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STABILITY WITH RESPECT TO INITIAL TIME DIFFERENCE
FOR GENERALIZED DELAY DIFFERENTIAL EQUATIONS

RAVI AGARWAL, SNEZHANA HRISTOVA, DONAL O’REGAN

Abstract. Stability with initial data difference for nonlinear delay differential
equations is introduced. This type of stability generalizes the known concept

of stability in the literature. It gives us the opportunity to compare the behav-

ior of two nonzero solutions when both initial values and initial intervals are
different. Several sufficient conditions for stability and for asymptotic stability

with initial time difference are obtained. Lyapunov functions as well as com-
parison results for scalar ordinary differential equations are employed. Several

examples are given to illustrate the theory.

1. Introduction

One of the main problems in the qualitative theory of differential equations is
stability of the solutions. Stability gives us the opportunity to compare the behavior
of solutions starting at different points. Often in real situations it may be impossible
to have only a change in the space variable and to keep the initial time or the initial
time interval unchanged. This situation requires introducing and studying a new
generalization of the classical concept of stability which involve the change of both
the initial time/interval and the initial points/functions. The concept of stability
with initial time difference is a generalization of the classical concept of stability of
a solution.

Recently, various types of stability with initial time difference were studied for
• ordinary differential equations ([3], [14]-[19], [22], [23]);
• fuzzy differential equations ([21]);
• fractional differential equations ([20]).

We note that stability with initial time difference for delay differential equations
was initiated recently and some initial results were published in [10], [13].

In the present paper, we study the stability with initial data difference for de-
lay differential equations based on the application of Lyapunov’s functions and the
Razumikhin method. The derivative of Lyapunov functions with respect to the
given equations and initial time difference is defined in an appropriate way. Com-
parison results for ordinary differential equation with a parameter are employed.
Several examples are given to illustrate the theoretical results
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2. Preliminary notes and results

Let rk > 0, (k = 1, 2, . . . ,m), be given finite numbers, R+ = [0,∞). Define delay
operators Gk : C([−rk,∞),Rn)→ Rn, (k = 1, 2, . . . ,m), such that for any function
x ∈ C([−rk,∞),Rn), and any point t ∈ R+ and k = 1, 2, . . . ,m there exists a point
ξ ∈ [t − rk, t], ξ = ξ(x, t, k), such that Gk(x)(t) = pk(t)x(ξ) where pk ∈ C(R+,R).
Let r = max{rk : k = 1, 2, . . . ,m}.

Consider the nonlinear generalized delay functional differential equations with
bounded delays

x′ = f(t, x(t), G1(x)(t), G2(x)(t), . . . , Gm(x)(t)) for t ≥ t0, (2.1)

with initial condition

x(t+ t0) = ϕ(t) for t ∈ [−r, 0], (2.2)

where x ∈ Rn, f : R+ × Rn × Rnm → Rn, t0 ∈ R+, ϕ : [−r, 0]→ Rn.
Shortly we will denote the initial value problem by IVP. We would like to note

some partial cases of (2.1):

• if Gk(x)(t) = x(t − rk) for t ∈ R+ then (2.1) reduces to delay differen-
tial equations with several constant delays x′ = f(t, x(t), x(t − r1), x(t −
r2), . . . , x(t− rm)) (for example, see [5] and the cited references therein);
• if Gk(x)(t) = maxs∈[t−rk,t] x(s) for t ∈ R+ then (2.1) reduces to differential

equations with maxima (see, for example, [1, 4, 2, 6, 11, 12])

x′ = f(t, x(t), max
s∈[t−r1,t]

x(s), max
s∈[t−r2,t]

x(s), . . . , max
s∈[t−rm,t]

x(s))

• if Gk(x)(t) = x(t − rk(t)) for t ∈ R+, where rk : R+ → [0, r], then (2.1)
reduces to delay differential equations with variable bounded delays x′ =
f(t, x(t), x(t − r1(t)), x(t − r2(t)), . . . , x(t − rm(t))) (for example, r(t) =
C|sin(t)| or r(t) = Ct

t+1 for t ∈ R+, where C = const); see [5] and the cited
references therein;
• let r > 0 and G(x)(t) =

∫ t
t−r x(s)ds for t ∈ R+. Then equation (2.1)

reduces to delay differential equations with distributed delay.

Denote the solution of the initial value problem (2.1), (2.2) by x(t; t0, ϕ). Con-
sider also the initial value problem for (2.1) at a different initial data, i.e.

x(t+ τ0) = ψ(t) for t ∈ [−r, 0]. (2.3)

where τ0 ∈ R+, τ0 6= t0, ψ ∈ C([−r, 0],Rn), ψ 6≡ ϕ.
Denote the solution of (2.1), (2.3) by x(t; τ0, ψ). Both functions x(t; t0, ϕ) and

x(t; τ0, ψ) differ not only on the initial functions but also on the initial intervals.
In our work we will assume that IVP (2.1), (2.2) has a solution x(t; t0, ϕ) defined

on [t0 − r,∞) for any t0 ∈ R+ and any ϕ ∈ C([−r, 0],Rn).
The main purpose of the paper is comparing the behavior of two solutions

x(t; t0, ϕ) and x(t; τ0, ψ) of (2.1) with initial time difference.
Let ρ, λ > 0 be given constants and consider the sets:

K = {a ∈ C[R+,R+] : a(s) is strictly increasing and a(0) = 0};
S(ρ) = {x ∈ Rn : ‖x‖ ≤ ρ};

KS(ρ) = {a ∈ C[[0, ρ],R+] : a(s) is strictly increasing a(0) = 0};
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K̃S(ρ, λ) =
{
a ∈ C[[0, ρ]× [0, λ],R+]a is strictly increasing in its first argument,

a(0, 0) = 0
}
.

We introduce the notation

‖φ‖0 = max{‖φ(s)‖ : s ∈ [−r, 0]},
where φ ∈ C( [−r, 0],Rn).

Definition 2.1. Let x∗(t) = x(t; t0, ϕ) be a given solution of (2.1), (2.2). The
solution x∗(t) is said to be
• stable with initial time difference if for every ε > 0 there exist δ = δ(ε, t0) > 0

and ∆ = ∆(ε, t0) > 0 such that for any ψ ∈ C([−r, 0],Rn) and any τ0 ∈ R+, the
inequalities ‖ϕ− ψ‖0 < δ and |τ0 − t0| < ∆ imply ‖x(t+ η; τ0, ψ)− x∗(t)‖ < ε for
t ≥ t0 where η = τ0 − t0;
• attractive with initial time difference if there exists β > 0 such that for every ε >

0 there exist T = T (ε, t0) > 0 such that for any τ0 ∈ R+ and any ψ ∈ C([−r, 0],Rn)
the inequalities ‖ϕ− ψ‖0 < β and |τ0 − t0| < ∆ imply ‖x(t+ η; τ0, ψ)− x∗(t)‖ < ε
for t ≥ t0 + T where η = τ0 − t0.
• asymptotically stable with initial time difference if the solution x∗(t) is stable

with initial time difference and attractive with initial time difference.

