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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A
PRESCRIBED MEAN-CURVATURE PROBLEM WITH CRITICAL

GROWTH

GIOVANY M. FIGUEIREDO, MARCOS T. O. PIMENTA

Abstract. In this work we study an existence and multiplicity of solutions

for the prescribed mean-curvature problem with critical growth,

− div
“ ∇up

1 + |∇u|2
”

= λ|u|q−2u+ |u|2
∗−2u in Ω

u = 0 on ∂Ω,

where Ω is a bounded smooth domain of RN , N ≥ 3 and 1 < q < 2. To em-

ploy variational arguments, we consider an auxiliary problem which is proved
to have infinitely many solutions by genus theory. A clever estimate in the gra-

dient of the solutions of the modified problem is necessary to recover solutions

of the original problem.

1. Introduction

In this work we study the existence and multiplicity of solutions for quasilinear
problems with nonlinearity of Brézis-Nirenberg type (see [4])

−div
( ∇u√

1 + |∇u|2
)

= λ|u|q−2u+ |u|2
∗−2u in Ω

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain, λ > 0, 1 < q < 2 and 2∗ = 2N
N−2 . This

problem has applications not just to describe a surface given by u(x), whose mean
curvature is described by the right hand side of (1.1), but also in capillarity theory
where when the nonlinearity is replaced by κu, the resultant equation describe the
equilibrium of a liquid surface with constant surface tension in a uniform gravity
field [18, p. 262].

Problems like (1.1) has been intensively studied over the previous decades. In [6],
the authors studied a related subcritical problem in which they obtained positive
solutions. In [11], the authors proved the existence of infinitely many solutions for
a subcritical version of (1.1). In the recent work [3], Bonheure, Derlet and Valeriola
studied a purely subcritical version of (1.1), where they proved the existence and
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multiplicity of nodal H1
0 (Ω) solutions, to sufficiently large values of λ. They over-

came the difficulty in working in the BV (Ω) space, which is the natural functional
space to treat (1.1), by doing a truncation in the degenerate part of the mean-
curvature operator in order to make possible construct a variational framework in
the Sobolev space H1

0 (Ω). Nevertheless, this truncation requires sharp estimates on
the gradient of the solutions, in order to prove that the solutions of the modified
problem in fact are solutions of the original one.

When Ω = RN and the nonlinearity is substituted by uq; i.e., the Gidas-Spruck
analogue for the mean-curvature operator, Ni and Serr [12, 13] proved that if 1 <
q < N

N−2 no positive solution exist, while for q ≥ 2∗ − 1 there exist infinitely many
solutions. In the range N

N−2 < q < 2∗ − 1 some contributions has been given by
Clément et al [5] and by Del Pino and Guerra [7], where in the latter the authors
prove that many positive solutions do exist if q < 2∗ − 1 is sufficiently close to
2∗ − 1.

Still in the case Ω = RN but with nonlinearity given by λu + up, Peletier and
Serr [14] succeed in proving the existence of positive radial solutions when λ < 0 is
small enough and p is subcritical. In the case λ > 0, they stated there is no regular
solution to that problem no matter how much small or large p is.

In this work, because of the boundedness of Ω, we prove a result in a strike
opposition of that [14], in which we obtain the existence of infinitely many regular
solutions of (1.1), for small enough λ > 0. More specifically, we prove the following
result.

Theorem 1.1. If 1 < q < 2, then there exists λ∗ > 0 such that if 0 < λ < λ∗,
(1.1) has infinitely many solutions. Moreover, if uλ is a solution of (1.1), then
uλ ∈ H1

0 (Ω) ∩ C1,α(Ω) with α ∈ (0, 1), and

lim
λ→0
‖uλ‖ = lim

λ→0
‖uλ‖∞ = lim

λ→0
‖∇uλ‖∞ = 0,

where ‖ · ‖ is the Sobolev norm in H1
0 (Ω).

Our approach follows the main ideas of Bonheure et al [3], to make possible
consider a related modified problem in H1

0 (Ω). Afterwards, to get solutions of the
modified problem we apply Krasnoselskii genus theory in the same way that Azorero
and Alonso [1]. Finally, we use the Moser iteration technique and a regularity result
by Lewy and Stampacchia [17] to get decay in λ of the gradient of the solutions,
which will imply that the solutions of the modified problem in fact are solutions of
the original one.

