviously, every strong solution of (2.1) is a mild solution. Conditions under
which mild solutions are strong solutions are studied in [25].

Definition 2.2. Equation (2.1) is called well-posed if, for each v ∈ D(A), there is
a unique strong solution x(t, v) on R+ of

x(t, v) = v + (a ∗Ax)(t) t ≥ 0, (2.3)

and for a sequence (vn) ⊂ D(A), vn → 0 implies x(t, vn) → 0 in X, uniformly on
compact intervals.

Definition 2.3. Let a ∈ L1
loc(R+). A strongly continuous family (S(t))t≥0 ⊂ L(X);

(the space of bounded linear operators in X) is called resolvent family for equation
(2.1), if the following three conditions are satisfied:

(S1) S(0) = I.
(S2) S(t) commutes with A, which means S(t)D(A) ⊂ D(A) for all t ≥ 0, and

AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0.
(S3) For each x ∈ D(A) and all t ≥ 0 the resolvent equations hold:

S(t)x = x+
∫ t

0

a(t− s)AS(s)xds.

Note that the resolvent for (2.1) is uniquely determined. The proofs of these
results and further information on resolvent can be found in the monograph by
Prüss [25]. We also notice that the choice of the kernel a classifies different families
of strongly continuous solution operators in L(X): For instance when a(t) = 1,
then S(t) corresponds to a C0-semigroup and when a(t) = t, then S(t) corresponds
to cosine operator function. In particular, when a(t) = tα−1

Γ(α) with 0 < α ≤ 2 and
Γ denotes the Gamma function, they are the α-times resolvent families studied in
[2] and corresponds to the solution families for fractional evolution equations, i.e.
evolution equations where the integer derivative with respect to time is replaced by
a derivative of fractional order.

The existence of a resolvent family allows one to find the solution for the equation
(2.1). Several properties of resolvent families have been discussed in [1, 25].

The resolvent family is the central object to be studied in the theory of Volterra
equations. The importance of the resolvent family S(t) is that, if it exists, then the
solution x(t) of (2.1) is given by the following variation of parameters formula in
[25]:

x(t) =
d

dt

∫ t

0

S(t− s)f(s)ds, (2.4)

for all t ≥ 0, and

x(t) = S(t)f(0) +
∫ t

0

S(t− s)f ′(s)ds, (2.5)

where t ≥ 0 and f ∈W 1,1(R+, X), gives us a mild solution for (2.1).
The following well-known result [25, Proposition 1.1] establishes the relation

between well-posedness and existence of a resolvent family. In what follows, R
denotes the range of a given operator.
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Theorem 2.4. Equation (2.1) is well-posed if and only if (2.1) admits a resolvent
family (S(t))t≥0. If this is the case we have in addition R(a ∗S(t)) ⊂ D(A), for all
t ≥ 0 and

S(t)x = x+A

∫ t

0

a(t− s)S(s)xds, (2.6)

for each x ∈ X, t ≥ 0.

From this we obtain that if (S(t))t≥0 is a resolvent family of (2.1), we have
A(a∗S)(.) is strongly continuous and the so-called mild solution x(t) = S(t)x0 solves
equation (2.1) for all x0 ∈ X with f(t) = x. A resolvent family (S(t))t≥0 is called
exponentially bounded, if there exist M > 0 and ω ∈ R such that ‖S(t)‖ ≤ Meωt

for all t ≥ 0, and the pair (M,ω) is called type of (S(t))t≥0. The growth bound of
(S(t))t≥0 is ω0 = inf{ω ∈ R, ‖S(t)‖ ≤ Meωt, t ≥ 0, M > 0}. The resolvent family
is called exponentially stable if ω0 < 0.

Note that, contrary to the case of C0-semigroup, resolvent for (2.1) need not to be
exponentially bounded: a counterexample can be found in [4, 25]. However, there
is checkable condition guaranteeing that (2.1) possesses an exponentially bounded
resolvent operator.

We will use the Laplace transform at times. Suppose g : R+ → X is measurable
and there exist M > 0, ω ∈ R, such that ‖g(t)‖ ≤ Meωt for almost t ≥ 0. Then
the Laplace transform

ĝ(λ) =
∫ ∞

0

e−λtg(t)dt,

exists for all λ ∈ C with Reλ > ω.
A function a ∈ L1

loc(R+) is said to be ω (resp. ω+)-exponentially bounded if∫∞
0
e−ωs|a(s)|ds <∞ for some ω ∈ R (resp. ω > 0).

The following proposition stated in [25], establishes the relation between resol-
vent family and Laplace transform.

Proposition 2.5. Let a ∈ L1
loc(R+) be ω-exponentially bounded. Then (2.1) admits

a resolvent family (S(t))t≥0 of type (M,ω) if and only if the following conditions
hold:

(i) â(λ) 6= 0 and 1/â(λ) ∈ ρ(A), for all λ > ω.
(ii) H(λ) := 1

λâ(λ) ( 1
â(λ)I − A)−1 called the resolvent associated with (S(t))t≥0

satisfies

‖H(n)(λ)‖ ≤Mn!(λ− ω)−(n+1) for all λ > ω and n ∈ N.

Under these assumptions the Laplace-transform of S(·) is well-defined and it is
given by Ŝ(λ) = H(λ) for all λ > ω.

3. Domains of A: A Review

Assuming the existence of a resolvent family (S(t))t≥0 for (2.1), it is natural
to ask how to characterize the domain D(A) of the operator A in terms of the
resolvent family. This is important, for instance in order to study the Favard class
in perturbation theory (see. [16, 19]). For very special case, the answer to the
above question is well-known. For instance, when a(t) = 1 or a(t) = t, A is the
generator of a C0-semigroup (T(t))t≥0 or a cosine family (C(t))t≥0 and we have:

D(A) =
{
x ∈ X : lim

t→0+

T(t)x− x
t

exists
}
,
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D(A) =
{
x ∈ X : lim

t→0+

C(t)x− x
t2

exists},

respectively (see. [25]).
A reasonable formula for the generator of resolvent families and k-regularized

resolvent families introduced in [18, 21] have been established by assuming very
mild conditions on the kernels a(t) and k(t). See. [16, Theorem 2.5] and [21,
Theorem 2.1]. It was observed in [16] that D(A) has the following characterization.

Proposition 3.1. Let (2.1) admit a resolvent family with growth bound ω (such
that the Laplace transform of the resolvent exists for λ > ω) for ω-exponentially
bounded a ∈ L1

loc(R+). Set for 0 < θ < π/2 and ε > 0

Ωεθ :=
{ 1
â(λ)

: Reλ > ω + ε, | arg λ| ≤ θ
}
.

Then the following characterization of D(A) holds

D(A) =
{
x ∈ X : lim

|µ|→∞, µ∈Ω0
θ

µA(µI −A)−1x exists
}
.