Definition 2.2. The generalized delay differential equation (2.1) is said to be
• uniformly stable with initial time difference if for any solution x∗(t) = x(t; t0, ϕ)

of (2.1), (2.2) and for every ε > 0 there exist δ = δ(ε) > 0 and ∆ = ∆(ε) > 0 such
that for any ψ ∈ C([−r, 0],Rn) and any τ0 ∈ R+, the inequalities ‖ϕ−ψ‖0 < δ and
|τ0 − t0| < ∆ imply ‖x(t+ η; τ0, ψ)− x∗(t)‖ < ε for t ≥ t0 where η = τ0 − t0;
• uniformly attractive with initial time difference if there exist β > 0 and ∆ > 0

such that for any solution x∗(t) = x(t; t0, ϕ) of (2.1), (2.2) and for every ε > 0
there exist T = T (ε) > 0 such that for any τ0 ∈ R+ and any ψ ∈ C([−r, 0],Rn) the
inequalities ‖ϕ− ψ‖0 < β and |τ0 − t0| < ∆ imply ‖x(t+ η; τ0, ψ)− x∗(t)‖ < ε for
t ≥ t0 + T where η = τ0 − t0.
• uniformly asymptotically stable with initial time difference if (2.1) is uniformly

stable with initial time difference and uniformly attractive with initial time differ-
ence.

Remark 2.3. Without loss of generality we will consider the case when τ0 > t0.

Remark 2.4. If t0 = τ0 and x∗(t) ≡ 0 then the introduced in Definition 2.1
stability with initial time difference is reduced to stability of zero solution (see, for
example, [5] and cited therein references)

We will give a brief overview of both concepts of stability: the known in the
literature stability and the introduced stability with initial time difference.

Case 1. (Stability of a nonzero solution). Consider the solution x∗(t) = x(t; t0, ϕ)
of (2.1), (2.2). To study the stability of x∗(t) we get another solution x̃(t) =
x(t; t0, ψ) of (2.1), with initial condition x̃(t + t0) = ψ(t) for t ∈ [−r, 0] where the
initial function ψ ∈ C([−r, 0],Rn) : ψ 6≡ ϕ. Now define the difference between both
solutions z(t) = x̃(t)− x∗(t). The function z(t) is a solution of the following initial
value problem for the generalized delay differential equation

z′ = f̃(t, z(t), G1(z)(t), G2(z)(t), . . . , Gm(z)(t)), t ≥ t0
z(t+ t0) = φ(t), t ∈ [−r, 0],

(2.4)
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where

f̃(t, z,G1(z)(t), G2(z)(t), . . . , Gm(z)(t))

= f(t, z + x∗(t), G1(z + x∗)(t), G2(z + x∗)(t), . . . , Gm(z + x∗)(t))

− f(t, x∗(t), G1(x∗)(t), G2(x∗)(t), . . . , Gm(x∗)(t))

and φ(t) = ψ(t)− ϕ(t), t ∈ [−r, 0].
The initial value problem (2.4) has a zero solution. Therefore, the study of

stability properties of the nonzero solution x∗(t) of (2.1) is equivalent to the study
of stability of the zero solution of (2.4).

Case 2. (Stability with initial data difference). Consider the solution x∗(t) =
x(t; t0, ϕ) of (2.1), (2.2). To study the stability with initial time difference of
x∗(t) we get another solution x̃(t) = x(t; τ0, ψ) of (2.1), with initial condition
x̃(t+ τ0) = ψ(t) for t ∈ [−r, 0] where the initial function ψ ∈ C([−r, 0],Rn) : ψ 6≡ ϕ
and the point τ0 6= t0. Similarly to Case 1 we consider the difference between both
solutions z(t) = x̃(t + η) − x∗(t) where η = τ0 − t0. The function z(t) depends
significantly on η and it is a solution of the initial value problem for the generalized
delay differential equation

z′ = f̃(t, z,G1(z)(t), G2(z)(t), . . . , Gm(z)(t), η), t ≥ t0
z(t+ t0) = φ(t), t ∈ [−r, 0],

(2.5)

where

f̃(t, z(t), G1(z)(t), G2(z)(t), . . . , Gm(z)(t), η)

= f(t+ η, z + x∗(t), G1(z + x∗)(t), G2(z + x∗)(t), . . . , Gm(z + x∗)(t))

− f(t, x∗(t), G1(x∗)(t), G2(x∗)(t), . . . , Gm(x∗)(t))

and φ(t) = ψ(t)− ϕ(t), t ∈ [−r, 0].
In the nonauthonomous case the initial value problem (2.5) has no zero solution.

Therefore, in this case the study of stability with initial data difference of x∗(t)
could not be reduced to the study of stability of the zero solution of an appropriate
delay differential equation.

Now we give some examples to illustrate the concepts of stability with initial
time difference.

Example 2.5. Consider the delay differential equation:

x′(t) = x(t)(2− x(t− 1)) for t ≥ t0 (2.6)

with an initial condition

x(t+ t0) = t2 for t ∈ [−1, 0], (2.7)

where x ∈ R.
Denote the solution of the initial value problem (2.6), (2.7) for t0 = 1 by x(t)

and the solutions of (2.6), (2.7) for t0 = 5 by y(t). From Figure 1 it is seen that
both solutions differ only by shifting. Therefore, the stability with initial time
difference for time invariant delay differential equations reduces to stability of a
nonzero solution in the literature.

Example 2.6. Consider the delay differential equation:

x′(t) =
x(t)(10− x(t− 1))

t
for t ≥ t0 (2.8)
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with an initial condition

x(t+ t0) = ϕ(t) for t ∈ [−1, 0], (2.9)

where x ∈ R, t0 > 0.
Consider the initial value problem (2.8), (2.9) for various initial points t0 and

initial functions ϕ(t):
• t0 = 3, ϕ(t) = t2 and denote its solution by x(t);
• t0 = 5, ϕ(t) = t2 and denote its solution by y(t);
• t0 = 3.5, ϕ(t) = t2 + 0.1 and denote its solution by u(t);
• t0 = 2.5, ϕ(t) = t2 + 0.001 and denote its solution by v(t).

We graph the shifted solutions y(t + 2), u(t + 0.5) , v(t − 0.5) and the fixed
solution x(t). From Figure 2 it can be seen these solutions are closer to the solution
x(t) when t increases. It seems the solution x(t) could be stable with initial time
difference.

Both examples prove that for nonautonomous differential equations the stability
with initial time difference differs from types of stability in the literature.

Remark 2.7. The concept of stability with initial time difference is important in
the nonautonomous case.
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Figure 1. Graph of solutions y(t) and x(t)

of (2.6).
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Figure 2. Graph of solutions x(t), y(t + 2),

u(t + 0.5) and v(t− 0.5) of (2.8).

Also, in Example 2.6, the equation (2.8) has an equilibrium 10 which is stable.
Now we consider an equation which solution is unbounded.