It is worth pointing out that in fact, our result with minor modifications could be
used to prove the existence of infinitely many solutions of a supercritical problem
like

−div
( ∇u√

1 + |∇u|2
)

= λ|u|q−2u+ |u|s−2u in Ω

u = 0 on ∂Ω,
(1.2)

where s > 2∗. If this were the case, its enough to proceed as in [8, 19, 16], by
truncating the nonlinearity, substituting it by

fK(t) =

{
λ|t|q−2t+ |t|s−2t if |t| ≤ K
λ|t|q−2t+Ks−2∗ |t|2∗−2t if |t| > K
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where K > 0. Since fK is an odd continuous function and fK(t)| ≤ λ|t|q−1 +
Ks−2∗ |t|2∗−1 for all t ∈ R, just few modifications in some of our technical results
allow one to obtain infinitely many solutions of the truncated problem for λ small
enough. Hence, if uλ is one of such solutions, as limλ→0 ‖∇uλ‖∞ = 0, for λ small
enough ‖∇uλ‖∞ < K and then uλ would be a solution of (P̄λ).

This article is organized as follows. In the second section we present the auxiliary
problem and the variational framework. In the third one we make a brief review
of Genus theory. In the fourth we prove some technical results which imply on
the existence of infinitely many solutions of the auxiliary problem. The last one
is dedicated to present the proof of the main result, which consists in estimates in
L∞(Ω) norm of the gradient of solutions.

2. Auxiliary problem and variational framework

Let us consider r ≥ 0, δ > 0 and a function η ∈ C1([r, r + δ]) such that

η(r) =
1√

1 + r
, η(r + δ) =

1√
1 + r + δ

,

η′(r) = − 1
2
√

(1 + r)3
, η′(r + δ) = 0.

Now we define

a(t) :=


1√
1+t

, if 0 ≤ t ≤ r,
η(t), if r ≤ t ≤ r + δ,

K0 = 1√
1+r+δ

, if t ≥ r + δ.

Note that a ∈ C1([0,∞)) is decreasing and K0 ≤ a(t) ≤ 1 for t ∈ [0,∞). Let us fix
r > 0 such that

2
2∗

< K0 < 1. (2.1)

The proof of the Theorem 1.1 is based on a careful study of solutions of the
auxiliary problem

−div(a(|∇u|2)∇u) = λ|u|q−2u+ |u|2
∗−2u in Ω

u = 0 on ∂Ω,
(2.2)

We say that u ∈ H1
0 (Ω) is a weak solution (2.2) if it satisfies∫

Ω

a(|∇u|2)∇u∇φdx = λ

∫
Ω

|u|q−2uφ dx+
∫

Ω

|u|2
∗−2uφ dx,

for all φ ∈ H1
0 (Ω). Let us consider H1

0 (Ω) with its usual norm ‖u‖ =
( ∫

Ω
|∇u|2

)1/2
and define the C1-functional Iλ : H1

0 (Ω)→ R by

Iλ(u) =
1
2

∫
Ω

A(|∇u|2) dx− λ

q

∫
Ω

|u|q dx− 1
2∗

∫
Ω

|u|2
∗
dx,

where A(t) =
∫ t

0
a(s) ds. Note that

I ′λ(u)φ =
∫

Ω

a(|∇u|2)∇u∇φdx− λ
∫

Ω

|u|q−2uφ dx−
∫

Ω

|u|2
∗−2uφ dx,

for all φ ∈ H1
0 (Ω) and then, critical points of Iλ are weak solutions of (2.2).

To use variational methods, we first derive some results related to the Palais-
Smale compactness condition.
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We say that a sequence (un) ⊂ H1
0 (Ω) is a (PS)cλ sequence for Iλ if

Iλ(un)→ cλ and ‖I ′λ(un)‖H−1(Ω) → 0, as n→∞, (2.3)

where

cλ = inf
π∈Γ

max
t∈[0,1]

Iλ(π(t)) > 0,

Γ := {π ∈ C([0, 1], H1
0 (Ω)) : π(0) = 0, Iλ(π(1)) < 0}.

If (2.3) implies the existence of a subsequence (unj ) ⊂ (un) which converges in
H1

0 (Ω), we say that Iλ satisfies the Palais-Smale condition on the level cλ.

3. Genus theory

We start by considering some basic facts on the Krasnoselskii genus theory that
we will use in the proof of Theorem 1.1.

Let E be a real Banach space. Let us denote by A the class of all closed subsets
A ⊂ E \ {0} that are symmetric with respect to the origin, that is, u ∈ A implies
−u ∈ A.

Definition 3.1. Let A ∈ A. The Krasnoselskii genus γ(A) of A is defined as being
the least positive integer k such that there is an odd mapping φ ∈ C(A,Rk) such
that φ(x) 6= 0 for all x ∈ A. When such number does not exist we set γ(A) = ∞.
Furthermore, by definition, γ(∅) = 0.

In the sequel we establish only the properties of the genus that will be used
through this work. More informations on this subject may be found [10].

Theorem 3.2. Let E = RN and ∂Ω be the boundary of an open, symmetric and
bounded subset Ω ⊂ RN such that 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 3.3. γ(SN−1) = N .