Without loss of generality we may assume that
∫ t

0
|a(s)|pds 6= 0 for all t > 0

and some 1 ≤ p < ∞. Otherwise we would have for some t0 > 0 and p0 ≥ 1
that a(t) = 0 for almost all t ∈ [0, t0], and thus by definition of resolvent family
S(t) = I for t ∈ [0, t0]. This implies that A is bounded, which is the trivial case
with X = D(A).

In what follows, we will use in the forthcoming sections the following assumption
on a ∈ Lploc(R+) with 1 ≤ p < ∞. It corresponds to [16, Assumption 2.3] when
p = 1.

(H1) There exist εa > 0 and ta > 0, such that for all 0 < t ≤ ta,

|
∫ t

0

a(s)ds| ≥ εa
∫ t

0

|a(s)|pds.

This is the case for functions a, which are positive (resp. a(I) ⊂]0, 1]) at some
interval I = [0, ta[ for p = 1 (resp. p > 1). For almost all reasonable functions in
applications it is easy to see that they satisfy this assumption. There are nonetheless
examples of functions that do not.

Now let us define the set D̃(A) as follows:

D̃(A) :=
{
x ∈ X : lim

t→0+

S(t)x− x
(1 ∗ a)(t)

exists
}

where (S(t))t ≥ 0 is a resolvent familly associated with (2.1).
It was proved in [16] that under (H1),

D(A) = D̃(A) = {x ∈ X : lim
t→0+

S(t)x− x
(1 ∗ a)(t)

= Ax}. (3.1)

From now and in view of this result we say that the pair (A, a) is a generator of a
resolvent family (S(t))t≥0.

Remark 3.2. When a = 1 + 1 ∗ k, with k ∈ L1
loc(R+), the Volterra system (2.1)

with f(t) = x0 is equivalent to the integrodifferential Volterra system

ẋ(t) = Ax(t) +
∫ t

0

k(t− s)Ax(s)ds, t ≥ 0. (3.2)
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Furthermore, if (3.2) admits a resolvent family (S(t))t≥0, then it is easy to see that

D̃(A) = {x ∈ X : lim
t→0+

S(t)x− x
[1 ∗ (1 + 1 ∗ k)](t)

= Ax},

=
{
x ∈ X : lim

t→0+

S(t)x− x
t

= Ax
}
.

It is well-known that if k ∈ BVloc(R+); (the space of functions locally of bounded
variation), then the operator A becomes a generator of a C0-semigroup (T(t))t≥0,
which is a necessary and sufficient condition for the existence of a resolvent family
(see. [25]) . Whence D̃(A) is also characterized in term of (T(t))t≥0 and we have

D̃(A) =
{
x ∈ X : lim

t→0+

T(t)x− x
t

= Ax
}

=
{
x ∈ X : lim

t→0+

S(t)x− x
t

= Ax
}
.

4. Favard spaces with kernel

In semigroup theory the Favard space sometimes called the generalized domain
is defined for a given semigroup (T(t))t≥0 (with A as its generator) as

F̃α(A) :=
{
x ∈ X : sup

t>0

‖T(t)x− x‖
tα

<∞
}
, 0 < α ≤ 1,

with norm

‖x‖ eFα(A) := ‖x‖+ sup
t>0

‖T(t)x− x‖
tα

,

which makes F̃α(A) a Banach space. T(t) is a bounded operator on F̃α(A) but is
not necessary strongly continuous on it. X1 is a closed subspace of F̃α(A) and both
spaces coincide when α = 1, and X is reflexive (see. e.g., [6]). It is natural to ask
how to define in a similar way F̃α(A) of the operator A in terms of the resolvent
family. In fact, these spaces can be defined for general solution families in a similar
way. In fact, it can be defined for all A, for which there exists a sequence (λn)n with
λn ∈ ρ(A) and |λn| → ∞ in a similar fashion, as was proved in [16] for resolvent
family and in [19] for integral resolvent family and in [20] for (a, k)-resolvent family
for the case α = 1. Remark that both [16] and [19] have not considered the Favard
class of order α. These spaces will be the topic of this section and will be useful for
the notion of the admissibility considered in Section 5.

This leads to the following definition which corresponds to a natural extension,
in our context, of the Favard classes frequently used in approximation theory for
semigroups.

Definition 4.1. Let (2.1) admit a bounded resolvent family (S(t))t≥0 on X, for
ω+-exponentially bounded a ∈ L1

loc(R+). For 0 < α ≤ 1, we define the “frequency”
Favard space of order α associated with (A, a) as follows:

Fα(A) :=
{
x ∈ X : sup

λ>ω
‖λα−1 1

â(λ)
A
( 1
â(λ)

I −A
)−1

x‖ <∞
}
,

=
{
x ∈ X : sup

λ>ω
‖λαAH(λ)x‖ <∞

}
.
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Remark 4.2. (i) As for the semigroups it is natural to define the following space

F̃α(A) :=
{
x ∈ X : sup

t>0

‖S(t)x− x‖
|(1 ∗ a)(t)|α

<∞
}
,

for (A, a) generator of a resolvent family (S(t))t≥0 on X.
(ii) It is clear that D̃(A) ⊂ F̃ 1(A) and by virtue of Proposition 3.1 we have

D(A) ⊂ F 1(A). Moreover, if a satisfies (H1) then D(A) ⊂ F̃ 1(A) due to the fact
that F 1(A) ⊂ F̃ 1(A) (see. [16]). In this way, for different functions a(t) we obtain
different Favard classes of order α which may be considered as extrapolation spaces
between D(A) and X.

(iii) When a(t) = 1, we recall that and (S(t))t≥0 corresponds to a bounded
C0-semigroup generated by A. In this situation we obtain

Fα(A) =
{
x ∈ X : sup

λ>0
‖λαA(λI −A)−1x‖ <∞

}
and Fα(A) = F̃α(A). This case is well known, (see. e.g. [6]).

(iv) The Favard class of A with kernel a(t) can be alternatively defined as the
subspace of X given by

{
x ∈ X : lim supλ→∞‖λα−1 1ba(λ)A( 1ba(λ)I − A)−1x‖ < ∞

}
.

As a consequence of S(t) being bounded, the above space coincides with Fα(A) in
Definition 4.1 and that F̃α(A) :=

{
x ∈ X : sup0<t≤1

‖S(t)x−x‖
|(1∗a)(t)|α <∞

}
.

(v) Let a = 1 + 1 ∗ k, with k ∈ L1
loc(R+), and (A, a) be a generator of a bounded

resolvent family (S(t))t≥0 on X. Then, F̃α(A) =
{
x ∈ X : sup0<t≤1

‖S(t)x−x‖
tα <

∞
}

(due to limt→0+
(1∗a)(t)

t = 1) and we have S(t)Fα(A) ⊂ Fα(A) for all α ∈]0, 1]
and t ≥ 0 thanks to [9, Theorem 7] ((µI−A)−1commutes with S(t) for all µ ∈ ρ(A)).