Example 2.8. Consider the delay differential equation:

x′(t) = −x(t) + tx(t− 1)) for t ≥ t0 (2.10)

with an initial condition

x(t+ t0) = ϕ(t) for t ∈ [−1, 0], (2.11)

where x ∈ R, t0 > 0.
Consider the initial value problem (2.10), (2.11) for various initial points t0 and

initial functions ϕ(t):
• t0 = 3, ϕ(t) = t and denote its solution by x̃(t);
• t0 = 3.5, ϕ(t) = t+ 1 and denote its solution by ỹ(t);
• t0 = 3.1, ϕ(t) = t− 1 and denote its solution by ũ(t);
• t0 = 2.8, ϕ(t) = t+ 0.11 and denote its solution by ṽ(t).
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We graph the shifted solutions ỹ(t+0.5), ũ(t+0.1), ṽ(t−0.2) and the fixed solution
x(t) on both intervals [3, 5] and [98, 100] on Figure 3 and Figure 4, respectively. The
fixed solution x̃(t) is unbounded. Also, the solutions ũ(t + 0.1) and ṽ(t − 0.2) are
closer to x̃(t) comparatively with ỹ(t + 0.5) for t → ∞. Therefore, closer initial
data could guarantee closeness of the solutions.

We need some sufficient conditions for stability with initial time difference.
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Figure 3. Graph of solutions x̃(t), ỹ(t+0.5),

ũ(t+0.1) , ṽ(t− 0.2) of (2.10) for t ∈ [3, 5].
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Figure 4. Graph of solutions x̃(t), ỹ(t +

0.5), ũ(t + 0.1) , ṽ(t − 0.2) of (2.10) for

t ∈ [98, 100].

Let J ⊂ R+, ∆ ⊂ Rn and I ⊂ R+. Consider the class Λ(J,∆) of functions
V (t, x) ∈ C(J ×∆, R+) : V (t, x) is Lipschitz with respect to its second argument.

We will study the stability with initial time difference by Lyapunov functions
from the class Λ and a modification of the Razumikhin method. Note if x(t) is a
solution of x′ = f(t, x) then x(t+ η) is a solution of x′ = f(t+ η, x). It requires a
new definition of the derivative of Lyapunov functions along the trajectories of the
given differential equations.

We will define a derivative of the function V (t, x) ∈ Λ(J,∆) along trajectory of
the solutions of (2.1) with respect to initial time difference. Let t ∈ J , η ∈ I and
φ, ψ ∈ C([−r, 0],Rn) : φ(0)− ψ(0) ∈ ∆. Then define

D−(2.1)V (t, φ(0), ψ(0), η)

= lim sup
ε→0−

1
ε

{
V
(
t+ ε, φ(0)− ψ(0) + ε

(
f(t, φ(0), G1(φ)(0), G2(φ)(0), . . . ,

Gm(φ)(0))− f(t+ η, ψ(0), G1(ψ)(0), G2(ψ)(0), . . . , Gm(ψ)(0))
))

− V (t, φ(0)− ψ(0))
}
.

Note that V (t, x) is a scalar valued function, but the derivative with initial time
difference D−(2.1)V (t, φ(0), ψ(0), η) is a functional.

Remark 2.9. The above definition of a derivative of the function V (t, x) along
trajectories of solutions of (2.1) with respect to initial time difference generalizes
the derivative of the function V (t, x) along trajectories of solutions of (2.1) used
for studying the stability of the zero solution (the case when η = 0, Gk(0)(t) ≡ 0,
k = 1, 2, . . . ,m and f(t, 0, 0, . . . , 0) ≡ 0).

Now we prove some comparison results giving us the relationship between Lya-
punov functions, generalized delay differential equation (2.1) and a scalar ordinary
differential equation with a parameter.
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Consider the scalar ordinary differential equation with a parameter:

u′ = g(t, u, η), u(t0) = u0 (2.12)

where u ∈ R, g ∈ C(R+ × R × [0, ρ],R), g(t, 0, 0) ≡ 0, η ∈ [0, ρ] is a parameter,
ρ > 0 is a given number.

Also, for any fixed natural number n we will consider the initial value problem

u′ = g(t, u, η) +
1
n
, u(t0) = u0 +

1
n
. (2.13)

We will assume that for any (t0, u0) ∈ R+ × R and any η ∈ [0, ρ] the initial value
problems (2.12) and (2.13) have solutions u(t; t0, u0, η) and un(t; t0, u0, η), respec-
tively, which are defined on [t0,∞). In the case of non-uniqueness of the solution
we will assume the existence of a maximal one. Note the existence of solutions
of nonlinear ordinary differential equations with small parameters are studied in
Chapter 1 of the book [16].

We will use the stability of the zero solution of (2.12) with respect to a parameter
defined by the following definition:

Definition 2.10. The zero solution of (2.12) is said to be
• stable with respect to the parameter if for any ε > 0 and any t0 ≥ 0 there

exist δ = δ(t0, ε) > 0 and ∆ = ∆(t0, ε) > 0 such that for any u0 ∈ R :
|u0| < δ and any η ∈ R : |η| < ∆ the inequality |u(t; t0, u0, η)| < ε for t ≥ t0
holds, where u(t; t0, u0, η) is a solution of (2.12) for the given u0 and η;
• uniformly stable with respect to the parameter if above δ = δ(ε) > 0 and

∆ = ∆(ε) > 0, i.e. they do not depend on t0.

Remark 2.11. Note if g(t, u, η) ≡ 0 then the zero solution of (2.12) is uniformly
stable with respect to the parameter.

Lemma 2.12 (Comparison result). Assume the following conditions are satisfied:
1. The functions x∗(t) = x(t; t0, ϕ) and x̃(t) = x(t; τ0, ψ) are solutions of initial

value problems (2.1), (2.2), and (2.1), (2.3) defined on [t0−r, T ] and [τ0−r, T+η∗],
respectively, where t0, τ0 ∈ R+, t0 6= τ0, η∗ = τ0 − t0 ∈ (0, ρ], ρ > 0, T > t0 are
given numbers.

2. The function g ∈ C([t0, T ]× R× [0, ρ],R+).
3. The function V ∈ Λ([t0 − r, T ],Rn) and for any point t ∈ [t0, T ] such that

V (t+s, x∗(t+s)− x̃(t+s+η)) < V (t, x∗(t)− x̃(t+η)) for s ∈ [−r, 0) the inequality

D−(2.1)V (t, x∗(t), x̃(t+ η∗), η∗) ≤ g
(
t, V

(
t, x∗(t)− x̃(t+ η∗)

)
, η∗
)

holds.
4. The function u∗(t) = u(t; t0, u0, η

∗) is the maximal solution of the initial value
problem (2.12) defined on [t0, T ], where u0 ∈ R is such that maxs∈[−r,0] V (t0 +
s, ϕ(s)− ψ(s)) ≤ u0.

Then the inequality V (t, x∗(t)− x̃(t+ η∗)) ≤ u∗(t) holds for t ∈ [t0, T ].

Proof. Let un(t) = un(t; t0, u0, η
∗), t ∈ [t0, T ], be the maximal solution of the initial

value problem (2.13) where η = η∗ and n is a natural number.
Define the function m(t) ∈ C([t0 − r, T ],R+) by m(t) = V (t, x∗(t)− x̃(t+ η∗)).

We will prove that for any natural number n,

m(t) ≤ un(t) for t ∈ [t0, T ]. (2.14)
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Note that for any natural number n the inequalities m(s) ≤ u0 < un(t0), s ∈
[t0 − r, t0] hold, i.e. (2.14) holds for t = t0.