Proposition 3.4. If K ∈ A, 0 /∈ K and γ(K) ≥ 2, then K has infinitely many
points.

4. Technical results

The genus theory requires that the functional Iλ is bounded from below. Since
this is not the case, it is necessary to work with a related functional, which will be
done employing some ideas contained [1].

In light of Proposition 3.4, it seems to be useful proving that the set of critical
points of the related functional has genus greater than 2, to obtain infinitely many
solutions of (2.2).

Let us present the way in which we truncate the function Iλ . From (2.1) and
Sobolev’s embedding, we obtain

Iλ(u) ≥ K0

2
‖u‖2 − λ

qS
q/2
q

‖u‖q − 1
2∗S2∗/2

‖u‖2
∗

= g(‖u‖2),

S and Sq are, respectively, the best constants of the Sobolev’s embeddingsH1
0 (Ω) ↪→

L2∗(Ω) and H1
0 (Ω) ↪→ Lq(Ω) and

g(t) =
K0

2
t− λ

qS
q/2
q

tq/2 − 1
2∗S2∗/2

t2
∗/2. (4.1)

Hence, there exists τ1 > 0 such that, if λ ∈ (0, τ1), g attains its positive maximum.
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Let R0 < R1 the roots of g. We have that R0 = R0(τ1) and the following result
holds.

Lemma 4.1.
R0(τ1)→ 0 as λ→ 0. (4.2)

Proof. From g(R0(τ1)) = 0 and g′(R0(τ1)) > 0, we have

K0

2
R0(τ1) =

λ

qS
q/2
q

R0(τ1)q/2 +
1

2∗S2∗/2
R0(τ1)2∗/2, (4.3)

K0

2
>

λ

2qSq/2q

R0(τ1)(q−2)/2 +
1

2S2∗/2
R0(τ1)(2∗−2)/2, (4.4)

for all λ ∈ (0, τ1). From (4.3), we conclude that R0(τ1) is bounded. Suppose that
R0(τ1)→ R0 > 0 as λ→ 0. Then

K0

2
=

1
2∗S2∗/2

R0(τ1)(2∗−2)/2, (4.5)

(4.6)
K0

2
≥ 1

2S2∗/2
R0(τ1)(2∗−2)/2, (4.7)

which is a contradiction, because 2∗ > 2. Therefore R0 = 0. �

We consider τ1 such that R0 ≤ r and we modify the functional Iλ in the following
way. Take φ ∈ C∞([0,+∞)), 0 ≤ φ ≤ 1 such that φ(t) = 1 if t ∈ [0, R0] and φ(t) = 0
if t ∈ [R1,+∞). Now, we consider the truncated functional

Jλ(u) =
1
2

∫
Ω

A(|∇u|2) dx− λ

q

∫
Ω

|u|q dx− φ(‖u‖2)
1
2∗

∫
Ω

|u|2
∗
dx.

Note that Jλ ∈ C1(H1
0 (Ω),R) and, as in (4.1), Jλ(u) ≥ g(‖u‖2), where

g(t) =
K0

2
t− λ

qS
q/2
q

tq/2 − φ(t)
1

2∗S2∗/2
t2
∗/2.

Let us remark that if ‖u‖2 ≤ R0, then Jλ(u) = Iλ(u) and if ‖u‖2 ≥ R1, then

Jλ(u) =
1
2

∫
Ω

A(|∇u|2) dx− λ

q

∫
Ω

|u|q dx,

which implies that Jλ is coercive and hence bounded from below.
Now we show that Jλ satisfy the local Palais-Smale condition. For this, we need

the following technical result, which is analogous of [1, Lemma 4.2].

Lemma 4.2. Let (un) ⊂ H1
0 (Ω) be a bounded sequence such that

Iλ(un)→ cλ and I ′λ(un)→ 0.

If

cλ < (
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 − λ(
1
q
− 1

2∗
)|Ω|

(2∗−q)
2

×
[ q

2∗
λ
(1
q
− 1

2∗
)
|Ω|(2

∗−q)/2∗
((K0

2
− 1

2∗
)

1
S2∗/2

)−1] q
(2∗−q)

hold, then, up to a subsequence, (un) is strongly convergent in H1
0 (Ω).
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Proof. Taking a subsequence, we may suppose that

|∇un|2 ⇀ |∇u|2 + σ and |un|2
∗
⇀ |u|2

∗
+ ν

in the weak* sense of measures.
Using the concentration compactness-principle due to Lions [9, Lemma 2.1], we

obtain an at most countable index set Λ, sequences (xi) ⊂ Ω, (µi), (σi), (νi),⊂
[0,∞), such that