The proof of the following proposition is immediate.

Proposition 4.3. The Favard classes of order α of A with kernel a(t), Fα(A) and
F̃α(A) are Banach spaces with respect to the norms

‖x‖Fα(A) := ‖x‖+ sup
λ>ω
‖λα−1 1

â(λ)
A(

1
â(λ)

I −A)−1x‖,

‖x‖ eFα(A) := ‖x‖+ sup
0<t≤1

‖S(t)x− x‖
|(1 ∗ a)(t)|α

,

respectively.

As for the semigroups case, we obtain the natural inclusions between the Favard
class for different exponents.

Proposition 4.4. Let (2.1) admit a bounded resolvent family (S(t))t≥0 on X for
ω+-exponentially bounded a ∈ L1

loc(R+). For all 0 < β < α ≤ 1, we have:
(i) D(A) ⊂ Fα(A) ⊂ F β(A).

(ii) D̃(A) ⊂ F̃α(A) ⊂ F̃ β(A).

Proof. (i) Let x ∈ Fα(A), then for all λ > ω, we have

‖λβ−1 1
â(λ)

A(
1

â(λ)
I −A)−1x‖ = ‖λβ−αλα−1 1

â(λ)
A(

1
â(λ)

I −A)−1x‖

= λβ−α‖λα−1 1
â(λ)

A(
1

â(λ)
I −A)−1x‖
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≤ 1
λα−β

sup
λ>ω
‖λα−1 1

â(λ)
A(

1
â(λ)

I −A)−1x‖

≤ 1
ωα−β

sup
λ>ω
‖λα−1 1

â(λ)
A(

1
â(λ)

I −A)−1x‖,

which implies that x ∈ F β(A) and from Remark 4.2 (ii) we deduce that D(A) ⊂
Fα(A).

(ii) Let x ∈ F̃α(A), and 0 < t ≤ 1. We have

‖S(t)x− x‖
|(1 ∗ a)(t)|β

=
1

|
∫ t

0
a(s)ds|β−α

‖S(t)x− x‖
|
∫ t

0
a(s)ds|α

≤ ‖a‖α−βL1[0,1] sup
0<t≤1

‖S(t)x− x‖
|
∫ t

0
a(s)ds|α

Hence x ∈ F̃ β(A) and that D̃(A) ⊂ F̃α(A) due to Remark 4.2 (ii). �

Note that under (H1) we have: (i) F 1(A) ⊂ F̃ 1(A) (see. [16, Assumption 2.3]).
Whereas the inclusion (ii) F̃ 1(A) ⊂ F 1(A) was proved under a strong assumption in
[16, Assumption 3.1]. Now we prove that (ii) holds for all non negative a ∈ L1

loc(R+).

Proposition 4.5. Let (2.1) admit a bounded resolvent family (S(t))t≥0 on X, for
ω+-exponentially bounded non negative a ∈ L1

loc(R+). Then, we have F 1(A) =
F̃ 1(A).

Proof. Since a(t) is a non negative, (H1) is satisfied and by [16] we have F 1(A) ⊂
F̃ 1(A). Now let x ∈ F̃ 1(A) and set sup0<t≤1

‖S(t)x−x‖
(1∗a)(t) := Jx <∞. We write

1
â(λ)

A(
1

â(λ)
I −A)−1 = λAH(λ),

for all λ > ω. Using the integral representation of the resolvent (see. Proposition
2.5) we obtain:

λAH(λ)x =
λ

â(λ)
H(λ)x− 1

â(λ)
x

=
λ

â(λ)
[H(λ)x− 1

λ
x]

=
λ

â(λ)

∫ ∞
0

e−λs(S(s)x− x)ds

=
λ

â(λ)

∫ ∞
0

e−λs(1 ∗ a)(s)
S(s)x− x
(1 ∗ a)(s)

ds.

The resolvent family (S(t))t≥0 being bounded; ‖S(t)‖ ≤ M for some M > 0 and
all t ≥ 0. Then we obtain

‖λAH(λ)x‖ ≤ λ

â(λ)

∫ ∞
0

e−λs(1 ∗ a)(s)ds. sup
t>0

‖S(t)x− x‖
(1 ∗ a)(t)

≤ λ

â(λ)

∫ ∞
0

e−λs(1 ∗ a)(s)ds.(L‖x‖+ sup
0<t≤1

‖S(t)x− x‖
(1 ∗ a)(t)

)

=
λ

â(λ)
1̂ ∗ a(λ).(L‖x‖+ Jx)

= L‖x‖+ Jx,
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with L = 1+M
(1∗a)(1) . This implies that supλ>ω‖λAH(λ)x‖ <∞, which completes the

proof. �

Note that in the semigroup case, i.e. a(t) = 1, we have the well-known result
that F̃α(A)=Fα(A), (see. e.g. [6]). In what follows, we investigate conditions on
the kernel a to prove that this is the case for the (A, a) generator of the resolvent
families. Note that for all ω+-exponentially bounded function a, it is clear that
(1 ∗ a)α is also ω+-exponentially bounded (due to xα ≤ 1 + x for all x ≥ 0 and
α ∈]0, 1]).

We consider the following assumption on a ∈ L1
loc(R+) and 0 < α ≤ 1.

(H2) a is ω+-exponentially bounded and there exists εa,α > 0, such that for all
λ > ω

|â(λ)| ≥ εa,αλα
∫ ∞

0

e−λt|(1 ∗ a)(t)|αdt.

Note that conditions (H2) and λâ(λ) being bounded, are independent (see. e.g.
Example 4.6 (ii)).

Example 4.6. (i) The famous case a(t) = 1 satisfies the condition (H2) for all
α ≥ 0 due to

λα

â(λ)

∫ ∞
0

e−λt((1 ∗ 1)(t))αdt = Γ(α+ 1) for all λ > 0,

which corresponds to the semigroup case.
(ii) Consider the standard kernel a(t) = tβ−1/Γ(β) for β ∈ [0, 1[. a is non

negative and for all λ > 0

λα

â(λ)

∫ ∞
0

e−λt((1 ∗ a)(t))αdt =
λα+β−αβ−1

βα(Γ(β))βΓ(αβ + 1)
,

=
λ(α−1)(1−β)

βα(Γ(β))βΓ(αβ + 1)
.

Thus a satisfies (H2) and λâ(λ) = λ1−β is not bounded for β ∈ [0, 1[.
(iii) Let a(t) = µ + νtβ , 0 < β < 1, µ > 0, ν > 0. Then we have â(λ) =

µ
λ + ν

λβ+1 Γ(β + 1) for λ > 0 and (1 ∗ a)(t) = µt + ν t
β+1

β+1 . Further, for α ∈]0, 1] we
have

λα

â(λ)

∫ ∞
0

e−λt((1 ∗ a)(t))αdt

=
λα

â(λ)

∫ ∞
0

e−λt(µt+ ν
tβ+1

β + 1
)αdt,

=
λα

â(λ)

∫ 1

0

e−λt(µt+ ν
tβ+1

β + 1
)αdt+

λα

â(λ)

∫ ∞
1

e−λt(µt+ ν
tβ+1

β + 1
)αdt,

≤ (µ+
ν

β + 1
)α

Γ(α+ 1)
µ

+ (µ+
ν

β + 1
)α

Γ(αβ + α+ 1)
µ

λ−αβ .