Assume that inequality (2.14) is not true. Let n be a natural number such
that there exists a point ξ > t0 : m(ξ) > un(ξ). Let t∗n = max{t > t0 : m(s) <
un(s) for s ∈ [t0, t)}, t∗n < T . Then m(t∗n) = un(t∗n), m(t) < un(t) for t ∈ [t0 −
r, t∗n), and

D−m(t∗n) = lim
h→0−

m(t∗n + h)−m(t∗n)
h

≥ lim
h→0−

un(t∗n + h)− u(t∗n)
h

= u′n(t∗n) = g(t, un(t∗n), η∗) +
1
n
> g(t∗n,m(t∗n), η∗).

From g(t, u, η∗) + 1
n > 0 on [t∗n − r, t∗n] it follows that the function un(t) is

nondecreasing on [t∗n−r, t∗n] and m(t∗n) = un(t∗n) ≥ un(s) > m(s) for s ∈ [t∗n−r, t∗n),
i.e. the inequality

V (t∗n + s, x∗(t∗n + s)− x̃(t∗n + s+ η∗)) < V (t∗n, x
∗(t∗n)− x̃(t∗n + η∗)) (2.15)

holds for s ∈ [−r, 0).
According to condition 3 of Lemma 2.12, for the point t∗n we have that

D−m(t∗n)

= lim
h→0−

V (t∗n + h, x∗(t∗n + h)− x̃(t∗n + η∗ + h))− V (t∗n, x
∗(t∗n)− x̃(t∗n + η∗)

h

= lim
h→0−

1
h

{[
V (t∗n + h, x∗(t∗n + h)− x̃(t∗n + η∗ + h))

− V (t∗n + h, x∗(t∗n)− x̃(t∗n + η∗)

+ h
(
f(t∗n, x

∗(t∗n), G1(x∗)(t∗n), . . . , Gm(x∗)(t∗n))

− f(t∗n + η∗, x̃(t∗n + η∗), G1(x̃)(t∗n + η∗), . . . , Gm(x̃)(t∗n + η∗))
)]

+
[
V (t∗n + h, x∗(t∗n)− x̃(t∗n + η∗)

+ h
(
f(t∗n, x

∗(t∗n), G1(x∗)(t∗n), . . . , Gm(x∗)(t∗n))

− f(t∗n + η∗, x̃(t∗n + η∗), G1(x̃)(t∗n + η∗), . . . , Gm(x̃)(t∗n + η∗))
)

− V (t∗n, x
∗(t∗n)− x̃(t∗n + η∗)

]}
≤ D−(2.1)V (t∗n, x

∗(t∗n), x̃(t∗n + η∗), η∗)

≤ g(t∗n, V (t∗n, x
∗(t∗n)− x̃(t∗n + η∗)), η∗) = g(t∗n,m(t∗n), η∗).

The obtained contradiction proves inequality (2.14) for any natural number n.
Let limn→∞ un(t) = ũ(t). It is clear ũ(t) is a solution of IVP(2.12). Since u∗(t) is
the maximal solution of IVP(2.12) we obtain from (2.14) V (t, x∗(t) − x̃(t + η)) =
m(t) ≤ ũ(t) ≤ u∗(t), t ∈ [t0, T ]. �

Remark 2.13. Note that the claim of Lemma 2.12 is true if the inequality

max
s∈[−r,0]

V (t0 + s, ϕ(s)− ψ(s)) ≤ u0

in Condition 4 is replaced by V (t0, ϕ(0)− ψ(0)) ≤ u0.

In the case when g(t, x, η) ≡ 0 in Lemma 2.12, we obtain the following result.
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Corollary 2.14. Assume the following conditions are satisfied:
1. The functions x∗(t) = x(t; t0, ϕ) and x̃(t) = x(t; τ0, ψ) are solutions of initial

value problems (2.1), (2.3), and (2.1), (2.2) defined on [t0−r, T ] and [τ0−r, T+η∗],
respectively. where t0, τ0 ∈ R+ : η∗ = τ0 − t0, T > t0.

2. The function V ∈ Λ([t0 − r, T ],Rn) and for any point t ∈ [t0, T ] such that
V (t + s, x∗(t + s) − x̃(t + s + η∗)) < V (t, x∗(t) − x̃(t + η∗)) for s ∈ [−r, 0) the
inequality

D−(2.1)V (t, x∗(t), x̃(t+ η∗), η∗) ≤ 0
holds.

Then for t ∈ [t0, T ] the inequality V (t, x∗(t) − x̃(t + η∗)) ≤ maxs∈[−r,0] V (t0 +
s, ϕ(s)− ψ(s)) holds.

The result of Lemma 2.12 is true on the half line. The idea is to fix T > t0
and once again we have (2.14). Then ũ(t) = limn→∞ un(t) satisfies IVP(2.12) for
t ∈ [t0, T ]. We can do this argument for each T < ∞. Thus yields the following
result.

Corollary 2.15. Assume the following conditions are satisfied:
1. The functions x∗(t) = x(t; t0, ϕ) and x̃(t) = x(t; τ0, ψ) are solutions of initial

value problems (2.1), (2.2), and (2.1), (2.3) defined on [t0 − r,∞) and [τ0 − r,∞),
respectively, where t0, τ0 ∈ R+, t0 6= τ0, η∗ = τ0 − t0 ∈ (0, ρ], ρ > 0, T > t0 are
given number.

2. The function g ∈ C([t0,∞)× R× [0, ρ],R+).
3. The function V ∈ Λ([t0 − r,∞),Rn) and for any point t ≥ t0 such that

V (t + s, x∗(t + s) − x̃(t + s + η∗)) < V (t, x∗(t) − x̃(t + η∗)) for s ∈ [−r, 0) the
inequality

D−(2.1)V (t, x∗(t), x̃(t+ η∗), η∗) ≤ g(t, V (t, x∗(t)− x̃(t+ η∗), η∗)

holds.
4. The function u∗(t) = u(t; t0, u0, η

∗) is the maximal solution of the initial value
problem (2.12) defined on [t0,∞), where u0 ∈ R is such that maxs∈[−r,0] V (t0 +
s, ϕ(s)− ψ(s)) ≤ u0.

Then the inequality V (t, x∗(t)− x̃(t+ η∗)) ≤ u∗(t) holds for t ≥ t0.

Remark 2.16. Note the claim of Corollary 2.15 is true if the inequality

max
s∈[−r,0]

V (t0 + s, ϕ(s)− ψ(s)) ≤ u0

in Condition 4 is replaced by V (t0, ϕ(0)− ψ(0)) ≤ u0.

When in Condition 4 of Lemma 2.12 the derivative of the Lyapunov function is
negative, the following result is true.

Lemma 2.17. Assume the following conditions are satisfied:
1. The functions x∗(t) = x(t; t0, ϕ) and x̃(t) = x(t; τ0, ψ) are solutions of initial

value problems (2.1), (2.2), and (2.1), (2.3) defined on [t0−r, T ] and [τ0−r, T+η∗],
respectively, and ‖x∗(t) − x̃(t + η∗)‖ ≤ λ for t ∈ [t0 − r, T ], where t0, τ0 ∈ R+,
η∗ = τ0 − t0 ∈ (0, ρ], ρ, λ > 0, T > t0 are given numbers.