ν =
∑
i∈Λ

νiδxi , σ ≥
∑
i∈Λ

σiδxi , Sν
2/2∗

i ≤ σi, (4.8)

for all i ∈ Λ, where δxi is the Dirac mass at xi ∈ Ω.
Now we claim that Λ = ∅. Arguing by contradiction, assume that Λ 6= ∅ and fix

i ∈ Λ. Consider ψ ∈ C∞0 (Ω, [0, 1]) such that ψ ≡ 1 on B1(0), ψ ≡ 0 on Ω \ B2(0)
and |∇ψ|∞ ≤ 2. Defining ψ%(x) := ψ((x−xi)/%) where % > 0, we have that (ψ%un)
is bounded. Thus I ′λ(un)(ψ%un)→ 0; that is,∫

Ω

a(|∇un|2)un∇un∇ψ% dx+
∫

Ω

a(|∇un|2)ψ%|∇un|2 dx

= λ

∫
Ω

|un|qψ% dx+
∫

Ω

ψ%|un|2
∗
dx+ on(1).

Since supp(ψ%) ⊂ B2%(xi), we obtain∣∣∫
Ω

un∇un∇ψ% dx
∣∣≤ ∫

B2ρ(xi)

|∇un||un∇ψ%| dx.

By Hölder inequality and the fact that the sequence (un) is bounded in H1
0 (Ω) we

have ∣∣ ∫
Ω

un∇un∇ψ% dx
∣∣ ≤ C(∫

B2%(xi)

|un∇ψ%|2 dx
)1/2

.

By the Dominated Convergence Theorem
∫
B2%(xi)

|un∇ψ%|2 dx → 0 as n → +∞
and %→ 0. Thus, we obtain

lim
%→0

[
lim
n→∞

∫
Ω

un∇un∇ψ% dx
]

= 0.

Since 0 < K0 ≤ a(t) ≤ 1, for all t ∈ R, we obtain

lim
%→0

lim
n→∞

[ ∫
Ω

a(|∇un|2)un∇un∇ψ% dx
]

= 0.

Moreover, similar arguments applies in order to obtain

lim
%→0

lim
n→∞

[∫
Ω

ψ%|un|q dx
]

= 0.

Thus, we have

K0

∫
Ω

ψ%dσ ≤
∫

Ω

ψ%dν + o%(1).

Letting % → 0 and using standard theory of Radon measures, we conclude that
K0σi ≤ νi. It follows from (4.8) that

σi ≥ K(N−2)/2
0 SN/2. (4.9)
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Now we shall prove that the above expression cannot occur, and therefore the
set Λ is empty. Indeed, if for some i ∈ Λ (4.9) hold, then

cλ = Iλ(un)− 1
2∗
I ′λ(un)un + on(1)

which implies

cλ ≥ (
K0

2
− 1

2∗
)
∫

Ω

|∇un|2 dx− λ(
1
q
− 1

2∗
)
∫

Ω

|un|q dx.

Since 2
2∗ < K0 < 1 ( see (2.1)), letting n→∞ we obtain

cλ ≥ (
K0

2
− 1

2∗
)σi + (

K0

2
− 1

2∗
)
∫

Ω

|∇u|2 dx− λ(
1
q
− 1

2∗
)
∫

Ω

|u|q dx.

Hence,

cλ ≥ (
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 + (
K0

2
− 1

2∗
)
∫

Ω

|∇u|2 dx− λ(
1
q
− 1

2∗
)
∫

Ω

|u|q dx.

By Hölder’s inequality and Sobolev’s embedding we obtain

cλ ≥ (
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 + (
K0

2
− 1

2∗
)

1
S2∗/2

∫
Ω

|u|2
∗
dx

− λ(
1
q
− 1

2∗
)|Ω|

(2∗−q)
2∗

(∫
Ω

|u|2
∗
dx
)q/2∗

.

Note that

f(t) = (
K0

2
− 1

2∗
)

1
S2∗/2

t2
∗
− λ(

1
q
− 1

2∗
)|Ω|

(2∗−q)
2∗ tq

is a continuous function that attains its absolute minimum, for t > 0, at the point

α0 =
[ q

2∗
λ
(1
q
− 1

2∗
)
|Ω|(2

∗−q)/2∗
((K0

2
− 1

2∗
)

1
S2∗/2

)−1] 1
(2∗−q)

.

Then

cλ ≥ (
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 + (
K0

2
− 1

2∗
)

1
S2∗/2

α2∗

0 − λ(
1
q
− 1

2∗
)|Ω|

(2∗−q)
2 αq0.

So

cλ ≥ (
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 − λ(
1
q
− 1

2∗
)|Ω|

(2∗−q)
2 αq0.