Then (H2) is satisfied. Note that for β = 1, a(t) = µ + νt, Equqation (2.1)
corresponds to the model of a solid of Kelvin-Voigt (see. [25]).
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(iv) Let a = 1 + 1 ∗ k with k(t) = e−t. We have â(λ) = λ+2
λ(λ+1) for all λ > 0 and

(1 ∗ a)(t) = 2t+ e−t − 1 ≤ 2t for all t ≥ 0. Hence

λα

â(λ)

∫ ∞
0

e−λt((1 ∗ a)(t))αdt ≤ λα

â(λ)

∫ ∞
0

e−λt(2t)αdt, =
λ+ 1
λ+ 2

· 2αΓ(α+ 1).

Then a satisfies (H2).
(v) Let a = 1 + 1 ∗ k with k(t) = −e−t. We have â(λ) = 1

λ+1 for all λ > 0 and
that (1 ∗ a)(t) = 1− e−t ≤ t for all t ≥ 0. Hence

λα

â(λ)

∫ ∞
0

e−λt((1 ∗ a)(t))αdt ≤ λα(λ+ 1)
∫ ∞

0

e−λttαdt =
λ+ 1
λ

Γ(α).

Then a satisfies (H2).

The following result establishes the relation between the spaces F̃α(A) and
Fα(A) and therefore generalizes [6, Proposition 5.12].

Proposition 4.7. Let (2.1) admit a bounded resolvent family (S(t))t≥0 on X, for
ω+-exponentially bounded a ∈ L1

loc(R+) and 0 < α ≤ 1.

(i) If a satisfies (H1) and λâ(λ) is bounded for λ > ω, then Fα(A) ⊂ F̃α(A).
(ii) If a is non negative satisfying (H2), then F̃α(A) ⊂ Fα(A).

Proof. (i) Let x ∈ Fα(A) and 0 < t ≤ 1. Then supλ>ω‖λαAH(λ)x‖ =: Kx < ∞.
Using the integral representation of the resolvent (see. Proposition 2.5), we obtain

x = λH(λ)x− λâ(λ)AH(λ)x for λ > ω,=: xλ − yλ.

Since xλ ∈ D(A) and using (S2)-(S3) we have

‖S(t)xλ − xλ‖ = ‖
∫ t

0

a(t− s)S(s)Axλds‖

≤
∫ t

0

|a(t− s)| · ‖S(s)‖ · ‖Axλ‖ds

≤M‖Axλ‖
∫ t

0

|a(s)|ds

= M‖λαAH(λ)x‖λ1−α(1 ∗ |a|)(t)
≤MKxλ

1−α(1 ∗ |a|)(t).

On the other hand, (S(t))t≥0 is bounded by M and we have

‖S(t)yλ − yλ‖ ≤ ‖S(t)yλ‖+ ‖yλ‖
≤ ‖S(t)‖ ‖yλ‖+ ‖yλ‖
≤ (M + 1)‖yλ‖
= (M + 1)‖λâ(λ)AH(λ)x‖
= (M + 1)|â(λ)| ‖λαAH(λ)x‖λ1−α

≤ (M + 1)Kx|â(λ)|λ1−α.

This implies

‖S(t)x− x‖
|(1 ∗ a)(t)|α
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≤ MKxλ
1−α(1 ∗ |a|)(t)
|(1 ∗ a)(t)|α

+
(M + 1)Kx.|â(λ)|λ1−α

|(1 ∗ a)(t)|α

≤ MKx

εαa
λ1−α((1 ∗ |a|)(t))1−α +

(M + 1)Kx

εαa
|λâ(λ)|.λ−α((1 ∗ |a|)(t))−α

≤ MKx

εαa
λ1−α((1 ∗ |a|)(t))1−α +

(M + 1)KxK
′

εαa
λ−α((1 ∗ |a|)(t))−α.

The third inequality is realized under (H1): |(1 ∗ a)(t)| ≥ εa(1 ∗ |a|)(t) and that
|λâ(λ)| ≤ K ′ for some K ′ > 0 and for λ large enough. Substituting λt = Nω

(1∗|a|)(t) >

ω for t ∈]0, 1] (λt →∞ as t→ 0) with Nω = 1 + ω(1 ∗ |a|)(1), we obtain

‖S(t)x− x‖
|(1 ∗ a)(t)|α

≤ MKxN
1−α
ω

εαa
+

(M + 1)KxK
′N−αω

εαa
,

for all 0 < t ≤ 1. Thus sup0<t≤1
‖S(t)x−x‖
|(1∗a)(t)|α <∞, and hence x ∈ F̃α(A).

(ii) Let x ∈ F̃α(A) be given, then sup0<t≤1
‖S(t)x−x‖
|(1∗a)(t)|α := Jx <∞. For λ > ω we

write λH(λ)x− x = λâ(λ)AH(λ)x then

λAH(λ)x =
λ

â(λ)
(H(λ)x− 1

λ
x) =

λ

â(λ)

∫ ∞
0

e−λt(S(t)x− x)dt,

and

λαAH(λ)x =
λα

â(λ)

∫ ∞
0

e−λt(1 ∗ a)α(t)(
S(t)x− x
(1 ∗ a)α(t)

)dt,

The fact that a is non negative and satisfies (H2), implies

‖λαAH(λ)x‖ ≤ (Lα‖x‖+ Jx)
εa,α

with Lα =
1 +M

(1 ∗ a)α(1)
.

Therefore, supλ>ω‖λαAH(λ)x‖ <∞ which completes the proof. �

Remark 4.8. Let α ∈]0, 1].
(i) a(t) = 1. Then λâ(λ) is bounded for all λ > 0 and a satisfies (H1). Further-

more a satisfies (H2) (see. Example 4.6 (i)) and by virtue of Proposition 4.7, we
obtain Fα(A) = F̃α(A). Hence we recover a result for C0-semigroups case which
corresponds to [6, Proposition 5.12].

(ii) a(t) = t satisfies (H1) and we have λâ(λ) = 1
λ is bounded for all λ > ω > 0 .

By virtue of Proposition 4.7 (i) we obtain Fα(A) ⊂ F̃α(A).
(iii) Let a be a completely positive function. Then (see. [25]) a is non negative

and

λâ(λ) =
1

k0 + 1
k∞

+ k̂1(λ)
,

for all λ > 0 where k0 ≥ 0, k∞ ≥ 0 and k1 is non negative decreasing function
tending to 0 as t → ∞. That is λâ(λ) is bounded and by Proposition 4.7 (i) we
obtain Fα(A) ⊂ F̃α(A).