2. The function V ∈ Λ([t0 − r, T ], S(λ)) and for any point t ∈ [t0, T ] such that
V (t + s, x∗(t + s) − x̃(t + s + η∗)) < V (t, x∗(t) − x̃(t + η∗)) for s ∈ [−r, 0) the
inequality

D−(2.1)V (t, x∗(t), x̃(t+ η∗), η∗) < −c(‖x∗(t)− x̃(t+ η∗)‖, η)
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holds where c ∈ K̃S(λ, ρ).
Then for t ∈ [t0, T ] the inequality

V (t, x∗(t)− x̃(t+ η)) ≤ V (t0, ϕ(0)− ψ(0))−
∫ t

t0

c(‖x∗(s)− x̃(s+ η∗)‖, η∗)ds

holds.

Proof. Define the function m(t) ∈ C([t0−r, T ],R+) by m(t) = V (t, x∗(t)−x̃(t+η∗))
and the function p ∈ C([t0, T ],R+) by p(t) = c(‖x∗(t)− x̃(t + η∗)‖, η∗). Let ε > 0
be an arbitrary number. We will prove that

m(t) < m(t0)−
∫ t

t0

p(s)ds+ ε, t ∈ [t0, T ]. (2.16)

Assume the contrary and let t∗ = inf{t ∈ [t0, T ] : m(t) ≥ m(t0) −
∫ t
t0
p(s)ds + ε}.

It is clear t∗ ∈ (t0, T ] and

m(t∗) = m(t0)−
∫ t∗

t0

p(s)ds+ ε,

m(t) < m(t0)−
∫ t

t0

p(s)ds+ ε for t ∈ [t0, t∗).

(2.17)

Therefore,
D−m(t∗) ≥ −p(t∗). (2.18)

From (2.17) it follows that m(t∗) > m(t∗−s) for s ∈ [−r, 0), i.e. V (t∗+s, x∗(t∗+
s)− x̃(t∗+s+η∗)) < V (t∗, x∗(t∗)− x̃(t∗+η∗)) for s ∈ [−r, 0). Then from condition
2 we obtain

D−m(t∗) ≤ D−(2.1)V (t∗, x∗(t∗), x̃(t∗ + η∗), η∗)

< −c(‖x∗(t∗)− x̃(t∗ + η∗)‖, η∗)
= −p(t∗).

This inequality contradicts (2.18). Therefore, inequality (2.16) is satisfied. Since
ε > 0 is an arbitrary number, inequality (2.16) proves the result. �

3. Main results

We obtain some sufficient conditions for the stability with initial time difference.
We will start with stability for a given solution.

Theorem 3.1 (Stability with initial time difference of a solution). Assume:
1. The function x∗(t) = x(t; t0, ϕ), t ≥ t0 − r, is a solution of (2.1),(2.2), where

ϕ ∈ C([−r, 0],Rn), t0 ∈ R+.
2. The function g ∈ C([t0,∞) × R × [0, ρ],R+), g(t, 0, 0) ≡ 0, ρ > 0 is a given

number.
3. There exists a function V ∈ Λ([t0 − r,∞),Rn) such that V (t0, 0) = 0 and

(i) for any point t ≥ t0 and any function ψ ∈ C([−r, 0],Rn) such that V (t +
s, x∗(t+ s)− ψ(s)) < V (t, x∗(t)− ψ(0)) for s ∈ [−r, 0) the inequality

D−(2.1)V (t, x∗(t), ψ(0)), η) ≤ g(t, V (t, x∗(t)− ψ(0)), η) (3.1)

holds for η ∈ [0, ρ].
(ii) b(‖x‖) ≤ V (t, x) for t ≥ t0, x ∈ Rn, where b ∈ K.
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4. The zero solution of (2.12) is stable with respect to the parameter.
Then the solution x∗(t) is stable with initial time difference.

Proof. Let ε ∈ (0, ρ] be a positive number. From condition 4 there exist ∆ =
∆(t0, ε) > 0 and δ1 = δ1(t0, ε) > 0 such that the inequalities |η| < ∆ and |u0| < δ1
imply

|u(t; t0, u0, η)| < b(ε), t ≥ t0, (3.2)

where u(t; t0, u0, η) is a solution of IVP (2.12).
Since V (t0, 0) = 0 there exists δ2 = δ2(t0, δ1) > 0 such that V (t0, x) < δ1 for

‖x‖ < δ2. Let ψ ∈ C([−r, 0],Rn) : ‖|ϕ − ψ‖|0 < δ2 and τ0 : 0 < η = τ0 − t0 < ∆.
Denote by x̃(t) = x(t; τ0, ψ), t ≥ τ0 − r the solution of the initial value problem
(2.1), (2.3).

From the choice of the initial function ψ we have ‖ϕ(0) − ψ(0)‖ < δ2 and
V (t0, ϕ(0)− ψ(0)) < δ1.

Now let u0 = V (t0, ϕ(0)−ψ(0)). Then u0 < δ1 and inequality (3.2) holds. Then
from condition 3, Corollary 2.15 and Remark 2.16 we have

V (t, x∗(t)− x̃(t+ η)) ≤ u(t; t0, u0, η) < b(ε), t ≥ t0. (3.3)

Then for any t ≥ t0 from condition (ii) we obtain b(‖x∗(t)−x̃(t+η)‖) ≤ V (t, x∗(t)−
x̃(t+ η)) ≤ |u(t; t0, u0, η)| < b(ε), so the result follows. �

Corollary 3.2. Let x∗(t) = x(t; t0, ϕ), t ≥ t0 − r, be a solution of (2.1), (2.2),
where ϕ ∈ C([−r, 0],Rn), t0 ∈ R+ and suppose there exist a function V ∈ Λ([t0 −
r,∞),Rn) such that V (t0, 0) ≡ 0 and

(i) for any point t ≥ t0 and any function ψ ∈ C([−r, 0],Rn) such that V (t +
s, x∗(t+ s)− ψ(s)) < V (t, x∗(0)− ψ(0)) for s ∈ [−r, 0) the inequality

D−(2.1)V (t, x∗(0), ψ(0)), η) ≤ 0 (3.4)

holds.
(ii) b(‖x‖) ≤ V (t, x) for t ≥ t0, x ∈ Rn, where b ∈ K.

Then the solution x∗(t) is stable with initial time difference.

Now we obtain some sufficient conditions for the stability with initial time dif-
ference for the given generalized system of delay differential equations.

Theorem 3.3 (Uniform stability with initial time difference). Assume:
1. The function g ∈ C(R+ × R × [0, ρ],R+), g(t, 0, 0) ≡ 0, ρ > 0 is a given

number.
2. There exists a function V ∈ Λ([−r,∞),Rn) such that

(i) for any point t ≥ 0, any parameter η ∈ (0, ρ] and any functions ϕ,ψ ∈
C([−r, 0],Rn) such that V (t + s, ϕ(s) − ψ(s)) < V (t, ϕ(0) − ψ(0)) for s ∈
[−r, 0) the inequality

D−(2.1)V (t, ϕ(0), ψ(0)), η) ≤ g(t, V (t, ϕ(0)− ψ(0)), η) (3.5)

holds;
(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ≥ −r, x ∈ Rn, where a, b ∈ K.