Thus, we conclude that

cλ ≥ (
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 − λ(
1
q
− 1

2∗
)|Ω|

(2∗−q)
2

×
[ q

2∗
λ
(1
q
− 1

2∗
)
|Ω|(2

∗−q)/2∗
((K0

2
− 1

2∗
)

1
S2∗/2

)−1] q
(2∗−q)

,

which is a contradiction. Thus Λ is empty and it follows that un → u in L2∗(Ω).
Thus, up to a subsequence,

‖un − u‖2 ≤
1
K0

∫
Ω

a(|∇un|2)|∇un −∇u|2 = Iλ(un)un − Iλ(un)u+ on(1) = on(1).

�
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By Lemma 4.2 we conclude that, there exists τ2 > 0 such that, for all λ ∈ (0, τ2)
we obtain

(
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 − λ(
1
q
− 1

2∗
)|Ω|

(2∗−q)
2

×
[ q

2∗
λ
(1
q
− 1

2∗
)
|Ω|(2

∗−q)/2∗
((K0

2
− 1

2∗
)

1
S2∗/2

)−1] q
(2∗−q)

> 0

and, hence, if (un) is a bounded sequence such that Iλ(un) → c, I ′λ(un) → 0 with
c < 0, then (un) has a convergent subsequence.

Lemma 4.3. If Jλ(u) < 0, then ‖u‖2 < R0 ≤ r and Jλ(v) = Iλ(v), for all v in a
small neighborhood of u. Moreover, Jλ satisfies a local Palais-Smale condition for
c < 0.

Proof. Since g(‖u‖2) ≤ Jλ(u) < 0, then ‖u‖2 < R0 ≤ r. By the choice of τ1 in
(4.2) we have that Jλ(u) = Iλ(u). Moreover, since Jλ is continuous, we conclude
that Jλ(v) = Iλ(v), for all v ∈ BR0/2(0). Besides, if (un) is a sequence such
that Jλ(un) → c < 0 and J ′λ(un) → 0 as n → ∞, then for n sufficiently large
Iλ(un) = Jλ(un) → c < 0 and I ′λ(un) = J ′λ(un) → 0 as n → ∞. Since Jλ
is coercive, we obtain that (un) is bounded in H1

0 (Ω). From Lemma 4.2, for all
λ ∈ (0, τ2), we obtain

c < 0 < (
K0

2
− 1

2∗
)K(N−2)/2

0 SN/2 − λ(
1
q
− 1

2∗
)|Ω|

(2∗−q)
2

×
[ q

2∗
λ
(1
q
− 1

2∗
)
|Ω|(2

∗−q)/2∗
((K0

2
− 1

2∗
)

1
S2∗/2

)−1] q
(2∗−q)

and hence, up to a subsequence (un) is strongly convergent in H1
0 (Ω). �

Now, we construct an appropriate minimax sequence of negative critical values.

Lemma 4.4. Given k ∈ N, there exists ε = ε(k) > 0 such that

γ(J−ελ ) ≥ k,

where J−ελ = {u ∈ H1
0 (Ω) : Jλ(u) ≤ −ε}.

Proof. Consider k ∈ N and let Xk be a k-dimensional subspace of H1
0 (Ω). Since in

Xk all norms are equivalent, there exists C(k) > 0 such that

−C(k)‖u‖q ≥ −
∫

Ω

|u|q dx,

for all u ∈ Xk. We now use the inequality above to conclude that

Jλ(u) ≤ 1
2
‖u‖2 − C(k)

q
‖u‖q = ‖u‖q

(1
2
‖u‖2−q − C(k)

q

)
.

Considering R > 0 sufficiently small, there exists ε = ε(R) > 0 such that

Jλ(u) < −ε < 0,

for all u ∈ SR = {u ∈ Xk; ‖u‖ = R}. Since Xk and Rk are isomorphic and SR and
Sk−1 are homeomorphic, we conclude from Corollary 3.3 that γ(SR) = γ(Sk−1) =
k. Moreover, once that SR ⊂ J−ελ and J−ελ is symmetric and closed, we have

k = γ(SR) ≤ γ(J−ελ ).

�
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We define now, for each k ∈ N, the sets

Γk = {C ⊂ H : C is closed , C = −C and γ(C) ≥ k},
Kc = {u ∈ H : J ′λ(u) = 0 and Jλ(u) = c}

and the number
ck = inf

C∈Γk
sup
u∈C

Jλ(u).

Lemma 4.5. Given k ∈ N, the number ck is negative.

Proof. From Lemma 4.4, for each k ∈ N there exists ε > 0 such that γ(J−ελ ) ≥ k.
Moreover, 0 /∈ J−ελ and J−ελ ∈ Γk. On the other hand

sup
u∈J−ελ

Jλ(u) ≤ −ε.