(iv) Consider the standard kernel a(t) = tβ−1

Γ(β) , with β ∈ [1, 2[. Then a satisfies
(H1) and that λâ(λ) = λ · λ−β = λ1−β , for all λ > ω > 0 is bounded, thus from
Proposition 4.7 (i) Fα(A) ⊂ F̃α(A).
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(v) Let a(t) = tβ−1

Γ(β) , with β ∈ [0, 1[. Then a is non negative and we have

λα

â(λ)

∫ ∞
0

e−λt((1 ∗ a)(t))αdt =
λα+β−αβ−1

βα(Γ(β))βΓ(αβ + 1)

=
λ(α−1)(1−β)

βα(Γ(β))βΓ(αβ + 1)

which is bounded, for all λ > ω > 0 due to β ∈ [0, 1[. This implies that a satisfies
(H2) and according to Proposition 4.7 (ii) we can conclude that F̃α(A) ⊂ Fα(A).

(vi) Let a(t) = µ + νtβ , 0 < β < 1, µ > 0, ν > 0. By Proposition 4.7 we have
F̃α(A) = Fα(A) according to the Example 4.6 (iii).

(vii) Let a = 1 + 1 ∗ k, with k(t) = ±e−t. Proposition 4.7 yields F̃α(A) =
Fα(A) according to the Example 4.6 (iv)-(v). In general, for k ∈ L1

loc(R+), ω+-
exponentially bounded, we have λâ(λ) = 1 + k̂(λ) which is is bounded for all
λ > 0, according to the Riemann-Lebesgue Lemma. If in addition a satisfies (H1),
Proposition 4.7 (i) asserts that Fα(A) ⊂ F̃α(A). Now, if k(t) is negative with
k̂(0) ≥ −1 then we obtain a non negative kernel a satisfying 0 ≤ (1 ∗ a)(t) ≤
t. Hence, both (H1) and (H2) are satisfied (see. Example 4.6 (iv)) and using
Proposition 4.7 we obtain F̃α(A) = Fα(A).

Definition 4.9. A scalar function a :]0,∞[→ R is called creep if it is continuous,
non-negative, non-decreasing and concave.

According to [25, Definition 4.4], a creep function has the standard form

a(t) = a0 + a∞t+
∫ t

0

a1(τ)dτ,

where a0 = a(0+) ≥ 0, a∞ = limt→∞
a(t)
t and a1(t) = ȧ(t) − a∞ is non negative,

non increasing and limt→∞a1(t) = 0.
The concept of creep function is well known in viscoelasticity theory and corre-

sponds to a class of functions which are normally verified in practical situations.
We refer to the monograph of Prüss [25] for further information.

We finish this section by proving an analogue version to a well-known result for
semigroups in [5, Theorem 9] for resolvent family. We remark that a similar result
was proved for integral resolvent families in [19]. For the sake of completeness we
give here the details of the proof.

Lemma 4.10. Assume that (A, a) generates a bounded resolvent family (S(t))t≥0,
and a is a creep function with a(0+) > 0. Then for all ξ ∈ L1

loc(R+, eF 1(A)) and
t > 0, we have

∫ t
0
S(t− s)ξ(s)ds ∈ D(A), and there exists N > 0 such that

‖A
∫ t

0

S(t− s)ξ(s)ds‖X ≤ N
∫ t

0

‖ξ(s)‖ eF 1(A)ds for all t > 0.

Proof. We give the proof in three steps. Let t > 0 and ξ ∈ L1([0, t], F̃ 1(A)), there
exists ξn ∈ C2([0, t], F̃ 1(A)), such that ξn → ξ in L1([0, t], F̃ 1(A)) as n→∞.

Step 1. For all t ≥ 0,
∫ t

0
S(t − s)ξn(s)ds ∈ D(A). In fact, let ϕn(s) = ξn(s) −

ξn(0) − sξ′n(s). Then ϕn(0) = 0, and ϕ′n(0) = 0. Define i(s) = s and observe that
ξn(s) = (i ∗ ϕ′′n)(s) + ξ′n(0)i(s) + ξn(0), for all s ∈ [0, t]. Since a is a creep function,
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there exists a scalar function b such that a∗b = i, see. [25, Proposition 4.4]. Hence,
we obtain∫ t

0

S(t− s)ξn(s)ds = (S ∗ ξn)(t)

= (a ∗ S ∗ b ∗ ϕ
′′

n)(t) + (a ∗ S ∗ b)(t)ξ′n(0) +
∫ t

0

S(s)ξn(0)ds.

Since a is a creep function with a(0+) > 0, it is easy to see that the resolvent
family (S(t))t≥0 is a solution of an integrodifferential Volterra equation of the form
(3.2). Thus

∫ t
0
S(s)ξn(0)ds ∈ D(A), (see [9, Lemma 1] and [7]) and that R((a ∗

S)(t)) ⊂ D(A), we obtain
∫ t

0
S(t− s)ξn(s)ds ∈ D(A) for all t ≥ 0.

Step 2.
∫ t

0
S(t− s)ξn(s)ds→

∫ t
0
S(t− s)ξ(s)ds as n→∞ for all t ≥ 0. In fact, by

hypothesis there exists M > 0 such that ‖S(t)‖ ≤M for all t ≥ 0, hence

‖
∫ t

0

S(t− s)[ξn(s)− ξ(s)]ds‖ ≤
∫ t

0

‖S(t− s)‖ ‖ξn(s)− ξ(s)‖ds

≤M
∫ t

0

‖ξn(s)− ξ(s)‖ eF 1(A)ds,

which tends to zero as n→∞.
Step 3.

∫ t
0
S(t − s)ξ(s)ds ∈ D(A) for all t ≥ 0. In fact, let ε > 0 be given. Since∫ t

0
S(t − s)ξn(s)ds ∈ D(A) (see. step1) and a is non negative, (3.1) implies that

there exists δ > 0, such that for all 0 ≤ h ≤ δ we have

‖ S(h)− I
(1 ∗ a)(h)

∫ t

0

S(t− s)ξn(s)ds−A
∫ t

0

S(t− s)ξn(s)ds‖ < ε,

equivalently,

‖
∫ t

0

S(t− s) S(h)− I
(1 ∗ a)(h)

ξn(s)ds−A
∫ t

0

S(t− s)ξn(s)ds‖ < ε.