3. The zero solution of (2.12) is uniformly stable with respect to the parameter.
Then the generalized system of delay differential equations (2.1) is uniformly

stable with initial time difference.
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Proof. Let ε ∈ (0, ρ] be a positive number and x∗(t) = x(t; t0, ϕ), t ≥ t0 − r, be a
solution of (2.1),(2.2), where ϕ ∈ C([−r, 0],Rn), t0 ∈ R+.

From condition 3, there exist ∆ = ∆(ε) > 0 and δ1 = δ1(ε) > 0 such that the
inequalities |η| < ∆ and |u0| < δ1 imply

|u(t; t0, u0, η)| < b(ε), t ≥ t0, (3.6)

where u(t; t0, u0, η) is a solution of IVP (2.12).
Choose δ2 = δ2(δ1) > 0 such that a(δ2) < δ1. Let ψ ∈ C([−r, 0],Rn) : ‖|ϕ −

ψ‖|0 < δ2 and τ0 : 0 < η = τ0 − t0 < ∆. Denote by x̃(t) = x(t; τ0, ψ), t ≥ τ0 − r,
the solution of the initial value problem (2.1), (2.3).

Now let u0 = maxs∈[−r,0] V (t0 + s, ϕ(s)− ψ(s)). Then for every s ∈ [−r, 0] from
condition (ii) we get V (t0 + s, ϕ(s)− ψ(s)) ≤ a(‖ϕ(s)− ψ(s)‖) ≤ a(‖|ϕ− ψ‖|0) ≤
a(δ2) < δ1 and therefore u0 < δ1. Then inequality (3.6) holds for t ≥ t0.

From condition 2 and Corollary 2.15 we have

V (t, x∗(t)− x̃(t+ η)) ≤ u(t; t0, u0, η), t ≥ t0. (3.7)

Then for any t ≥ t0 from condition (ii) we obtain b(‖x∗(t)−x̃(t+η)‖) ≤ V (t, x∗(t)−
x̃(t+ η)) ≤ |u(t; t0, u0, η)| < b(ε), so the result follows. �

When the derivative of the Lyapunov function is nonpositive we obtain the fol-
lowing result for the uniform stability with initial time difference.

Corollary 3.4. Suppose there exist a function V ∈ Λ([−r,∞),Rn) such that

(i) for any point t ≥ 0 and any functions ϕ,ψ ∈ C([−r, 0],Rn) such that
V (t+ s, ϕ(s)− ψ(s)) < V (t, ϕ(0)− ψ(0)) for s ∈ [−r, 0) the inequality

D−(2.1)V (t, ϕ(0), ψ(0)), η) ≤ 0 (3.8)

holds.
(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ≥ −r, x ∈ Rn, where a, b ∈ K.

Then the generalized system of delay differential equations (2.1) is uniformly stable
with initial time difference.

Theorem 3.5 (Uniform stability with initial time difference of a delay system).
Assume:

1. The function g ∈ C([R+ ×R× [0, ρ],R+), g(t, 0, 0) ≡ 0 where ρ > 0 is a fixed
number.

2. There exists a function V ∈ Λ([−r,∞), S(λ)) such that

(i) for any point t ≥ 0 and any functions ϕ,ψ ∈ C([−r, 0],Rn) such that
‖|ϕ−ψ‖|0 < λ and V (t+ s, ϕ(s)−ψ(s)) < V (t, ϕ(0)−ψ(0)) for s ∈ [−r, 0)
the inequality

D−(2.1)V (t, ϕ(0), ψ(0)), η) ≤ g(t, V (t, ϕ(0)− ψ(0)), η), (3.9)

holds for η ∈ [0, ρ] where λ > 0 is a given number.
(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ≥ −r, x ∈ S(λ), where a, b ∈ K.

3. The zero solution of (2.12) is uniformly stable with respect to the parameter.
Then the generalized system of delay differential equations (2.1) is uniformly

stable with initial time difference.
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Proof. Let ε ∈ (0, λ] be a positive number and x∗(t) = x(t; t0, ϕ), t ≥ t0 − r, be a
solution of (2.1),(2.2), where ϕ ∈ C([−r, 0],Rn), t0 ∈ R+.

From condition 3 of Theorem 3.3 there exist ∆ = ∆(ε) > 0 and δ1 = δ1(ε) > 0
such that for any t̃0 ≥ 0 the inequalities |η| < ∆ and |u0| < δ1 imply

|u(t; t̃0, u0, η)| < b(ε), t ≥ t̃0, (3.10)

where u(t; t̃0, u0, η) is a solution of the equation (2.12). Let δ1 < min{ε, b(ε)} and
∆ ≤ ρ.

From a ∈ K there exists δ2 = δ2(ε) > 0: if s < δ2 then a(s) < δ1.
Let δ = min(δ1, δ2). Choose the initial function ψ ∈ C([−r, 0],Rn) such that

‖ϕ− ψ‖0 < δ and the initial point τ0 > t0 such that η0 = τ0 − t0 < ∆. Denote by
x̃(t) = x(t; τ0, ψ), t ≥ τ0 − r the solution of the initial value problem (2.1), (2.3).

We will prove that

‖x∗(t)− x̃(t+ η0)‖ < ε, t ≥ t0 − r. (3.11)

This inequality holds on [t0 − r, t0]. Assume inequality (3.11) is not true for all
t > t0 and let

t∗ = inf{t > t0 : ‖x∗(t)− x̃(t+ η0)‖ ≥ ε}.
Then

‖x∗(t∗)− x̃(t∗ + η0)‖ = ε, and ‖x∗(t)− x̃(t+ η0)‖ < ε, t ∈ [t0, t∗). (3.12)

From the choice of the initial function ψ, inequalities δ ≤ ε and (3.12) it follows there
exists a point t∗0 ∈ (t0, t∗) such that ‖x∗(t)− x̃(t+ η0)‖ < δ ≤ δ2 for t ∈ [t0 − r, t∗0].

Now let u0 = maxs∈[−r,0] V (t∗0 + s, x∗(t∗0 + s)− x̃(t∗0 + s+ η0)). From the choice
of the point t∗0 it follows that maxs∈[−r,0] ‖x∗(t∗0 + s) − x̃(t∗0 + s + η0)‖ < ε ≤ λ.
Then from Lemma 2.12 for the interval [t∗0, t

∗] and η∗ = η0 we have

V (t, x∗(t)− x̃(t+ η0)) ≤ u∗(t; t∗0, u0, η0), t ∈ [t∗0, t
∗] (3.13)

where u∗(t; t∗0, u0, η0), t ≥ t∗0 is the maximal solution of initial value problem for the
scalar differential equation (2.12) for the parameter η0 = τ0 − t0 and initial point
(t∗0, u0).