Hence,
−∞ < ck = inf

C∈Γk
sup
u∈C

Jλ(u) ≤ sup
u∈J−ελ

Jλ(u) ≤ −ε < 0.

�

The next Lemma allows us to prove the existence of critical points of Jλ.

Lemma 4.6. If c = ck = ck+1 = · · · = ck+r for some r ∈ N, then there exists
λ∗ > 0 such that

γ(Kc) ≥ r + 1,

for λ ∈ (0, λ∗).

Proof. Since c = ck = ck+1 = · · · = ck+r < 0, for λ∗ = min{τ1, τ2} and for
all λ ∈ (0, λ∗), from Lemma 4.2 and Lemma 4.5, we obtain that Kc is compact.
Moreover, Kc = −Kc. If γ(Kc) ≤ r, there exists a closed and symmetric set U with
Kc ⊂ U such that γ(U) = γ(Kc) ≤ r. Note that we can choose U ⊂ J0

λ because
c < 0. By the deformation lemma [2] we have an odd homeomorphism η : H → H

such that η(Jc+δλ − U) ⊂ Jc−δλ for some δ > 0 with 0 < δ < −c. Thus, Jc+δλ ⊂ J0
λ

and by definition of c = ck+r, there exists A ∈ Γk+r such that supu∈A < c+ δ; that
is, A ⊂ Jc+δλ and

η(A− U) ⊂ η(Jc+δλ − U) ⊂ Jc−δλ . (4.10)

But γ(A− U) ≥ γ(A) − γ(U) ≥ k and γ(η(A− U)) ≥ γ(A− U) ≥ k. Then
η(A− U) ∈ Γk which contradicts (4.10). �

5. Proof of Theorem 1.1

If −∞ < c1 < c2 < · · · < ck < · · · < 0 with ci 6= cj , once each ck is a critical
value of Jλ, we obtain infinitely many critical points of Jλ and then, (2.2) has
infinitely many solutions.

On the other hand, if ck = ck+r for some k and r, then c = ck = ck+1 = · · · =
ck+r and from Lemma 4.6, there exists λ∗ > 0 such that

γ(Kc) ≥ r + 1 ≥ 2

for all λ ∈ (0, λ∗). From Proposition 3.4 Kc has infinitely many points; that is,
(2.2) has infinitely many solutions.
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Let λ∗ be as in Lemma 4.6 and, for λ ∈ (0, λ∗), let uλ be a solution of (2.2).
Thus Jλ(uλ) = Iλ(uλ) < 0. Hence,

‖uλ‖2 ≤ R0,

which together with (4.2) implies

lim
λ→0
‖uλ‖ = 0. (5.1)

Now we use the Moser iteration technique in order to prove that there exists a
positive constant C, independent on λ such that

‖uλ‖∞ ≤ C‖uλ‖. (5.2)

Using (5.2) we can conclude that

lim
λ→0
‖uλ‖∞ = 0. (5.3)

To save notation, from now on we denote uλ by u. In what follows, we fix
R > R1 > 0, R > 1 and take a cut-off function ηR ∈ C∞0 (Ω) such that 0 ≤ ηR ≤ 1,
ηR ≡ 0 in BcR, ηR ≡ 1 in BR1 and |∇ηR| ≤ C/R, where BR ⊂ Ω and C > 0 is a
constant.

Let h(t) = λtq−1 + t2
∗−1. Thus

|h(t)| → 0 as t→ 0,

|h(t)|
t2∗−1

→ 1 as t→∞.

Thus, for all δ > 0 there is Cδ(λ) > 0 such that

h(t) ≤ δ + Cδ(λ)t2
∗−1. (5.4)

Moreover, for λ ∈ [0, λ0], Cδ(λ) can be chosen uniformly in λ in such a way that
(5.4) holds independently of λ. For each L > 0, define

uL(x) =

{
u(x), if u(x) ≤ L
L, if u(x) ≥ L,

zL = η2
Ru

2(σ−1)
L u and wL = ηRuu

σ−1
L

with σ > 1 to be determined later. In the course of this proof, C1, C2. . . , denote
constants independent of λ.

Taking zL as a test function we obtain I ′λ(u)zL = 0. More specifically,∫
Ω

a(|∇u|2)∇u∇zL = λ

∫
Ω

uq−1zL +
∫

Ω

u2∗−1zL.

Hence

K0

∫
Ω

∇u∇zL ≤
∫

Ω

h(u)zL.

By (5.4) we obtain∫
Ω

∇u∇zL ≤ δK−1
0

∫
Ω

zL +K−1
0 Cδ

∫
Ω

u2∗−1zL.