Using that ξn(·) ∈ F̃ 1(A) and the boundedness of (S(t))t≥0 we obtain

‖A
∫ t

0

S(t− s)ξn(s)ds‖ ≤ ‖ S(h)− I
(1 ∗ a)(h)

∫ t

0

S(t− s)ξn(s)ds−A
∫ t

0

S(t− s)ξn(s)ds‖

+
∫ t

0

‖S(t− s)‖ sup
0<h≤1

‖ S(h)− I
(1 ∗ a)(h)

ξn(s)‖ds

≤ ε+M

∫ t

0

‖ξn(s)‖ eF 1(A)ds,

for all ε > 0, which implies that

‖A
∫ t

0

S(t− s)ξn(s)ds‖ ≤M
∫ t

0

‖ξn(s)‖ eF 1(A)ds. (4.1)

Now let xn :=
∫ t

0
S(t − s)ξn(s)ds, then by step 1 we have xn ∈ D(A) and by step

2, xn → x :=
∫ t

0
S(t− s)ξ(s)ds as n→∞ for all t > 0. Moreover by (4.1) we have

‖Axm −Axn‖ = ‖A
∫ t

0

S(t− s)[ξm(s)− ξn(s)]ds‖
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≤M
∫ t

0

‖ξm(s)− ξn(s)‖ eF 1(A)ds→ 0,

as m,n→∞. This proves that the sequence (Axn)n is Cauchy, and hence (Axn)n
converges in X, say Axn → y ∈ X.

Since A is closed, we conclude that x ∈ D(A) proving the step 3. Moreover,
from (4.1) we deduce that

‖A
∫ t

0

S(t− s)ξ(s)ds‖ ≤M
∫ t

0

‖ξ(s)‖ eF 1(A)ds

for all t > 0 which completes the proof. �

5. Sufficient and necessary conditions for admissibility

In this section we go back to the admissibility. We give sufficient and necessary
conditions in terms of the Favard classes introduced in the above section for the
Lp-admissibility of control operators for Volterra systems of the form

x(t) = x0 +
∫ t

0

a(t− s)Ax(s)ds+
∫ t

0

Bu(s)ds, t ≥ 0

x(0) = x0 ∈ X
(5.1)

Here A is a closed densely defined operator on a Banach space and U is another
Banach space. It is further assumed that the uncontrolled system (i.e. (5.1) with
B = 0)

x(t) = x0 +
∫ t

0

a(t− s)Ax(s)ds, t ≥ 0, (5.2)

admits a resolvent family (S(t))t≥0.
Since the resolvent of (5.2) commutes with the operator A, then it can be eas-

ily seen that the restriction (S1(t))t≥0 to X1 of (S(t))t≥0, the solution of (5.2), is
strongly continuous. Moreover, if ρ(A) 6= ∅ (in particular if (S(t))t≥0 is exponen-
tially bounded; see. Proposition 2.5) (S1(t))t≥0 solves (5.2) for each x0 ∈ X and
A1 replacing A . Likewise, S(t) has a unique bounded extension to X−1 for each
t ≥ 0 and t 7−→ S−1(t) is also strongly continuous, and it solves (5.2) in X−1 with
A−1 replacing A.

If ρ(A) 6= ∅ and B ∈ L(U,X−1), then the mild solution of (5.1) is formally given
by the variation of constant formula

x(t) = S(t)x0 +
∫ t

0

S−1(t− s)Bu(s)ds, (5.3)

which is actually the classical solution if B ∈ L(U,X) and x0 ∈ D(A) and u
sufficiently smooth. In general however, B is not a bounded operator from U into
X and so an additional assumption on B will be needed to ensure that x(t) ∈ X
for every x0 ∈ X and every u ∈ Lp([0,∞[;U) or Lploc([0,∞[;U).

In the same spirit of semigroups, the following are the most natural definitions
of the Lp-admissibility for resolvent families.

Definition 5.1. Let p ∈ [1,∞[ and B ∈ L(U,X−1) and assume that (S(t))t≥0 is
exponentially bounded .

(i) B is called infinite-time Lp-admissible operator for (S(t))t≥0, if there exists
a constant M > 0 such that

‖S−1 ∗Bu(t)‖ ≤M‖u‖Lp([0,∞[,U) for all u ∈ Lp([0,∞[, U) and t > 0.
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(ii) B is called finite-time Lp-admissible operator for (S(t))t≥0 if there exists
t0 > 0 and a constant M(t0) > 0 such that:

‖S−1 ∗Bu(t0)‖ ≤M(t0)‖u‖Lp([0,t0],U) for all u ∈ Lp([0, t0], U).

(iii) B is called uniformly finite-time Lp-admissible operator for (S(t))t≥0 if for
all t > 0, there exists a constant M(t) > 0 such that

‖S−1 ∗Bu(t)‖ ≤M(t)‖u‖Lp([0,t],U)

for all u ∈ Lp([0, t], U) with lim supt→0+ M(t) <∞.
For p ∈ [1,∞[, we denote by Ap∞(U,X), Ap(U,X) and Apu(U,X), the space of the

infinite-time, the finite-time and the uniformly finite-time Lp-admissible operators
for (S(t))t≥0, respectively.

Recall that the condition lim supt→0+ M(t) < ∞ is always satisfied for semi-
groups (see. [27]). We prove in Proposition 5.6 (i), that this the case; in particular
if X is reflexive. Note that the definition of infinite-time Lp-admissible control
operator for (S(t))t≥0 was introduced in [14] when p = 2 and implies the finite-
time L2-admissibility condition considered by [17]. Our definitions of finite-time
and uniformly finite-time Lp-admissible control operator for (S(t))t≥0 correspond
to that of the semigroups, also imply that of [17] when p = 2. Furthermore, it is
well-known that:

(P1) the finite-time Lp-admissibility and the uniform finite-time Lp-admissibility
are equivalent for semigroups and

(P2) the finite-time Lp-admissibility and the infinite-time Lp-admissibility are
equivalent for exponentially stable semigroups (i.e. a(t) = 1) for all p ∈
[1,∞[.

One question that remains open to our knowledge, is whether for Volterra systems,
these problems (i.e. (P1)–(P2)) are still true for resolvent families. In the end of
this section we give a partial response to these problems when p = 1.

Claim 5.2. Let (5.2) admit an exponentially stable resolvent family (S(t))t≥0 and
p ∈ [1,∞[. The following is a necessary condition for infinite-time Lp-admissibility
of control operator B ∈ L(U,X−1): there exists Lp > 0 such that

‖ 1
λâ(λ)

(
1

â(λ)
I −A−1)−1B‖L(U,X) <

Lp
(Reλ)1/p

, (5.4)

for all Reλ > 0.