Since [t∗0−r, t∗0] ⊂ [t0−r, t∗0] we get ‖x∗(t∗0 +s)− x̃(t∗0 +s+η)‖ < ρ for s ∈ [−r, 0]
and therefore,

V (t∗0 +s, x∗(t∗0 +s)− x̃(t∗0 +s+η)) ≤ a(‖x∗(t∗0 +s)− x̃(t∗0 +s+η)‖) < δ1, s ∈ [−r, 0],

or u0 < δ1. Therefore, the solution u∗(t; t∗0, u0, η) satisfies the inequality (3.10) for
t ≥ t∗0 and η = τ0 − t0.

From inequalities (3.10), (3.13), the choice of the point t∗, and condition (ii)
of Theorem 3.5 we obtain b(ε) > |u∗(t∗; t∗0, u0, η)| ≥ V (t∗, x∗(t∗) − x̃(t∗ + η)) ≥
b(‖x∗(t∗)− x̃(t∗ + η)‖) = b(ε). The contradiction proves inequality (3.11) and the
result follows. �

Corollary 3.6. Suppose there exist a function V ∈ Λ([−r,∞), S(λ)) such that
(i) for any point t ≥ 0 and any functions ϕ,ψ ∈ C([−r, 0],Rn) such that
‖|ϕ−ψ‖|0 < λ and V (t+ s, ϕ(s)−ψ(s)) < V (t, ϕ(0)−ψ(0)) for s ∈ [−r, 0)
the inequality

D−(2.1)V (t, ϕ(0), ψ(0)), η) ≤ 0, (3.14)

holds where λ > 0 is a given number;
(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ≥ −r, x ∈ S(λ), where a, b ∈ K.
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Then the generalized system of delay differential equations (2.1) is uniformly stable
with initial time difference.

Now consider the derivative of Lyapunov function which is widely used for the
stability of the zero solution:

D−(2.1)V (t, φ(0)) = lim sup
ε→0−

1
ε

{
V (t+ ε, φ(0) + ε

(
f(t, φ(0), G1(φ)(0), G2(φ)(0),

. . . , Gm(φ)(0))− V (t, φ(0))
)}
,

where t ∈ J and φ ∈ C([−r, 0],Rn) : φ(0) ∈ ∆.
Now we give a relationship between both derivatives of Lyapunov functions,

the first one guaranteeing the stability of the zero solution and the second one
guaranteeing the stability with initial time difference. First we have the stability
of zero solution and stability with initial time difference:

Theorem 3.7. Assume:
1. The function g̃ ∈ C(R+ × R,R+), g̃(t, 0) ≡ 0.
2. The function f ∈ C(R+×Rn×Rnm,Rn) and for any (t, x, U) ∈ R+×Rn×Rnm

and any η ∈ [0, ρ] the inequality

|f(t+ η, x, U)− f(t, x, U)| ≤ λ(t)|η|
holds, where ρ > 0 and λ ∈ C(R+,R+) is a bounded function.

3. There exists a function V ∈ Λ([−r,∞),Rn) such that
(i) for any point t ≥ 0 and any function ϕ ∈ C([−r, 0],Rn) such that V (t +

s, ϕ(s)) < V (t, ϕ(0)) for s ∈ [−r, 0) the inequality

D−(2.1)V (t, ϕ(0)) ≤ g̃(t, V (t, ϕ(0))) (3.15)

holds;
(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ≥ −r, x ∈ Rn, where a, b ∈ K.

4. The zero solution of u′ = g(t, u) is uniformly stable.
Then the generalized system of delay differential equations (2.1) is uniformly

stable with initial time difference.

Proof. Note

D−(2.1)V (t, ϕ(0))− ψ(0), η)

= lim
h→0−

1
h

((
V (t+ h, ϕ(0)− ψ(0)) + h

(
f(t, ϕ(0), . . . , Gm(ϕ)(0))

− f(t, ψ(0), G1(ψ)(0), . . . , Gm(ψ)(0))
))
− V (t, ϕ(0))− ψ(0))

)
+
(
V (t+ h, ϕ(0)− ψ(0)) + h

(
f(t, ϕ(0), . . . , Gm(ϕ)(0))

− f(t+ η, ψ(0), G1(ψ)(0), . . . , Gm(ψ)(0))
)

− V (t+ h, ϕ(0)− ψ(0)) + h
(
f(t, ϕ(0), . . . , Gm(ϕ)(0))

− f(t, ψ(0), G1(ψ)(0), . . . , Gm(ψ)(0))
))
.

Therefore,

D−(2.1)V (t, ϕ(0))− ψ(0), η)

≤ D−(2.1)V (t, ϕ(0))− ψ(0)) + L‖f(t+ η, ψ(0), G1(ψ)(0), . . . , Gm(ψ)(0))
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− f(t, ψ(0), G1(ψ)(0), . . . , Gm(ψ)(0))‖
≤ D−(2.1)V (t, ϕ(0))− ψ(0)) + Lλ(t)|η|
≤ g̃(t, ϕ(0))− ψ(0)) + Lλ(t)|η|.

Define the function g(t, u, η) = g̃(t, u) + Lλ(t)|η| for which the inequality (26)
in Theorem 3.5 is satisfied and for which the zero solution of equation (2.12) is
uniformly stable with respect to the parameter. �

Now we have the uniform asymptotic stability with initial time difference of a
system:

Theorem 3.8. Assume:
1. There exists a function V ∈ Λ([−r,∞), S(λ)) such that

(i) for any point t ≥ 0, any parameter η ∈ [0, ρ] and any functions ϕ,ψ
in C([−r, 0],Rn) such that ‖|ϕ − ψ‖|0 < λ and V (t + s, ϕ(s) − ψ(s)) <
V (t, ϕ(0)− ψ(0)) for s ∈ [−r, 0) the inequality

D−(2.1)V (t, ϕ(0), ψ(0)), η) < −c(‖ϕ(0)− ψ(0)‖, η), (3.16)

holds where ρ, λ > 0 is are given constants, function c ∈ K̃S(λ, ρ);
(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ≥ −r, x ∈ S(λ), where a, b ∈ KS(λ).

Then the generalized system of delay differential equations (2.1) is uniformly
asymptotically stable with initial time difference.

Proof. According to Corollary 3.6 the generalized system of delay differential equa-
tions (2.1) is uniformly stable with initial time difference. Therefore, for λ and
any solution x∗(t) = x(t; t0, ϕ) of (2.1),(2.2) there exist numbers α = α(λ) ∈ (0, λ)
and ∆ = ∆(λ) ∈ (0, ρ] such that for any ψ ∈ C([−r, 0],Rn) and any τ0 ∈ R+, the
inequalities ‖|ϕ−ψ‖|0 < α and |τ0− t0| < ∆ imply ‖x(t+ η; τ0, ψ)−x∗(t)‖ < λ for
t ≥ t0. where η = τ0 − t0.

Now we prove the generalized system of delay differential equations (2.1) is uni-
formly attractive with initial time difference.

Consider the constant β ∈ (0, α] such that a(β) ≤ b(α). Let ε ∈ (0, λ] be an
arbitrary number and x∗(t) = x(t; t0, ϕ) be a solution of (2.1),(2.2).