Let us fix δ > 0 small enough in such a way that∫
Ω

∇u∇zL ≤ C
∫

Ω

u2∗−1zL.
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Using zL we obtain∫
Ω

η2
Ru

2(σ−1)
L |∇u|2 dx ≤ −

∫
Ω

ηRuu
2(σ−1)
L ∇ηR∇u dx

− 2(σ − 1)
∫

Ω

u
(2σ−3)
L u∇u∇uL +

∫
Ω

η2
Ru

2∗u
2(σ−1)
L dx,

and the definition of uL implies

−2(σ − 1)
∫

Ω

u
(2σ−3)
L u∇u∇uL ≤ 0.

Thus∫
Ω

η2
Ru

2(σ−1)
L |∇u|2 dx ≤ +

∫
Ω

ηRuu
2(σ−1)
L |∇ηR||∇u| dx+

∫
Ω

η2
Ru

2∗u
2(σ−1)
L dx.

Taking zL as a test function and using (5.4), we obtain∫
Ω

η2
Ru

2(σ−1)
L |∇u|2 dx ≤ C1

∫
Ω

ηRuu
2(σ−1)
L |∇ηR||∇u| dx+ C1

∫
Ω

η2
Ru

2∗u
2(σ−1)
L dx.

Fixing τ̃ > 0 and using Young’s inequality, we obtain∫
Ω

η2
Ru

2(σ−1)
L |∇u|2 dx ≤ C1

∫
Ω

(
τ̃ η2
R|∇u|2 + Ceτu2|∇ηR|2

)
u

2(σ−1)
L dx

+ C1

∫
Ω

η2
Ru

2∗u
2(σ−1)
L dx.

Choosing τ̃ ≤ 1/4, it follows that∫
Ω

η2
Ru

2(σ−1)
L |∇u|2 dx ≤ C2

(∫
Ω

u2u
2(σ−1)
L |∇ηR|2 dx+

∫
Ω

η2
Ru

2∗u
2(σ−1)
L dx

)
. (5.5)

On the other hand, we obtain

S‖wL‖2L2∗ (Ω) ≤
∫

Ω

|∇(ηRuuσ−1
L )|2

≤
∫

Ω

|u|2u2(σ−1)
L |∇ηR|2 +

∫
Ω

η2
R

∣∣∇ (uuσ−1
L

)∣∣2 .
But∫

Ω

η2
R

∣∣∇ (uuσ−1
L

)∣∣2 =
∫
{|u|≤L}

η2
R

∣∣∇ (uuσ−1
L

)∣∣2 +
∫
{|u|>L}

η2
R

∣∣∇ (uuσ−1
L

)∣∣2
=
∫
{|u|≤L}

η2
R |∇uσ|

2 +
∫
{|u|>L}

η2
RL

2(σ−1) |∇u|2

≤ σ2

∫
Ω

η2
Ru

2(σ−1)
L |∇u|2,

and therefore

‖wL‖2L2∗ (Ω) ≤ C3σ
2
(∫

Ω

|u|2u2(σ−1)
L |∇ηR|2 +

∫
Ω

η2
Ru

2(σ−1)
L |∇u|2

)
.

From this and (5.5),

‖wL‖2L2∗ (Ω) ≤ C4σ
2
(∫

Ω

|u|2u2(σ−1)
L |∇ηR|2 +

∫
Ω

η2
R|u|2

∗
u

2(σ−1)
L

)
, (5.6)
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for all σ > 1. The above expression, the properties of ηR and uL ≤ u, imply

‖wL‖2L2∗ (Ω) ≤ C4σ
2

∫
BR

(
|u|2σ|∇ηR|2 + |u|2

∗−2|u|2σ
)
. (5.7)

If we set

t :=
2∗2∗

2(2∗ − 2)
> 1, α :=

2t
t− 1

< 2∗, (5.8)

we can apply Hölder’s inequality with exponents t/(t− 1) and t in (5.7) to get

‖wL‖2L2∗ (Ω) ≤ C4σ
2‖u‖2σLσα(BR)

(∫
BR

|∇ηR|2t
)1/t

+ C4σ
2‖u‖2σLσα(BR)

(∫
BR

|u|2
∗(2∗/2)

)1/t

.

(5.9)

Since ηR is constant on BR1 ∪BcR and |∇ηR| ≤ C/R, we conclude that∫
BR

|∇ηR|2t =
∫
BR\BR1

|∇ηR|2t ≤
C5

R2t−N ≤ C5. (5.10)

We have used R > 1 and 2t = 2∗

2 N > N in the last inequality.
Claim. There exist a constants K > 0 independent on λ such that,∫

Ω

|u|2
∗(2∗/2) ≤ K.

Assuming the claim is true, we can use (5.9) and (5.10) to conclude that

‖wL‖2L2∗ (Ω) ≤ C6σ
2‖u‖2σLσα(BR).