Proof. Thanks to Proposition 2.5, the Laplace-transform of S−1(·) is well-defined;
similarly it is given by

Ŝ−1(λ) =
1

λâ(λ)
(

1
â(λ)

I −A−1)−1 =: H−1(λ)

for all Re(λ) > 0. Let B ∈ Ap∞(U,X) and take v ∈ U and λ ∈ C, such that
Re(λ) > 0. The infinite-time Lp-admissibility of B guarantees (see. [10, Remark
2.2]) that the operator B∞ : Lpc(R+, U) → X given by B∞u :=

∫∞
0
S−1(t)Bu(t)dt

possesses a unique extension to a linear bounded operator from Lp(R+, U) to X
where Lpc(R+, U) denotes the space of functions in Lp(R+, U) with compact support.
Since (S(t))t≥0 is exponentially stable, then B∞u =

∫∞
0
S−1(t)Bu(t)dt for every
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u ∈ Lp(R+, U). Substituting u(t) = ve−λt where v ∈ U , we deduce that there
exists M > 0 such that

‖H−1(λ)Bv‖ = ‖
∫ ∞

0

S−1(t)Bve−λtdt‖

≤M‖ve−λ·‖Lp([0,∞[,U) =
M‖v‖U

p1/p(Reλ)1/p
.

Hence

‖H−1(λ)B‖L(U,X) ≤
Lp

(Reλ)1/p
,

for some constant Lp > 0 depending only on p. �

In a similar way we define the extrapolated Favard spaces of A−1 denoted by
Fα(A−1) and F̃ 1(A−1). The following results give an extension of [22, Proposition
15] (i.e. a(t) = 1).

Theorem 5.3. Let (5.2) admit a bounded resolvent family (S(t))t≥0 on X for ω+-
exponentially bounded a ∈ Lploc(R+) with p ≥ 1. Then, we have the following
assertions.

(i) If ω0(S) < 0 then Ap∞(U,X) ⊂ L(U,F 1/p(A−1)).
(ii) If a is non negative satisfying (H1), then Apu(U,X) ⊂ L(U, F̃ 1/p(A−1)).
(iii) If a is a creep function with a(0+) > 0, then L(U, F̃ 1(A−1)) ⊂ A1

∞(U,X) ⊂
Apu(U,X).

Proof. Without loss of generality, we may assume that 0 ∈ ρ(A). See [7].
(i) Let B ∈ Ap∞(U,X) and let u0 ∈ U fixed. Thanks to the Claim 5.2, there

exists Lp > 0 such that

‖ 1
λâ(λ)

(
1

â(λ)
I −A−1)−1Bu0‖ ≤

Lp‖u0‖
λ1/p

λ > 0.

Equivalently,

‖λ
1
p−1 1

â(λ)
A−1(

1
â(λ)

I −A−1)−1Bu0‖−1 ≤ Lp‖u0‖,

for all λ > 0 and for some Lp > 0. Hence

sup
λ>ω
‖λ

1
p−1 1

â(λ)
A−1(

1
â(λ)

I −A−1)−1Bu0‖−1 < Lp‖u0‖,

which implies that Bu0 ∈ F 1/p(A−1), and by closed graph theorem we deduce that
B ∈ L(U,F 1/p(A−1)).

(ii) Let B ∈ Apu(U,X) and u0 ∈ U , then b := Bu0 is uniformly finite-time Lp-
admissible vector for (S(t))t≥0. By (H1) and (S3) for (S−1(t))t≥0 for all 0 < t ≤ 1,
we have

‖S−1(t)b− b‖−1

((1 ∗ a)(t))1/p
=
‖A−1

∫ t
0
a(t− s)S−1(s)bds‖−1

((1 ∗ a)(t))1/p
=
‖
∫ t

0
S−1(t− s)ba(s)ds‖
(
∫ t

0
a(s)ds)1/p

.

With u(t) := a(t), the uniform finite-time Lp-admissibility of B and (H1) imply
that

‖S−1(t)b− b‖−1

((1 ∗ a)(t))1/p
≤
M(t)‖a‖Lp([0,t])

(
∫ t

0
a(s)ds)1/p

≤ M(t)

ε
1/p
a

≤ K
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for some constant K > 0 and all 0 < t ≤ ta due to lim supt→0+ M(t) < ∞, which
implies that b ∈ F̃ 1/p(A−1) if ta ≥ 1. Now, if ta < 1 we obtain once again that
b ∈ F̃ 1/p(A−1) due to

sup
ta≤t≤1

‖a‖Lp([0,t])

(1 ∗ a)(t)
≤
‖a‖Lp([0,1])

(1 ∗ a)(ta)
.

Hence B ∈ L(U, F̃ 1/p(A−1)) thanks to the closed graph theorem.
(iii) Let B ∈ L(U, F̃ 1(A−1)), then Bu(·) ∈ L([0,∞[, F̃ 1(A−1)) for all u ∈

L1([0,∞[, U). Since a is creep with a(0+) > 0 and (A−1, a) is a generator of
the resolvent family (S−1(t))t≥0, Lemma 4.10 implies that there exists N > 0 such
that

∫ t
0
S−1(t− s)Bu(s)ds ∈ D(A−1) = X for all t > 0 and we have

‖A−1

∫ t

0

S−1(t− s)Bu(s)ds‖−1 ≤ N‖Bu‖L1([0,t], eF 1(A−1)).

Whence,

‖
∫ t

0

S−1(t− s)Bu(s)ds‖ ≤ N‖B‖L(U, eF 1(A−1))‖u‖L1([0,t],U) ≤ L‖u‖L1([0,∞[,U),

for some L > 0 and all u ∈ L1([0,∞[, U) which implies that B ∈ A1
∞(U,X). The

proof of the inclusion A1
∞(U,X) ⊂ Apu(U,X) is immediate. �

Theorem 5.3 together with Proposition 4.5 give us the following corollary that
is well-known for semigroups (see. [22] for (i) when p = 1 and [29, 26] for (ii) when
p ≥ 1).

Corollary 5.4. Let (5.2) admit a bounded resolvent family for ω+-exponentially
creep function a with a(0+) > 0. Then, we have the following assertions.

(i) A1
u(U,X) = L(U,F 1(A−1)) = L(U, F̃ 1(A−1)).

(ii) If ω0(S) < 0, then A1
u(U,X) = A1

∞(U,X).

Remark 5.5. Let (5.2) admit an exponentially bounded resolvent family (S(t))t≥0

for ω-exponentially function a ∈ L1
loc(R+) satisfying (H1). Let us consider the

following “adjoint” Volterra equation

z(t) = z0 +
∫ t

0

a(t− s)A∗z(s)ds, z0 ∈ X∗. (5.5)

where A∗ is the adjoint operator of A . Then (5.5) admits a resolvent family,
denoted by (S̃(t))t≥0 if and only if D(A∗) is densely defined. If this is the case we
have in addition S̃(t) = S∗(t) for all t ≥ 0 where S∗(t) is the adjoint of S(t).

Proof. Since (S(t))t≥0 is exponentially bounded resolvent family, there exist M > 0
and ω ∈ R+ such that ‖S(t)‖ ≤ Meωt, t ≥ 0. Then thanks to Proposition 2.5, we
have:

(i) â(λ) 6= 0 and 1
â(λ) ∈ ρ(A) for all λ > ω;

(ii) H(λ) := 1
λâ(λ) ( 1

â(λ)I−A)−1, the resolvent associated with (S(t))t≥0 satisfies

‖H(n)(λ)‖ ≤Mn!(λ− ω)−(n+1) for all λ > ω and n ∈ N.
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This implies

‖(H∗)(n)(λ)‖ = ‖H(n)(λ)‖ ≤ (λ− ω)−(n+1) for all λ > ω and n ∈ N.