Now choose the initial data τ0, ψ such that ‖|ϕ−ψ‖|0 < β and η0 = τ0− t0 < ∆
and consider the solution x̃(t) = x(t; τ0, ψ) of (2.1), (2.3). Then ‖|ϕ − ψ‖|0 < α
and therefore the inequality

‖x̃(t+ η0)− x∗(t)‖ < λ for t ≥ t0 (3.17)

holds.
Choose the constant γ = γ(ε) ∈ (0, ε] such that a(γ) < b(ε). Let T > a(α)

c(γ,η0)
,

T = T (ε) > 0. We will prove that

‖x∗(t)− x̃(t+ η0)‖ < ε for t ≥ t0 + T. (3.18)

Assume

‖x∗(t)− x̃(t+ η0)‖ ≥ γ for every t ∈ [t0, t0 + T ]. (3.19)
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Then according to Lemma 2.17 applied to the interval [t0, t0 + T ], we obtain

V (t0 + T, x∗(t0 + T )− x̃(t0 + T + η0))

≤ V (t0, ϕ(0)− ψ(0))−
∫ t0+T

t0

c(‖x∗(s)− x̃(s+ η0)‖, η0)ds

≤ a(‖ϕ(0)− ψ(0)‖)− c(γ, η0)T ≤ a(‖|ϕ− ψ‖|0)− c(γ, η0)T

< a(α)− c(γ, η0)T < 0.

(3.20)

The obtained contradiction proves that there exists t∗ ∈ [t0, t0 + T ] such that
‖x∗(t∗)− x̃(t∗ + η0)‖ < γ. Then for any t ≥ t∗ the inequalities

b(‖x∗(t)− x̃(t+ η0)‖) ≤ V (t, x∗(t)− x̃(t∗ + η0))

≤ V (t∗, x∗(t∗)− x̃(t∗ + η0))

≤ a(‖x∗(t∗)− x̃((t∗ + η0)‖)
≤ a(γ) < b(ε)

(3.21)

hold. Therefore, the inequality (3.18) holds for all t ≥ t∗ (hence for t ≥ t0 +T ). �

4. Applications

Example 4.1. Consider the system of delay differential equations with bounded
variable delay,

x′1(t) = −1.5x1(t) + x2(τ(t)) + h1(t)

x′2(t) = −1.5x2(t) + x1(τ(t)) + h2(t) for t ≥ t0
(4.1)

with an initial condition

x1(t+ t0) = ϕ1(t), x2(t+ t0) = ϕ2(t) for t ∈ [−1, 0], (4.2)

where (x, y) ∈ R2, t0 ≥ 0, τ ∈ C(R+, [−1,∞)) : t − 1 ≤ τ(t) ≤ t. Note that
τ(t) = t− | sin(t)| is an example of the delay argument in (4.1).

Let there exist constants L1, L2 > 0 such that |hi(t1) − hi(t2)| ≤ Li|t1 − t2|,
i = 1, 2. Consider the Lyapunov function V (t, x1, x2) = 0.5(x2

1 + x2
2). Let ϕ,ψ ∈

C([−1, 0],R2), ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2), be such that (ϕ1(0) − ψ1(0), ϕ2(0) −
ψ2(0)) ∈ S(λ), λ > 0, and for every s ∈ [−1, 0) the inequality

(ϕ1(0)− ψ1(0))2 + (ϕ2(0)− ψ2(0))2 > (ϕ1(s)− ψ1(s))2 + (ϕ2(s)− ψ2(s))2 (4.3)

holds. Define f1(t, ϕ) = −1.5ϕ1(t) + ϕ2(τ(t)) + h1(t) and f2(t, ϕ) = −1.5ϕ2(t) +
ϕ1(τ(t)) + h2(t).

From the definition of the derivative of Lyapunov function we obtain

D−(4.1)V (t, ϕ(0), ψ(0), η)

= lim
h→0−

sup
1
h

[
V (t+ h, ϕ1(0)− ψ1(0) + h(f1(t, ϕ)

− f1(t+ η, ψ)), ϕ2(0)− ψ2(0) + h(f2(t, ϕ)− f2(t+ η, ψ)))

− V (t, ϕ1(0)− ψ1(0), ϕ2(0)− ψ2(0))
]

= 0.5 lim
h→0−

sup
1
h

[(
ϕ1(0)− ψ1(0) + h(f1(t, ϕ)− f1(t+ η, ψ))

)2

−
(
ϕ1(0)− ψ1(0)

)2
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+
(
ϕ2(0)− ψ2(0) + h(f2(t, ϕ)− f2(t+ η, ψ)

)2

−
(
ϕ2(0)− ψ2(0)

)]
= 0.5 lim

h→0−
sup

[(
2ϕ1(0)− 2ψ1(0) + h(f1(t, ϕ)− f1(t+ η, ψ))

)
× (f1(t, ϕ)− f1(t+ η, ψ))

+
(

2ϕ2(0)− 2ψ2(0) + h(f2(t, ϕ)− f2(t+ η, ψ)
)

(f2(t, ϕ)− f2(t+ η, ψ))
]

=
(
ϕ1(0)− ψ1(0)

)
(f1(t, ϕ)− f1(t+ η, ψ))

+
(
ϕ2(0)− ψ2(0)

)
(f2(t, ϕ)− f2(t+ η, ψ))

= −1.5
((
ϕ1(0)− ψ1(0)

)2

+
(
ϕ2(0)− ψ2(0)

)2)
+
(
ϕ1(0)− ψ1(0)

)(
ϕ1(τ(0))− ψ1(τ(0))

)
+
(
ϕ2(0)− ψ2(0)

)(
ϕ2(τ(0))− ψ2(τ(0))

)
+ (h1(t+ η)− h1(t)) + (h2(t+ η)− h2(t)).

Applying the properties of functions hi(t), i = 1, 2, inequalities 2ab ≤ a2 + b2 and
(4.3) we obtain

D−(4.1)V (t, ϕ(0), ψ(0), η)

≤ −
((
ϕ1(0)− ψ1(0)

)2

+
(
ϕ2(0)− ψ2(0)

)2)
+ 0.5

((
ϕ1(τ(0))− ψ1(τ(0))

)2

+
(
ϕ2(τ(0))− ψ2(τ(0))

)2)
+ L|η|

(
|ϕ1(0)− ψ1(0)|+ |ϕ2(0)− ψ2(0)|

)
≤ −0.5

((
ϕ1(0)− ψ1(0)

)2

+
(
ϕ2(0)− ψ2(0)

)2)
+ L|η|

(
|ϕ1(0)− ψ1(0)|+ |ϕ2(0)− ψ2(0)|

)
,

where L = max{L1, L2}.
Therefore, using |ϕ1(0)− ψ1(0)|+ |ϕ2(0)− ψ2(0)| ≤ λ we obtain

D−(4.1)V (t, ϕ(0), ψ(0), η) ≤ −V (t, ϕ1(0)− ψ1(0), ϕ2(0)− ψ2(0)) + Lλ|η|. (4.4)

The comparison scalar equation in this case is

u′(t) = −u+ Lλ|η|. (4.5)

The solution of (3.18) is u(t) = (−Lλ|η|+ u0)e−(t−t0) + Lλ|η|. Therefore, |u(t)| ≤
|u0|+2Lλ|η| which shows the zero solution of (4.5) is uniformly stable with respect
to the parameter η and according to Theorem 3.5 the system (4.1) is uniformly
stable with initial time difference.
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