Since

‖uL‖2σLσ2∗ (BR) =
(∫

BR

uσ2∗

L

)2/2∗

≤
(∫

Ω

η2∗

R |u|2
∗
u

2∗(σ−1)
L

)2/2∗

= ‖wL‖2L2∗ (Ω) ≤ C6σ
2‖u‖2σLσα(Ω),

we can apply Fatou’s lemma in the variable L to obtain

‖u‖Lσ2∗ (BR) ≤ C
1/σ
7 σ1/σ‖u‖Lσα(Ω),

whenever |u|σα ∈ L1(BR). Here, C7 is a positive constant independent on R.
Iterating this process, for each k ∈ N, it follows that

‖u‖
Lσk2∗ (BR)

≤ C
Pk
i=1 σ

−i

7 σ
Pm
i=1 iσ

−i
‖u‖L2∗ (Ω).

Since Ω can be covered by a finite number of balls BjR, we have that

‖u‖
Lσk2∗ (Ω)

≤
finite∑
j

‖u‖
Lσk2∗ (BjR)

≤
finite∑
j

C
Pk
i=1 σ

−i

7 σ
Pm
i=1 iσ

−i
‖u‖L2∗ (Ω).

Since σ > 1, we let k →∞ to obtain

‖u‖L∞(Ω) ≤ K2‖u‖,

for some K2 > 0 independent on λ.
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It remains to prove the claim. From (5.6)

‖wL‖2L2∗ (Ω) ≤ C9σ
2
(∫

Ω

|u|2u2(σ−1)
L |∇ηR|2 +

∫
Ω

η2
R|u|2

∗
u

2(σ−1)
L

)
, (5.11)

We set σ := 2∗/2 in (5.6) to obtain

‖wL‖2L2∗ (Ω) ≤ C10

(∫
Ω

|u|2u(2∗−2)
L |∇ηR|2 +

∫
BR

η2
R|u|2u

(2∗−2)
L |u|(2

∗−2)
)
.

By Hölder’s inequality with exponents 2∗/2 and 2∗/(2∗ − 2) we obtain

‖wL‖2L2∗ (Ω) ≤ C10

∫
Ω

|u|2u(2∗−2)
L |∇ηR|2

+ C10

(∫
BR

(
ηR|u|u(2∗−2)/2

L

)2∗)2/2∗

‖u‖2
∗−2
L2∗ (Ω)

.

From (5.1) and recalling that ηRuu
(2∗−2)/2
L = wL, uL ≤ u and ∇ηR is bounded, we

obtain

‖wL‖2L2∗ (Ω) ≤ C11

∫
Ω

|u|2u(2∗−2)
L |∇ηR|2 ≤ C11

∫
Ω

|u|2
∗
≤ C12.

The definition of ηR and wL and the above inequality imply(∫
BR

|u|2
∗
u

2∗(2∗−2)/2
L

)2/2∗

≤ |wL|2L2∗ (Ω) ≤ C12.

Using Fatou’s lemma in the variable L, we have∫
BR

|u|2
∗(2∗/2) ≤ K := C

2∗/2
12 .

Since Ω can be covered by a finite number of balls BjR, we have∫
Ω

|u|2
∗(2∗/2) ≤

n∑
j

∫
BR

|u|2
∗(2∗/2) ≤ K3,

for some K3 > 0.
To estimate ‖∇uλ‖∞, we use the following result by Stampacchia [17].

Lemma 5.1. Let A(η) a given C1 vector field in RN , and f(x, s) a bounded
Carathéodory function in Ω× R. Let u ∈ H1

0 (Ω) be a solution of∫
Ω

(A(|∇u|)∇ϕ+ f(x, u)ϕ) = 0,

for all ϕ ∈ H1
0 (Ω). Assume that there exist 0 < ν < M such that

ν|ξ|2 ≤ ∂Ai
∂ηj

(∇u)ξiξj and
∣∣∂Ai
∂ηj

(∇u)
∣∣ ≤M, (5.12)

for i, j = 1, . . . , N and ξ ∈ RN . Then u ∈ W 2,p(Ω) ∩ C1,α(Ω), for all α ∈ (0, 1)
and p > 1. Moreover

‖u‖1,α ≤ C(ν,M,Ω)‖f(·, u)‖∞. (5.13)
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Proof. By the definition of a, for r small enough (5.12) hold. This, together with
the fact that ‖uλ‖∞ is bounded allow us to apply the last result. Then (5.3) implies

‖u‖1,α ≤ λ‖u‖q−1
∞ + ‖u‖2

∗−1
∞ = o(λ), (5.14)

as λ→ 0.
Then, there exists λ∗ > 0 such that λ ∈ (0, λ∗) implies ‖∇u‖∞ ≤ r and hence,

uλ is a solution of (1.1). �
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