If (5.5) admits a resolvent family (S̃(t))t≥0, then by [16, Proposition 2.6], D(A∗) is
densely defined. Using Proposition 2.5 once again, (S̃(t))t≥0 becomes exponentially
bounded and we have ̂̃

S(λ) = H∗(λ) = Ŝ∗(λ) for all λ > ω.

Since the Laplace transform is one-to-one, and that S̃(t) and S∗(t) are continuous,
we obtain S̃(t) = S∗(t) for every t ≥ 0. Conversely, assume that D(A∗) is densely
defined then the above argument implies that (S∗(t))t≥0 is the resolvent family of
(5.5) which completes the proof. �

Note that a partial result was obtained in [14, Theorem 3.1] when A generates
a C0-semigroup on reflexive Banach space X.

It has been proved in [24, p. 46] (resp. Remark 5.5), that if both A and A∗ are
densely defined (e.g. if A is densely defined and X is reflexive), then

(X1)∗ = (X∗)−1.

(resp. (S∗(t))t≥0 is exactly the resolvent family associated with the adjoint Volterra
equation (5.5)). As a first consequence, if C ∈ L(X1, Y ); where Y is another
Banach space (of observation), is an observation operator for the Volterra equation
(5.2), then its adjoint C∗ ∈ L(Y ∗, (X∗)−1) becomes a control operator for Volterra
equation (5.5). Likewise, it has been proved in [24, p. 50] that if in addition A is
densely defined generalized Hille-Yosida operator then

(X−1)∗ = (X∗)1,

As a second consequence, if B ∈ L(U,X−1) is a control operator for the Volterra
equation (5.2), then its adjoint B∗ ∈ L((X∗)1, U

∗) becomes an observation operator
for Volterra equation (5.5). Finally, as for the semigroups case (see. [28, Theorem
6.9]); if both A and A∗ are densely defined and A is a generalized Hille-Yosida
operator, then it is easy to see that there is a natural duality theorem between
admissibility of the control operators and admissibility of observation operators.
That is B is a finite-time Lp-admissible (with p ∈ [1,∞[) control operator for
(S(t))t≥0 if and only if B∗ is a finite-time Lp-admissible observation operator for
(S∗(t))t≥0 with 1

p + 1
p = 1, i.e. there exists t0 > 0 such that∫ t0

0

‖B∗S∗(s)z‖pU∗ds ≤ N(t0)‖z‖pX∗ , z ∈ D(A∗),

and N(t0) > 0. This duality has already been considered in [14, Section 4], when
p = 2 and A generates a C0-semigroup on reflexive Banach space X. In this case,
it is well-known that both A and A∗ are densely defined and A is a generalized
Hille-Yosida operator.

We now have the following interesting results that are well-known for semigroups.

Proposition 5.6. Let (5.2) admit a bounded resolvent family (S(t))t≥0 for ω+-
exponentially creep function a with a(0+) > 0. If (5.5) admits a resolvent family
(equivalently D(A∗) = X∗), then we have the following assertions.

(i) A1
u(U,X) = A1(U,X).

(ii) If ω0(S) < 0, then A1
u(U,X) = A1(U,X) = A1

∞(U,X).
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Proof. (i) A1
u(U,X) ⊂ A1(U,X) is immediate and it remains only to show that

A1(U,X) ⊂ A1
u(U,X). Let B ∈ A1(U,X), then there exists t0 > 0 and M(t0) > 0

such that

‖
∫ t0

0

S−1(t0 − s)Bu(s)ds‖ ≤M(t0)‖u‖L1([0,t0],U). (5.6)

Since (5.2) has an exponentially bounded resolvent family, [25, Corollary 1.6] implies
that A is a generalized Hille-Yosida operator. By Remark 5.5, (S∗(t))t≥0 is the
unique resolvent family for (5.5). Hence, by duality, (5.6) is equivalent to

sup
0<t≤t0

‖B∗S∗(t)z‖U∗ ≤M(t0)‖z‖X∗

(i.e. p =∞), which in turns implies that

sup
0<t≤τ

‖B∗S∗(t)z‖U∗ ≤ N(τ)‖z‖X∗ , (5.7)

for all z ∈ D(A∗) and 0 < τ ≤ t0 with N(τ) ≤M(t0). Using once again the duality
argument, we deduce that (5.7) yields

‖
∫ τ

0

S−1(τ − s)Bu(s)ds‖ ≤M(t0)‖u‖L1([0,τ ],U) for all 0 < τ ≤ t0.

Without loss of generality, we assume that 0 ∈ ρ(A). Thanks to (S3) for (S−1(t))t≥0

and for all b ∈ X−1, we have

‖S−1(τ)b− b‖−1

(1 ∗ a)(τ)
=
‖A−1

∫ τ
0
a(τ − s)S−1(s)bds‖−1

(1 ∗ a)(τ)
=
‖
∫ τ

0
S−1(τ − s)ba(s)ds‖∫ τ

0
a(s)ds

.

Since a is non negative; (H1) is satisfied with ta = ∞. Substituting u(τ) := a(τ),
the finite-time L1- admissibility of B implies that

‖S−1(τ)b− b‖−1

(1 ∗ a)(τ)
≤M(t0),

for all 0 < τ ≤ t0 which implies that b ∈ F̃ 1(A−1) if t0 ≥ 1. Now, if t0 < 1 we
obtain once again that b ∈ F̃ 1(A−1) due to

sup
t0≤τ≤1

‖S−1(t)b− b‖−1

(1 ∗ a)(t)
≤ (M + 1)‖b‖−1

(1 ∗ a)(t0)
,

where M is the bound of (S(t))t≥0. Thus B ∈ L(U, F̃ 1(A−1)) according to the
closed graph theorem. By virtue of Corollary 5.4 (i) we obtain B ∈ A1

u(U,X).
Assertion (ii) is directly obtained from (i) and Corollary 5.4 (i) and this ends the
proof. �

Remark 5.7. We remark that Corollary 5.4 (i) was proved for the C0-semigroups
(i.e. a(t) = 1) in [22, Corollary 17], and also implies that the analogue Weiss
conjecture is true for this class of Volterra integral systems. Note that a partial
answer to Weiss conjecture for p = 2 and for some class of Volterra systems was
given in [15] when a = 1 + 1 ∗ k with k ∈ W 1,2(R+) and that the semigroup
generated by A is equivalent to a contraction semigroup on a Hilbert space X and
U is finite-dimensional. Now, we can see that Corollary 5.4 (ii) and Proposition
5.6 (i) give an affirmative answer to (P2) and (P1) respectively for some Volterra
systems when p = 1.
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